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Introduction
Climate change poses one of this century’s 
most significant public health challenges 
(Chan 2009). There is growing recogni-
tion that strategies to reduce greenhouse gas 
(GHG) and climate-active aerosol emissions 
(“mitigation” strategies) will affect numerous 
upstream drivers of public health, includ-
ing indoor and outdoor air pollution, water 
security and quality, food security and qual-
ity, and physical activity, with the potential 
for beneficial and adverse impacts (Table 1; 
Haines et al. 2009; Little and Jackson 2010; 
Newmark et al. 2010).

Importantly, many mitigation-related 
health impacts accrue sooner than the impacts 
projected from climate change. Studies pub-
lished in the Lancet in 2009 highlighted this, 
suggesting significant net health benefits 
across several mitigation strategies and set-
tings (e.g., Haines et al. 2009). Studies in this 
series used modeling to estimate the differ-
ences in, and magnitude of, health co-benefits 

of mitigation actions in various sectors, as well 
as discussing the potential for adverse health 
impacts, or co-harms. Subsequent analyses 
in the United States extended these findings 
(Grabow et al. 2012; Maizlish et al. 2013).

Studies estimating the ancillary health 
effects of mitigation strategies (termed “co-
benefits” from here forward, with the acknowl-
edgment that co-harms also may result) use a 
range of modeling approaches, drawing exper-
tise from public health, agriculture, environ-
mental sciences, urban planning, and other 
disciplines to generate policy-relevant out-
puts. We reviewed several specific issues with 
modeling co-benefits of mitigation strategies, 
including those related to model framework, 
structure, and choice of parameters, and the 
implications of these for policy uptake. Some 
of these issues are common to other types of 
modeling, so our discussion could be applied 
to similar concerns arising in the develop-
ment of health impact assessments (European 
Centre for Health Policy 1999; Kemm 

2007) and the modeling of certain climate 
change adaptation activities, which also have 
co-benefits and co-harms (Cheng and Berry 
2013). We focused specifically on mitigation 
co-benefits modeling, however, for several rea-
sons: First, all co-benefits modeling of climate 
change mitigation policies necessarily requires 
attention to these issues, whereas not all health 
impact assessment efforts, or efforts to quan-
tify ancillary impacts of adaptation strategies, 
do. Second, GHG emission reduction poli-
cies can influence a range of major risk factors 
that contribute substantially to global disease 
burden, whereas climate change adaptation 
strategies result in health co-benefits pre-
dominantly by increasing resilience to existing 
climate variability. Third, the field of health 
impact assessment studies is much broader 
and would require a wider-ranging discus-
sion. And fourth, to date there has not been a 
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systematic consideration of the methodological 
issues related to modeling health co-benefits of 
climate change mitigation policies.

Modeling of co-benefits generally takes the 
basic approach shown in Figure 1, employing 
a wide variety of methods such as comparative 
risk assessment (Smith and Haigler 2008), 
complex mechanistic components (such as 
those describing building physics, e.g., 
Wilkinson et al. 2009); and macroeconomic, 
technological, and behavioral models 
(National Research Council 2010). The range 
of modeling approaches commonly used is 
detailed in Supplemental Material, Table S1; 
the table also includes central estimates of 
health co-benefits reported by selected studies.

Several overlapping challenges are com-
mon to co-benefits modeling studies [Bell et al. 
2008; Haines et al. 2009; HEI (Health Effects 
Institute) International Scientific Oversight 
Committee 2010; Matus et al. 2008; Patz et al. 
2008; Smith and Haigler 2008], including 
the following:
•	Modeling the time course of strategies that are 

phased in over time, and the resulting time-
varying levels of exposures to health drivers;

•	Taking into account the varying lag times 
between changes in exposure and changes 
in health outcomes according to the health 
outcome concerned;

•	Incomplete methods for quantifying and 
conveying the degree and sources of uncer-
tainty associated with the modeling outputs;

•	Debate over key parameters, such as 
discount rates and terms involved in the eco-
nomic valuation of health outcomes; and

•	Estimating future economic development 
pathways and GHG emissions, and project-
ing trends in demographics, health status, 
and levels of exposures to health drivers over 
the relevant time course.

This review is an initial effort to address 
some of these challenges, with a focus on 
modeling issues (time course of exposures and 
impacts; uncertainty; and low-probability/
high-impact effects) and issues affecting rele-
vance (discount rate selection, decision analy
sis, and inclusion of factors affecting policy 
uptake and system dynamics). We conclude 
with recommendations to advance the rigor 
and consistency of co-benefits modeling.

Key Modeling Issues 
Health co-benefits models typically begin 
with a mapping exercise that proceeds to a 
more formal mathematical model describ-
ing relationships between model components 
and outcomes of interest. This process may 
involve identification of specific indicators of 
health impacts. A number of different frame-
works are available (e.g., Hambling et  al. 
2011), and the relationships identified in the 
mapping process can be formally quantified 
and assessed using a variety of strategies.

Initial mapping to model construction. 
Modeling can be used to answer a specific 
set of policy questions regarding the health 
impacts of particular mitigation options. An 
important initial step is developing a concep-
tual framework linking the mitigation policy 
to specific public health drivers in the near- 
and mid-term over which beneficial health 

impacts accrue. Modeling efforts begin with 
description of the system boundaries, major 
associations between different model compo-
nents, outcome indicators and their metrics, 
and definition of the counterfactuals (e.g., 
“business as usual”) used for comparison. For 
instance, in estimating the impact of introduc-
ing low-emission cookstoves in India on health 
impacts of household air pollution, the initial 
conceptual map included population growth 
and demographics, proportion of the popu-
lation with low-emission cookstoves, major 
health outcomes associated with elevated lev-
els of household air pollution, and historical 
experience implementing national cookstove 
interventions, but not the potential effects on 
household income (Wilkinson et al. 2009).

