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Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of
biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von
Neumann computing architecture, combining information storage and processing. Here, we demonstrate a
Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive
characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent
synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian
plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and
degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover,
synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic
weights. Our results may contribute to the development of highly functional plastic electronic synapses and
the further construction of next-generation parallel neuromorphic computing architecture.

T
he coming of the Big Data Era brings about an urgent demand for high-performance computing. However,
the enhancement of computing capacity to cope with the complex real-time data environment is severely
impeded by the von Neumann bottleneck, which refers to the limited data transfer rate between the central

processing unit and the memory in the traditional computing architecture. The feasibility of combining the
information storage and processing, eliminating the bottleneck, has been demonstrated in memristors or mem-
ristive devices using two paradigms: logic and neuromorphic computing, based on which new parallel computing
architectures can be envisioned1–4. To implement error-free logic functioning, high uniformity of the resistive
switching threshold voltage from cycle to cycle and from device to device is required2. However, the device
variation cannot be reliably guaranteed for several reasons, for instance, drift during the fabrication process and
the randomness of channel creation during the electroforming process. In contrast, its massive parallelism and
high robustness against device variation and noise make the neuromorphic approach quite attractive5,6. To
perform the human brain’s cognitive functions utilising the neuromorphic approach, electronic devices that
can mimic biological neurons and synapses are the crucial basic elements. In particular, memristor-based
electronic synapses have drawn the bulk of research attention in recent years for two reasons. First, the intrinsic
behaviour of memorising the flowing charges manifests as the self-adjustment of the device resistance, which is
highly similar to the synaptic weight modification responding to the firing of pre- and postsynaptic neurons7.
Second, the large number of transistor-based electronic synapses consume most of the power and area and hinder
the further scaling of traditional very-large-scale integrated circuits (VLSI) neuromorphic chips. In view of many
advantages, such as ultrafast synaptic function operation8, ultra-low power consumption9, sub-10-nm scalabil-
ity10, over 1012 endurance11 and high connectivity of up to 4D architecture12, memristor-based neuromorphic
chips may provide a promising approach to realize large scale brain-inspired computing.

Activity-dependent synaptic plasticity is fundamental for learning and memory in neuronal systems involving
information processing and storage. Two opposite activity-dependent plasticity modifications have been bio-
logically identified: long-term potentiation (LTP) and long-term depression (LTD)13,14. The former means a
persistent increase in the synaptic transmission efficacy, whereas the latter is a decrease in the synaptic efficacy.
In particular, the correlated activity of the presynaptic spike and postsynaptic firing, including the temporal
relation14,15, the spike rate16–18, and the voltage18–20, may determine the polarity or degree of synaptic change.
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Different synaptic functions such as spike-timing dependent plas-
ticity (STDP) and memory consolidation have been demonstrated in
various memristors or memristive devices, such as oxides6,21,22, chal-
cogenides8,23–26, ferroelectronics27,28, field effect transistors29,30 and
carbon nanotubes31,32. In these implementations, two terminals of
the device are always regarded as the pre- and postsynaptic sites
when inputting the voltage spikes, and the device conductance or
resistance represents the synaptic weight that reflects the connection
strength of neurons. Biologically, the synaptic weight is analogue
plastic, so that the continuous tuning of device conductance by volt-
age pulses is the key to successfully implementing synaptic functions.
Please note that while STDP has been demonstrated in various mem-
ristive devices, the rate- and voltage-dependent modification of syn-
aptic efficacy is rarely demonstrated.

In this work, a AgInSbTe (AIST)-based chalcogenide memristor,
proposed in our previous study and showing reproducible gradual
resistance tuning in both the bipolar and unipolar modes33, was uti-
lised as an electronic synapse. The resistance could be tuned precisely
by regulating the polarity, amplitude, width and number of the applied
voltage pulses. By designing the applied pulse schemes, we reproduced
in the AIST-based electronic synapse the activity-dependent synaptic
plasticity of biological synapses, including four STDP forms, spike-
rate dependent plasticity (SRDP) and synaptic voltage modulated
plasticity. Moreover, synaptic saturation was also accomplished as
an adjusting rule for the three type synaptic plastic learning rules.

Results
Memristance with gradual conductance tuning properties. The
presented Ag/AgInSbTe/Ag memristor that acts as an inorganic
electronic synapse has a simple stacked structure with a 25-nm-
AIST thin film (Fig. 1a, see Methods section for fabrication
details). Such a simple stacked structure is convenient for building
a large-scale synaptic matrix, which facilitates the massive
fabrication and integration of neuromorphic circuits. Figure 1b
shows a top view of the devices by scanning electron microscope
(SEM). The surface uniformity, phase constitution and elemental
composition of the AIST thin film were also studied using SEM, X-
ray diffraction (XRD) and energy dispersive X-ray spectrum (EDX)
(see supplementary Fig. S1–S3). The stable memristive characteri-
stics as the basis of emulating synaptic functions were demonstrated.
As shown in Fig. 1c, the typical current-voltage (I-V) relationship
indicates a memristive behaviour featuring a conductance jump and
drop at approximately 0.15 V and 20.2 V, respectively. The
memristive mechanism is ascribed to the coexistence of the
intrinsic space charge-limited conduction and the extrinsic
electrochemical metallisation effect, which is further discussed in
ref. 33. Figure 1d shows that the device conductance continuously
increases or decreases due to the consecutive positive or negative
voltage sweeps. This gradual conductance tuning property was also
implemented in pulse stimulation mode (Fig. 1e), representing the
synaptic weight modification in response to a potentiating or

