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Shrub willow, Salix spp. and hybrids, is an important bioenergy crop. Here we report the whole-genome sequences and annota-
tion of 13 endophytic bacteria from stem tissues of Salix purpurea grown in nature and from commercial cultivars and Salix
viminalis � Salix miyabeana grown in bioenergy fields in Geneva, New York.
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Bioenergy produced from plant biomass as a feedstock has the
potential to mitigate concerns regarding climate change and

sustainability, among others (1). Shrub willow, Salix spp. and hy-
brids, is an attractive plant for bioenergy given its rapid growth
and sustainable growth characteristics (2). There have been nu-
merous efforts regarding the development of shrub willow culti-
vars suitable for the production of bioenergy (3). Endophytes have
been isolated from tissues of tree willows in nature (4), but it is
unknown what role endophytes might play in shrub willows grow-
ing in intensively managed bioenergy fields. To gain some insights
into endophytic bacteria that associate with shrub willow, we em-
barked on a project which resulted in the identification of 69
unique bacteria, of which 13 were subjected to whole-genome
sequencing and annotation. Plant-associated bacteria that are
beneficial to Salix have the potential to improve crop production
while reducing need for inputs. In addition, the identification of

bacteria that are detrimental to growth and development through
phytopathogenesis is also of interest as a foundation for breeding
for resistance and maximizing growth potential. The endophytic
bacteria were initially isolated from surface-sterilized stem tissues
from wild accessions of S. purpurea growing in nature and from
commercial cultivars of S. purpurea and S. viminalis � S. miya-
beana growing in fertilized and nonfertilized bioenergy fields in
Geneva, NY. The 13 endophytes were initially identified by ampli-
fication and nucleotide sequence analysis of the variable 3 region
of the 16S rRNA gene (5).

Genomic DNA was isolated from the endophytes using a
GenElute bacterial genomic kit (Sigma-Aldrich, St. Louis, MO) and
prepared for whole-genome sequencing using a Nextera XT library
preparation kit (Illumina, San Diego, CA). Whole-genome sequenc-
ing was performed using the Illumina Miseq (150-bp paired-end
reads). The reads were error corrected and assembled de novo using

TABLE 1 Sequencing and annotation results for the 13 endophytes isolated from Salix

Strain Sourcea SubID BioProject no. BioSample no. Accession no. Organism

Genome
coverage
(�)

Genome
size (bp)

No. of
contigs

No. of
ORFs

No. of
tRNAs

No. of
rRNAs

RIT273 Fabius SUB467427 PRJNA239282 SAMN02676620 JFOK00000000 Pantoea agglomerans 138 5,365,338 26 4,914 75 17
RIT283 Fabius SUB467430 PRJNA239283 SAMN02676621 JFOJ00000000 Staphylococcus

haemolyticus
289 2,527,922 81 2,445 49 14

RIT288 Fish Creek SUB468060 PRJNA239284 SAMN02676622 JFYN00000000 Pseudomonas sp. 191 6,273,290 44 5,547 61 10
RIT293 Fabius SUB468074 PRJNA239285 SAMN02676623 JFYO00000000 Microbacterium

oleivorans
194 2,898,622 11 2,782 49 8

RIT304 Wild SUB468076 PRJNA239286 SAMN02676624 JFYP00000000 Micrococcus luteus 166 2,506,829 183 2,248 53 4
RIT305 Wild SUB468079 PRJNA239287 SAMN02676625 JFYQ00000000 Micrococcus luteus 200 2,612,381 110 2,350 49 6
RIT308 Fabius SUB468082 PRJNA239288 SAMN02676626 JFYR00000000 Janthinobacterium

lividum
189 6,212,741 44 5,431 83 19

RIT309 Fabius SUB468084 PRJNA239289 SAMN02676627 JFYS00000000 Stenotrophomonas
sp.

194 4,634,795 45 4,141 77 6

RIT313 Fabius SUB468085 PRJNA239290 SAMN02676628 JFYT00000000 Delftia sp. 56 6,698,360 122 5,936 78 5
RIT324w Fabius SUB468086 PRJNA239291 SAMN02676629 JFYU00000000 Micrococcus luteus 459 2,635,230 118 2,381 53 7
RIT328 Fish Creek SUB468089 PRJNA239292 SAMN02676630 JFYV00000000 Sphingomonas sp. 73 4,343,511 56 4,002 58 3
RIT341 Fabius SUB468091 PRJNA239293 SAMN02676631 JFYW00000000 Exiguobacterium sp. 138 3,107,022 15 3,168 62 20
RIT357 Wild SUB468093 PRJNA239294 SAMN02676632 JFYX00000000 Pseudomonas sp. 69 3,107,022 49 5,552 60 7

a Wild, wild Salix purpurea; Fish Creek, Salix purpurea Fish Creek cultivar; Fabius, Salix viminalis � S. miyabeana Fabius cultivar.

Genome AnnouncementsMay/June 2014 Volume 2 Issue 3 e00288-14 genomea.asm.org 1

http://creativecommons.org/licenses/by/3.0/
http://www.ncbi.nlm.nih.gov/nuccore?term=JFOK00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFOJ00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYN00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYO00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYP00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYQ00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYR00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYS00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYT00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYU00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYV00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYW00000000
http://www.ncbi.nlm.nih.gov/nuccore?term=JFYX00000000
http://genomea.asm.org


Spades 2.5 (6). Scaffolding of the contigs and in silico gap-closing of
the resulting scaffolds were performed with SSPACE and GapFiller,
respectively (7, 8). Genome annotation was performed using the
Prokka annotation pipeline, which incorporated Prodigal 2.60, Ara-
gorn, and RNAmmer 1.2 for the prediction of open reading frames
(ORFs), tRNAs, and rRNAs, respectively (9–11). Additional annota-
tion of the predicted protein sequences was done using Inter-
ProScan5 (12). The key attributes for the genome sequences and an-
notation are summarized in Table 1. An in-depth analysis of the genes
associated with plant-microbe symbiosis is under way and will be
published in a subsequent report.

Nucleotide sequence accession numbers. The nucleotide se-
quences have been deposited at DDBJ/EMBL/GenBank under the
accessions numbers provided in Table 1.
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