The models constructed from these map-
ping exercises should capture the key asso-
ciations between model components and the 
outcomes of interest within the scale and 
scope of the project. Unfortunately, not all 
relationships are well understood, and not 
all parameters are well studied. For instance, 
there are questions about the mitigation 
potential of cookstove interventions because 
stove emissions can affect climate negatively or 
positively (Wilkinson et al. 2009). Likewise, 
poor maintenance of household energy inter-
ventions such as anaerobic digesters can lead 
to direct emissions of potent GHGs into the 
atmosphere (Dhingra et  al. 2011), poten-
tially limiting their long-term performance. 
Although such uncertainty does not affect the 
resulting estimates of health impacts of a miti-
gation strategy, it does affect the confidence in 

Table 1. Summary of major health drivers and outcomes modified by select mitigation strategies.

Sector/mitigation strategy Health drivers Health and related outcomes potentially affected
Energy (Burtraw et al. 2003; Markandya et al. 2009)

Reduce fossil fuel combustion Reduce conventional air pollutants: particulate matter, 
ozone, nitrogen oxides, volatile organic compounds

Cardiovascular morbidity and mortality; asthma and other 
respiratory diseases; developmental disorders; improved 
crop survival and productivity

Increase production of some types of biofuels Increase food prices and lower availability depending on 
whether they compete directly with food crops

Food insecurity; malnutrition

Carbon capture and sequestration Groundwater availability and quality; contamination with 
metals and minerals, sudden carbon dioxide/hydrogen 
sulfide releases

Various related to specific contaminants

Transportation (Cifuentes et al. 2001; Maizlish et al. 
2013; Shindell et al. 2011; Woodcock et al. 2013)
Improve fuel economy; increase adoption of electric 

and other noncombustion engines; tighter on-road 
vehicle emissions standards

Reduce conventional air pollutants Cardiovascular morbidity and mortality; asthma and other 
respiratory diseases;

Increase access and convenience of active modes 
of transportation, including walking, cycling, and 
public transit

Reduce conventional air pollutants Cardiovascular morbidity and mortality; asthma and other 
respiratory diseases; developmental disorders

Increase physical activity levels Cardiovascular morbidity and mortality; obesity and 
diabetes risk; risk of certain cancers; risk of dementia, 
depression, injury

Agriculture (Friel et al. 2009; McMichael et al. 2007)
Reduce ruminant livestock production; capture 

methane emissions
Reduce ozone air pollution Cardiovascular and respiratory morbidity and mortality
Reduce consumption of animal products with high 

levels of saturated fat; reduce red and processed meat 
consumption; increase consumption of unsaturated fats 
of vegetable origin and of fruit and vegetables

Cardiovascular morbidity and mortality; risk of certain 
cancers including large bowel cancer

Land use in built environment (Younger et al. 2008)
Increase green space and parks in built environment; 

increase shading and vegetation along roads
Increase physical activity; reduce excessive temperature 

exposure
Cardiovascular risk; some cancer risks; mental health
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estimates of efficacy of the mitigation strategy 
relative to other options (Haines et al. 2009). 
Modelers must decide what to include and 
how to define the range of input parameters 
based on the best available evidence.

Modeling complex, time-varying exposures 
and impacts. Several key time-varying ele-
ments of mitigation policies must be made 
explicit, such as the time course for inter-
vention implementation (e.g., low-emission 
cookstoves) and associated exposure changes 
(e.g., reductions in household air pollution). 
Mitigation activities may be represented in 
models as enacted instantaneously, in steps, or 
gradually phased in, although most integrated 
assessment models assume instantaneous and 
perfect implementation (first-best worlds). 
Most co-benefit models consider step changes 
in mitigation interventions (Cifuentes et al. 
2001; Maizlish et al. 2013; Woodcock et al. 
2013). Ideally, models should employ a time 
course empirically based on analogous inter-
ventions (Wilkinson et al. 2009). Similarly, 
exposures should be modeled to reflect those 
temporal characteristics most strongly asso-
ciated with health outcomes—for example, 
peak levels are most relevant for some hazards, 
cumulative and long-term exposures for others 
(Lin et al. 2008; Murray et al. 2003; Robins 
and Hernan 2009). The dynamic response 
between disease and exposure must also be 
considered, requiring an accounting of cumu-
lative exposures and associated morbidity and 
mortality among an age-stratified cohort over 
time (Matus et al. 2008). Table 2 shows the 
approximate time lags over which health co-
benefits are likely to accrue for the strategies 
explored in recent co-benefit analyses (Friel 
et al. 2009; Jarrett et al. 2012; Wilkinson et al. 
2009; Woodcock et al. 2013).

Numerous methods are available to incor-
porate time-varying exposures and associated 
time-varying health effects when appropri-
ate, including comparative risk assessment 
approaches (Lin et al. 2008; Murray et al. 
2003), modification of the standard static Cox 
proportional hazard model (Haneuse et al. 
2007), and functional approximation methods 
that associate health outcomes with exposure 
history (Bandeen-Roche et al. 1999). As an 
alternative, co-benefits studies can use time 
functions not directly derived from epidemio-
logical studies that are parameterized to simu-
late the time lag in health effects in response to 
changes in exposure. For example, Jarrett et al. 
(2012) used sigmoid lag functions to simulate 
delays in the response of depression, ischemic 
heart disease, and other effects to changes in 
exposure to physical activity.

Estimating adverse effects of mitiga-
tion strategies. The validity of a modeling 
analysis depends partly on inclusion of all 
relevant pathways among mitigation strate-
gies, consequent exposures, and outcomes 

of interest. This requires including pathways 
that increase risk (co-harms) or decrease it 
(co-benefits). Potential co-harms of various 
mitigation strategies include reduced afford-
ability of food leading to poor nutrition [if, 
for example, pastoralists in poor countries 
have to reduce their consumption of animal 
products (Friel et al. 2009)]; rising energy 
costs pushing the poor toward low-quality 
biomass fuels (Markandya et al. 2009); and 
increases in air pollution from combustion of 
biofuels (Jacobson 2007).

An example of an adverse impact with a 
relatively simple causal pathway is increased 
pedestrian and cyclist exposure to road traffic 
injuries resulting from an increase in active 
transport (DiGuiseppi et al. 1997; Jarrett et al. 

2012; Woodcock et al. 2009). In one analysis, 
estimated increases in morbidity and mor-
tality from pedestrian and cyclist road traf-
fic injuries in London (UK) were more than 
offset by decreases in disability-adjusted life 
years (DALYs) lost from physical inactivity 
and to a lesser extent air pollution (Woodcock 
et al. 2009), a finding reinforced by Lindsay 
et al. (2011). More complex, indirect path-
ways can also yield adverse impacts—for 
example, switching some agricultural pro-
duction from food to biofuel feedstocks can 
have complex, recursive macroeconomic 
effects including shifts in prices of various 
food staples (Chakravorty et  al. 2009). In 
2007, for instance, expanded biofuels pro-
duction was estimated to be responsible for 

Figure 1. Model of health effects of mitigation showing scoping activities that define the initial and bound-
ary conditions of the analysis; impact assessment; valuation procedures; and sensitivity and uncertainty 
analyses, the results of which can be used to further refine impact assessment and valuation analyses 
(dashed lines).

Sensitivity/uncertainty analyses

• Conduct appropriate sensitivity and uncertainty analyses, refining valuation
 and impact assessment parameters through further, targeted research

Scoping/baseline

• Identify mitigation strategies and quantify associations with drivers of
 health impacts
• Determine population of interest and time scale of analysis
• Obtain or estimate future trends in demographics, health status and
 exposures or levels of health drivers (often "business as usual" case)

Impact assessment

• Estimate changes in health drivers associated with mitigation strategies
• Estimate changes in health status resulting from changes in health drivers

Valuation

• Estimate economic value of changes in health status
• As appropriate, estimate costs of mitigation strategies for comparison 
   purposes

Table 2. Time lags over which the health co-benefits accrue for the mitigation strategies explored in 
recent health effects of mitigation modeling studies.a 

Health outcome
Likely time lag for 
health co-benefits

Reductions in sudden cardiac death risk due to reduced air pollution Days to weeks
Reduction in acute respiratory infections in children due to reduced air pollution Weeks and months
Reduction in chronic obstructive pulmonary disease (COPD) exacerbations Weeks and months
Reduction in ischemic heart disease events due to partial substitution of animal source 

saturated fat consumption by polyunsaturated fats of plant origin
Years

Reduction in type 2 diabetes due to change in physical activity Years
Reduction in depression due to change in physical activity Years
Reduction in breast and colon cancer incidence due to change in physical activity Years
Reduction in COPD prevalence due to reduced air pollution Decades
aFriel et al. (2009); Jarrett et al. (2012); Wilkinson et al. (2009); Woodcock et al. (2013).
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approximately 30% of the rapid rise in grain 
prices (Rosegrant 2008). Such price increases, 
along with other economic shocks, increase 
undernutrition (Bloem et  al. 2010; Friel 
et al. 2009), a major risk factor for mortal-
ity of children < 5 years of age (Black et al. 
2008). One analysis found that such dynamics 
likely increased child mortality in East and 
Southeast Asia in 2007 (Bhutta et al. 2008; 
Christian 2010). Large uncertainties exist, 
including the complex relationships among 
supply, demand, and global food prices 
(Mitchell 2008); in regional resilience to price 
spikes (Webb 2010); and in other drivers for 
the multiple health end points of undernutri-
tion (Black et al. 2008). Despite these dif-
ficulties, nutrition-mediated health effects of 
some biofuel policies serve as a good example 
of a tractable co-harms estimation problem 
that could be used to inform future mitigation 
decisions (Bloem et al. 2010; Christian 2010; 
Friel et al. 2009).

Low-probability events with highly 
adverse impacts. Certain mitigation tech-
nologies are associated with low-probability/
high-impact co-harms, such as severe nuclear 
power plant accidents, catastrophic failures of 
so-called “mega-dams,” and leaks from car-
bon capture and storage (Bickel and Friedrich 
2005; Markandya et al. 2009). This class of 
adverse impacts is challenging to estimate: low 
probability high impact exposures are highly 
uncertain and episodic, so deterministic expo-
sure functions cannot be directly applied. 
Event (i.e., accident) data for certain mitiga-
tion options are sparse, making alternative ana-
lytical approaches, such as estimating expected 
damage, difficult (e.g., Ha‑Duong and Loisel 
2010). Importantly, when the expected harms 
of these risks are quantified, estimated impacts 
can be considerably smaller than public per-
ceptions of these risks (Krupnick et al. 1993). 
Incorporating risk perception heuristics—in 
which the public views risks associated with 
these events as more problematic than more 
routine events with the same expected value 
(Bier et al. 1999)—into co-benefits modeling 
is an important frontier to explore.

Methods for the treatment of uncertainty. 
Uncertainties are inherent to modeling stud-
ies and permeate complex policy decisions 
such as those surrounding climate change 
mitigation. Uncertainties in modeling health 
co-benefits include a) simulating the spatial 
and temporal changes in health-relevant expo-
sures; b) determining the time response of 
the health effects due to exposure changes; 
c) comparing alternative mitigation interven-
tions in terms of their health effects across 
populations and time scales; and d) establish-
ing the assumed time course of future disease-
specific burdens in the absence of mitigation.

There has been much discourse on deal-
ing with uncertainty, particularly with respect 

to the integrated assessment models used to 
evaluate mitigation policies, that is relevant 
for co-benefits modeling (Mearns 2010; 
Rotmans and Van Asselt 2001a, 2001b; 
Visser et  al. 2000; Webster et  al. 2003). 
Co-benefits studies often take a simplistic, 
one-dimensional approach to propagating the 
multiple sources of uncertainty (Schneider 
and Kuntz-Duriseti 2002). Uncertainties are 
cascaded sequentially through model compo-
nents starting with “upstream” drivers (e.g., 
mitigation options, emissions, carbon cycle 
response, and global climate sensitivity) and 
then “downstream” to local climate change, 
exposures, and health impacts. Socioeconomic 
change, as an example, contributes signifi-
cant downstream uncertainty (Arnell et al. 
2004). In some circumstances the combined 
uncertainty, particularly over the long term, 
makes it difficult to determine the balance of 
costs, co-benefits, and co-harms, but addi-
tional methods can help narrow estimates sub-
stantially, particularly in the near term. The 
following sections summarize several quantita-
tive approaches. Overcoming challenges in 
integrating quantitative and nonquantitative 
approaches to uncertainty characterization is 
also very important.

Uncertainty propagation through models. 
Model uncertainty can be classified as struc-
tural or parametric (Refsgaard et al. 2006; 
Tebaldi and Knutti 2007). Structural uncer-
tainty refers to uncertainty in the constitution 

of the model, such as the configuration of the 
air dispersion Gaussian model, the makeup 
of the exposure pathways (e.g., inhalation, 
ingestion), and the types of exposure–response 
relationships (e.g., linear, threshold-linear, 
nonlinear). Structural uncertainty also results 
from assumptions and simplifications used 
to construct the health model (Bojke et al. 
2009). Parametric uncertainty, on the other 
hand, relates to uncertainty in the model’s 
parameters, conditional on a specific struc-
ture, such as uncertainties in the threshold and 
slope of a threshold-linear exposure–response 
relationship, or the indoor/outdoor concentra-
tion ratio for PM2.5 (particulate matter with 
aerodynamic diameter ≤ 2.5 μm). Such types 
of uncertainty permeate science and conven-
tional epidemiological research, such as in 
the relationship between an energy efficiency 
intervention and exposure to household air 
pollutants (Table 3 shows several examples).

Although there is no single best way to 
characterize uncertainty in an analysis, there 
is a need for consistency and transparency in 
handling it. Indeed, many of the methods used 
for handling uncertainty in complex environ-
mental models can be used in this context (Rao 
2005; Refsgaard et al. 2007), as can determin-
istic and stochastic techniques from health 
impact models (Lopez et al. 2006). Several 
unique uncertainty issues arise in co-benefit 
analyses, such as the uncertainty in future 
projections over the time horizon of analysis 

Table 3. The types of downstream uncertainties in recent health effects of mitigation modeling studies.a 

Sector Parametric uncertainties Structural uncertainties
Household energy
Specification of mitigation 

scenarios
Average value of reduction in GHG 

emissions due to insulation improvements
Feasible transitions from household 

fossil fuel combustion to electricity
Estimating exposures Values of the parameters of building 

physics model
Occupant behavior and increased 

consumption of resources given higher 
end-user efficiency

Estimating health impacts Values of the pollutants’ relative risk 
coefficients

Pollutants to consider in the assessment

Urban land transport
Specification of mitigation 

scenarios
Percentage increase in the level of active 

travel (walking and cycling)
Nonlinear “safety in numbers” effect 

of increase in proportion of cyclists on 
rates of cyclist injuries; different future 
“active travel visions”

Estimating exposures The values of the parameters of the 
emission–dispersion air pollution model

Reduction of emissions from transport 
in London are representative for other 
European cities; reduction in transport 
emissions results in proportional 
reduction in particulate matter

Estimating health impacts The values of the physical activity–disease 
relative risk coefficients

Diseases affected by physical activity; 
linear versus nonlinear relationships 
between physical activity and health 
outcomes

Food and agriculture
Specification of mitigation 

scenarios
Percentage reduction in livestock 

production by 2030
Contribution of different livestock to 

greenhouse emissions and different 
assumptions about feedstocks

Estimating exposures Percentage reduction in intake of 
saturated fat

Full replacement of saturated fats with 
unsaturated fats

Estimating health impacts Saturated fat-ischemic heart disease 
mortality relative risk coefficient

Exposure–health outcome pathways

aFriel et al. (2009); Maizlish et al. (2013); Wilkinson et al. (2009); Woodcock et al. (2013); these uncertainties are naturally 
not unique to co-benefits modeling.
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of disease-specific burdens in the absence of 
mitigation. These projections are the baseline 
against which burdens with mitigation are 
compared, and thus represent a primary source 
of uncertainty. The current disease burden is 
often adopted as the baseline; but this is rarely 
appropriate because development will occur 
and bring with it technology and other changes 
that will alter disease burdens, such as the 
ongoing, rapid increases in the burden of non-
communicable diseases in low- and middle-
income countries (Remais et al. 2013).

Characterizing structural uncertainty. 
There are two main approaches for charac-
terizing structural uncertainty in co-benefits 
modeling. The first simulates different model 
structures and then combines their outputs 
deterministically (e.g., Knutti et al. 2010); 
the second does the same but combines the 
outputs probabilistically (e.g., Min et  al. 
2007). The first approach is easier to imple-
ment, particularly for co-benefit analyses with 
a small number of alternative model struc-
tures. The output is either a series of single 
co-benefit projections (one for each structure 
or combinations of structures), or a sum of 
outputs weighted by the confidence in the 
model structure used to generate each. The 
second approach uses Bayesian model averag-
ing to produce a weighted probability density 
function. This approach is useful when there 
are many alternative model structures to con-
sider, but may not be feasible when the com-
putational time to run each alternative model 
structure is high.

Structural uncertainties can have large 
impacts on estimated health effects of 
mitigation. For instance, in the Woodcock 
et al. (2009) analysis of the health effects of 
increased physical activity resulting from 
transport-related mitigation strategies, uncer-
tainty in the physical activity exposure–
response relationship (e.g., linear vs. square 
root) led to more than a doubling of the esti-
mated health effects as measured by prema-
ture deaths or DALYs lost. To characterize the 
influence of structural sources of uncertainty, 
alternative model structures (i.e., functional 
forms) can be used to represent the exposure–
response relationship, providing an estimate of 
the uncertainty in health effects as a function 
of structural choices.

Characterizing parametric uncertainty. 
Parametric uncertainty can arise in situations 
where there is limited information on the 
nominal or central value of a model param-
eter. For instance, in assessing the health 
co-benefits of mitigation in México City, 
México, Cifuentes et al. (2001) calculated 
the central estimate of the number of prema-
ture deaths avoided as 29,055 in the period 
2000–2020. The authors used an estimate of 
the uncertainty in the relative risk in mortality 
for a 10‑μg m–3 change in PM10 (PM with 

aerodynamic diameter ≤ 10 μm) concentra-
tion to calculate the 95% CI of premature 
deaths avoided (9,265, 56,293). An alternative 
approach, particularly useful when an estimate 
of the variance of parameter is unavailable, is 
to characterize the uncertainty in the relative 
risk as an interval (i.e., the parameter’s value 
can be anywhere between a lower and upper 
bound) and compute an associated interval 
of model output (De Figueiredo and Stolfi 
2004). Such parameter bounds can be elic-
ited from expert opinion, literature reviews, or 
model simulations.

Finally, stochastic approaches are also 
available in which a probabilistic sensitiv-
ity analysis is carried out with parameter 
values drawn randomly from the respective 
parameter spaces. In this case, Monte Carlo 
(MC) simulation or Latin hypercube sam-
pling (LHS) was used to repeatedly sample 
the parameter space, generating a distribution 
of model outputs. These methods are widely 
used when the uncertainty in parameters 
can be expressed as probability density func-
tions (Helton et al. 2005). LHS is a stratified 
version of MC sampling that for the same 
number of samples is more likely to reproduce 
faithfully the probability density function than 
MC sampling; MC sampling, on the other 
hand, is easier to implement (McKay et al. 
1979). Recent advances in dynamic sensitivity 
analysis (Wu et al. 2013) may offer prom-
ise for co-benefits analyses where complex 
dynamics result from the coupling of shift-
ing time courses of mitigation phase-in, time-
varying exposures, and varying lag times over 
which health impacts evolve.

Propagating uncertainties. Uncertainty 
propagation through a series of model com-
ponents should be consistent with funda-
mental principles of error propagation, with 
proper linking of submodel outputs and 
inputs (Mekid and Vaja 2008). Yet stan-
dard error propagation can quickly become 
infeasible for large, multipart models. For 
example, in calculating the health co-benefits 
of GHG mitigation in the electricity sector 
in the United States, Burtraw et al. (2003) 
combined two large-scale models in which the 
output of one model fed into the input of the 
other. The first model simulated electricity 
demand, generation, consumption, and emis-
sions of air pollutants; the second model took 
the emissions from the first and calculated 
the associated health impacts. Each model 
comprised a number of complex submodels 
(e.g., pollutant transport, dose response), and, 
although this was not attempted, only a lim-
ited propagation of uncertainties through this 
long chain of models and submodels would 
have been possible. Even when quantitative 
uncertainty propagation is feasible, additional 
information can be gained from qualita-
tive approaches, such as storylines, that can 

represent uncertainties associated with differ-
ent futures (e.g., Arnell et al. 2004).

Using value-of-information (VOI) analy
sis to identify key uncertainties that can be 
reduced. Given the diversity of uncertain 
parameters in health co-benefits modeling 
and the infeasibility of investigating all uncer-
tain parameters, there is a need to determine 
the parameters whose uncertainty would be 
most easily and strategically reduced through 
additional research. Experts can use a VOI 
analysis to determine which new data will 
most likely yield more precise estimates. VOI 
analysis determines the return, or the payoff 
in terms of making better decisions, of col-
lecting additional information (Yokota and 
Thompson 2004). VOI has been used to 
identify research priorities in climate change 
research (Rabl and Van der Zwaan 2009), 
although not yet to improve parameterization 
of models used to estimate health co-benefits 
of mitigation policies. Reduced parametric 
uncertainty can help decision makers avoid 
costly errors, and future co-benefits analyses 
may choose to express the expected return of 
investing in improved parameter estimates in 
monetary terms (Coyle and Oakley 2008).

Addressing Key Science Policy 
and Decision Support Issues
Co-benefits models are generally intended to 
inform the policy-making process, including 
modeling carried out in response to a specific 
policy question under consideration by a par-
ticular governing body. Rising interest in the 
links between climate change mitigation and 
public health will increase the possibility that 
such modeling may be brought to bear on 
policy decisions. To that end, the context in 
which the model outputs will be used is highly 
relevant to modeling decisions. Policy-making 
needs are context specific; and in the case of 
modeling health co-benefits, model parameters 
may differ based on how health care delivery 
and public health costs are borne across sectors 
(e.g., how care is funded and handled at vari-
ous levels of government). In developing their 
models and presenting their findings, research-
ers need to work with policy makers from the 
outset to ensure that the questions asked and 
analyses conducted are policy relevant.

A number of initiatives are underway that 
can serve as blueprints for building closer 
links between researchers and policymak-
ers, such as the World Health Organization 
(WHO) Evidence Informed Policy Network 
(EVIPNet) initiative (WHO 2011) and 
Regional East African Community Health 
Policy Initiative Project (REACH) in East 
Africa (East African Community 2011). 
Despite such precedents, questions remain as 
to how to address certain key decision sup-
port issues. In particular, questions remain 
regarding the most ethically, morally, and 
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economically defensible approach to valua-
tion of future human health and well-being; 
whether and how to use discount rates; and 
what tools are best for comparing disparate 
types of costs, benefits, and constraints.

The role of discounting and the effect of 
different discount rates. Discount rates are 
central to all decisions with long-term impli-
cations, including co-benefits analyses that 
account for multiple costs and benefits dis-
tributed over time (Ackerman et al. 2009; 
Smith and Haigler 2008). When modeling 
health co-benefits, the basic function of dis-
count terms is to convert future health and 
climate consequences of a mitigation measure 
into their net present value by subjecting the 
stream of monetized benefits and costs to a 
discount rate. Several options for handling 
discounting include ignoring it altogether or 
selecting constant, variable, or multiple rates 
for different components.

Setting the discount rate to zero. Avoiding 
discounting when modeling health co-benefits 
is equivalent to selecting a zero rate, which 
equates mitigation benefits and costs expe-
rienced today with those experienced in the 
very distant future. This may lead to situations 
where the current generation makes excessive 
sacrifices to future generations (Lopez et al. 
2006). A major reason for discounting future 
benefits and costs is the expectation that future 
generations will be better off economically 
than present generations (Maddison 2001). 
Yet given the limitations on future growth 
imposed by resource constraints, we may 
experience a period of near zero real economic 
growth. In that case, a discount rate of zero or 
close to it may be justified depending on the 
time period of analysis.

Setting the discount rate to a constant 
above zero. Setting a nonzero discount rate 
can have equally unacceptable consequences 
by making catastrophic outcomes in the dis-
tant future appear trivial at today’s decision 
point, potentially biasing decisions against the 
interests of future generations (McMichael 
and Campbell-Lendrum 2003). Moreover, 
there is no consensus as to which discount 
rate to use (Weitzman 2001). This is prob-
lematic because widely varying policy deci-
sions can be defended depending on the 
particular rate selected, posing a major chal-
lenge for analysis. One approach is to use 
several plausible rates to identify policies that 
are robust to the choice of rate (Lopez et al. 
2006; Markandya et al. 2009; McKinley et al. 
2005). Yet because of the strong sensitivity 
to the discount rate chosen, few policies may 
indeed be robust, and the benefits or costs 
may differ by large factors. For instance, in a 
model examining low-carbon electricity gen-
eration scenarios achieved through different 
degrees of emissions trading, Markandya et al. 
(2009) found that when the discount rate 

applied to lost life-years was increased from 
0% to 3%, the estimated health co-benefits 
of low-carbon electricity generation scenarios 
were reduced by about 50%.

Setting variable discount rates. Some 
argue that a declining discount rate, which 
attaches increasing weight to the welfare of 
future generations, better reflects empiri-
cal data on individual preferences and is in 
agreement with various theoretical results 
(Dasgupta 2001; Heal 1997; Newell and Pizer 
2003; Pearce et al. 2003; Reinschmidt 2002; 
Weitzman 2001). Although full hyperbolic 
discounting has not been supported by policy 
makers, there is a move toward declining dis-
count rates driven by the dynamic uncertainty 
of future events (Pearce et al. 2003). Declining 
discount rates imply, for example, discount-
ing benefits and costs that occur over the 
next 30 years at one rate, followed by a lower 
rate for benefits and costs that occur over the 
following 30 years and so on.

As an alternative to explicit discounting, 
some efforts instead use time horizons for cer-
tain terms, producing the odd result where 
consequences (i.e., costs or benefits) of an 
emission are accrued only up to a point, after 
which additional costs are ignored (Smith and 
Haigler 2008). Some have argued that smooth 
annual discounting functions are more sen-
sible than the step-functions implied by such 
time horizons, such as those used to express 
the warming “costs” of an emission (Smith 
and Haigler 2008). Others argue that the 
various components common to co-benefits 
modeling should be discounted at different 
rates (Brouwer et  al. 2005; Gravelle and 
Smith 2001).

Discount rates and their associated 
assumptions should be explicitly addressed in 
co-benefits research. For a particular interven-
tion with both climate and health effects, rates 
must be specified for the costs of interven-
tion (U.S. dollars), the impact on the global 
climate (tCO2; tons of carbon dioxide and 
other climate-active equivalents), the health 
effects (DALYs or QALYs) and the monetized 
health benefits (U.S. dollars), as discussed by 
Smith and Haigler (2008). Where available, 
locally estimated discount rates that reflect the 
specific values of affected populations should 
ideally be used. But because these are rarely 
available, and because there is no consensus on 
the selection of universal rates, an alternative 
approach would be to present results using 
several rates, including 0% and 3%, preferred 
values used by policy makers. Examining the 
implications of declining rates (HM Treasury 
2003) would also be worthwhile.

Evaluating mitigation options using deci-
sion analysis. Accounting for potential health 
impacts of mitigation strategies is important, 
but many impacts unrelated to health exist, 
and policy makers require that alternative 

mitigation strategies be evaluated on the basis 
of many criteria simultaneously (Konidari 
and Mavrakis 2007; Swart et  al. 2003). 
Valuation methods capable of considering 
trade-offs among multiple cost and benefit 
criteria under uncertainty are thus more likely 
to be policy relevant. To that end, the quan-
titative information on health criteria must 
be considered alongside nonhealth criteria, 
including economic growth, environmental 
sustainability, political acceptability, cost and 
financing considerations, expediency, and 
equity issues. Each of these can in turn be 
divided into detailed subcriteria, resulting in 
a deep hierarchical structure that defies single-
criterion analytical approaches. For example, 
a cost and financing criterion could have sub-
criteria that include implementation costs, 
health services costs from changes in disease 
burden, opportunity costs of capital or land, 
and so forth. The performance of a mitigation 
strategy is unlikely to be positive (or negative) 
across all such criteria, and comparing short-
term performance on certain criteria to long-
term performance can raise important ethical 
questions—such as how should policy makers 
treat a renewable energy strategy that low-
ers short-term economic growth (and is thus 
temporarily detrimental to health because of 
reduced employment), but increases net health 
over the long-term from reduced pollutant 
emissions? Other ethical questions are raised 
by the fact that multiple criteria can at times 
represent competing stakeholder interests, 
such as a policy substituting active transport 
for single-occupancy vehicle use that reduces 
health costs while also decreasing revenues in 
the automotive sector.

The importance of consistent summary 
measures. Decision makers manage consider-
able complexity in part by determining which 
criteria are most relevant. At the same time, 
having a few summary or principal measures 
that are used consistently to assess different 
strategies greatly improves comparability. For 
example, a common measure for evaluating 
and comparing health co-benefits across alter-
native mitigation strategies and across coun-
tries is the health burden (DALYs) avoided, 
expressed per unit population size and per 
MtCO2 saved (Smith and Haigler 2008). 
Another useful and widely used measure is the 
net cost per ton of GHG emissions reduced. 
Many of the relevant outcomes, including 
health impacts, can, in principle, be con-
verted into a monetary cost (Creutzig and He 
2009). These costs can then be added to, or 
netted out, from the direct costs of the miti-
gation measures, giving a net cost figure per 
ton reduced. In calculating the measure, ana-
lysts face the problems described above (e.g., 
discounting, uncertainty), but the resulting 
information, partial as it is and with all its 
qualifications, is useful in deciding where to 
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allocate scarce resources. The direct costs of 
mitigation may be, for example, US$30/tCO2, 
but when health co-benefits are accounted 
for, the figure may drop substantially or even 
become negative (i.e., result in net savings).

Multicriteria decision analysis (MCDA). 
Several decision analytical methods can be used 
to compare and evaluate alternative mitigation 
options in terms of their health and nonhealth 
impacts. These include traditional cost–ben-
efit and cost-effectiveness methods used for 
environmental interventions (Haller et  al. 
2007; Hutton 2008). Because the impacts of 
mitigation are often multidimensional, more 
complex measures—and analytical methods—
are needed for evaluating trade-offs. MCDA 
approaches have been used for this purpose 
in some policy areas, and their application to 
climate change policies is gaining momentum 
(Bell et al. 2001, 2003; Benegas et al. 2009; 
De Bruin et al. 2009; Kueppers et al. 2004; 
Stalpers et al. 2008; Wilbanks 2005).

There are unresolved issues in the applica-
tion of MCDA methods to valuation of miti-
gation strategies. Traditional MCDA assumes 
that all criteria are evaluated at the same point 
in time. When comparing mitigation strate-
gies where health is one of the criteria, assign-
ing a relative weight to the health co-benefits 
criterion can be difficult because the imme-
diate reduction in hazardous exposures does 
not often produce immediate health benefits 
(Jarrett et al. 2012; Wilkinson et al. 2010) 
(Table 2). This time course can be very differ-
ent from those of the impacts of other criteria. 
In addition, because uncertainty increases into 
the future, issues surrounding attitudes toward 
risk (in the presence of uncertainty) and time 
preference become intertwined, complicating 
discount rate choices (Traeger 2009).

Strategies to extend the model domain 
and policy utility. Future directions for mod-
eling co-benefits include enhancing policy 
relevance, addressing policy resistance, and 
characterizing implementation (including 
diffusions of new behaviors and technical 
shifts). Literature in recent years with respect 
to policy relevance highlights the importance 
of iteration between scientists and policy 
makers in developing usable science (Dilling 
and Lemos 2011). The National Oceanic 
and Atmospheric Administration (NOAA) 
Regional Integrated Science and Assessments 
(RISA) program is an example focused on 
climate change adaptation. RISA works with 
diverse user communities to advance con-
textual understanding of adaptation policy 
and management decisions; to develop 
knowledge on impacts, vulnerabilities, and 
potential response options; and to facilitate 
decision support tool development (NOAA 
2012). Such an approach also may be par-
ticularly well suited to facilitating mitigation 
policy decisions.

“The counterintuitive behavior of social 
systems” (Forrester 1971) or “policy resis-
tance” arises when policies that affect complex, 
dynamic systems result in unexpected out-
comes, such as antibiotic resistance as a result 
of aggressive infection control or increased 
wildfire severity as a result of fire suppression 
(Sterman 2000). Systems dynamics meth-
ods (Sterman 2006) alone or in concert with 
other approaches such as discrete event sim-
ulation (Brailsford et al. 2010) can increase 
the likelihood of effective policy formulation 
(Thompson and Tebbens 2008) by addressing 
feedback loops that affect policy resistance. 
Many health co-benefit analyses characterize 
the health impacts of societal changes, such 
as widespread adoption of active transport 
policies or significant shifts in consumption 
of animal products, without a detailed consid-
eration of how implementation might occur 
(e.g., Friel et al. 2009; Woodcock et al. 2009). 
Approaches such as agent-based modeling 
can help characterize diffusions of such inno-
vations within populations and the role of 
organizations in catalyzing and maintaining 
significant policy shifts (Bonabeau 2002).

Conclusions and 
Recommendations
Estimating the health impacts of GHG miti-
gation strategies is a complex process that 
brings together disparate disciplines. Because 
all models are simplifications that involve 
assumptions, are subject to many uncertain-
ties, and capture a subset of interactions, 
modeling health co-benefits requires system-
atic consideration of the suitability of model 
assumptions, of what should be included and 
excluded from the model framework, and 
how uncertainty should be treated. The ulti-
mate goal of modeling is policy utility, and 
it is important for modelers to iteratively 
engage policy makers actively in their work. 
Despite the challenges, there is a great need 
for information on the health implications 
of mitigation strategies, particularly given 
the urgency of bringing mitigation strategies 
into practice and the early accrual of ancillary 
health impacts of these strategies. Here we 
have reviewed some of the challenges and con-
troversies in modeling health co-benefits and 
co-harms, and some approaches to increase 
their utility. Recommendations to improve 
such models include the following:
•	Modeling health co-benefits should be done 

in concert with policy makers from the start, 
and should focus on potentially feasible 
interventions based on policy-maker con-
sultation; identification of policy-relevant 
outcomes; and incorporation, where needed, 
of methods to evaluate potential policy resis-
tance. Model scoping should include consul-
tation with policy makers and scientists from 
a range of disciplines to ensure that a full 

complement of potential impact pathways is 
considered. Focusing on domains and chan-
nels wherein modeling was used to affect 
policy may increase the potential utility of 
modeling efforts.

•	Initial stages of analysis should identify the 
full range of potential positive and nega-
tive pathways to health impacts within pre-
defined boundaries, as well as the critical 
uncertainties in these causal pathways, while 
making explicit the criteria used to deter-
mine which exposure–outcome relationships 
are included in the model. The assessment of 
the strength of evidence for exposure–out-
come relationships and parameters should 
use systematic review (Moher et al. 2009) 
and consensus methods (Guyatt et al. 2008).

•	The period over which the mitigation and 
health impacts are analyzed must be care-
fully assessed, both in relation to the time 
course between implementation of mitiga-
tion and consequent impacts, and in relation 
to time preferences for specific outcomes 
and the associated choice of discount rates. 
At a minimum, valuation estimates should 
be presented using a range of fixed discount 
rates including 0% and 3%, and consid-
eration should be given to estimates using 
declining rates over time.

•	Uncertainty in modeling results should be 
characterized explicitly, using quantitative 
and qualitative methods as appropriate. 
Both parametric and structural uncertainties 
should be considered, and at a minimum, 
single (and when possible multivariate) 
deterministic sensitivity analyses should be 
carried out.

•	Scientists modeling health co-benefits 
should explicitly consider consulting with or 
including decision analysis experts to ensure 
that the results are useful in formal deci-
sion analysis processes. Such collaboration 
should be initiated at the inception of the 
modeling effort and should anticipate the 
ultimate application of the modeling results.

By improving the quality and rigor of 
health co-benefits analyses, critical decisions 
regarding climate mitigation strategies can be 
informed by health impact estimates, aiding 
policy makers in their efforts to maximize 
GHG mitigation potential while simultane-
ously improving health.
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