Figure 1 | Memristive behaviours of Ag/AgInSbTe/Ag memristor. (a) Schematic of the 100 3 100 mm2 Ag (100 nm)/AgInSbTe (25 nm)/Ag (100 nm)

stack structures deposited on the Si/SiO2 substrate. (b) A scanning electron microscope image of the devices. (c) I-V characteristics showing bipolar

memristive switches. Arrows indicate the voltage-sweep direction. Twenty cycles of operation are shown. (d) Gradual conductance modulation using

voltage sweeping. The device conductance, which is equivalent to the synaptic weight, can be continuously increased or decreased by positive or negative

voltage sweeps, respectively. (e) Repetitive gradual conductance modulation under pulse stimulation. The conductance variation range is approximately

7 mS. Upper inset: The pulse scheme. The positive and negative pulses correspond to the potentiating and depressing pulses, respectively.
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depressing stimulus. To achieve stable and repeatable conductance
tuning, the pulse scheme was designed as shown in the inset of
Fig. 1e. The potentiating pulse amplitudes increased from 0.3 V to
0.8 V with 50 mV steps. The depressing pulse amplitudes increased
from 20.6 V to 21.1 V with 50 mV steps. All pulse widths were
fixed at 5 ms. Sequences of identical positive and negative voltage
pulses were able to gradually tune the conductance repeatably in
over 20 different cells (see Supplementary Fig. S4). Notably, here
the asymmetry of the potentiating and depressing pulse
amplitudes, which may have resulted from the different barriers
between the AIST film and the two electrodes due to the
fabrication methods, plays a role in designing the pre- and post-
synaptic spikes in the following synaptic plasticity experiments.

Implementation of STDP. After the characterisation of the basic
memristive properties of the AIST-based device, we proceed to
demonstrate the activity-dependent plasticity in our electronic
synapse. According to Hebb’s theory, supported by a wealth of
biological experiments, the synaptic efficacy is strengthened by
concerted pre- and postsynaptic activity and is conversely
weakened by non-coincidental neuronal firing14,34. In other words,
the synaptic weight change Dw could be a function of Dt, where Dt
represents the difference between the timing of the pre- and
postsynaptic spikes. Figure 2 presents four ideal STDP functions
used in computational models based on data measured experimen-
tally from biological synapses14. The STDP forms vary due to
different spikes or different type of synapses, excitatory or
inhibitory. In some cases, the polarity of the synaptic weight
change is determined by the temporal order of the pre- and
postsynaptic spikes (Fig. 2a–b). In other cases, the polarity of the
synaptic weight change depends only on the relative timing of the
pre- and postsynaptic spikes, but not on their order (Fig. 2c–d).
Generally, the synaptic modification reaches a maximum when the
time difference is small because the activation of the pre- and
postsynaptic neurons could be considered as synchronous.
Exponential functions and Gaussian functions are used to quantify
the STDP time window and are applied in computational neuro-
science and neuromorphic hardware design.

We recently demonstrated these four different STDP forms in a
Ge2Sb2Te5-based memristor employing a spike paring protocol,
which is also adopted normally in biological synaptic experiments
and in other electronic synapses8. In addition, the device conduc-
tance is defined as the synaptic weight (w) or synaptic efficacy, which
biologically concerns the conductance of calcium ions in the ion
channel, and the increase and decrease in synaptic weight represent

LTP and LTD, respectively. Here, the same protocol and definition
are followed when we design the pre- and postsynaptic spikes to
operate the AIST-based synapse.

Consider, for instance, the most common asymmetric Hebbian
STDP rule, followed by over 80% synapses in neocortical circuits:
LTP when Dt . 0 and LTD when Dt , 0. The designed voltage pulse
schemes are shown in Fig. 3a. There are threshold voltages, intrinsic
to the memristive mechanism, that permit the modification of the
synaptic weight and are different for potentiation and depression, as
mentioned above. The pre- and postsynaptic spikes were applied to
the bottom electrode and top electrode, respectively. The upper part
of Fig. 3a shows a pair of pre- and postspikes with a 25 ms negative
temporal difference. The total effective voltage on the memristor is
Vpre(t) 2 Vpost(t), and the voltage trace is captured by an oscilloscope
(lower part of Fig. 3a). By applying the paired spikes, the STDP
learning rule was reproduced in our electronic synapse (Fig. 3b).
Strengthening of the synapse occurred if the presynaptic spikes pre-
ceded the postsynaptic firing by no more than 70 ms, and presynaptic
spikes that followed the postsynaptic spikes produced weakening of
the synapse. The largest synaptic weight changes, approximately
15%, occurred when the time difference between the pre- and post-
synaptic spikes was small, and there was a sharp transition from
strengthening to weakening as the time difference passed through
zero. This STDP time window could be fitted by

Dw~
Aze{jDtjtz ifDtw0

A{e{jDtjt{ ifDtv0

(
, ð1Þ

where Dw is the percentage change in synaptic weight; Dt is the pre/
post spike time difference; and A6 and t6 are two parameters repre-
senting the scaling factor and the time constant of the exponential
function, respectively15,35. The experimental data shown in Fig. 3b are
well described by this function of Eq. (1) with A6 5 24.33/222.29
and t6 5 24.01/222.84 ms. Fig. 3c–e show three other STDP forms
appearing in biological neural networks, which could also be import-
ant supplements to the design of neuromorphic learning systems36

(for the details of pre/post spike pairs, see Supplementary Fig. S5).
Note that the effect of synaptic modification could become more
pronounced when trains of pre/post spikes are applied to the elec-
tronic synapse rather than the single pre/post pair in the above
experiment, which is consistence with biological observations8,35.
Moreover, by designing the pulse schemes, the time constant could
be modulated in a wide temporal range, from the biological milli-
second scale down to ultrafast nanoseconds8, providing flexibility for
the peripheral neural circuit design and neuromorphic system
design.

Implementation of SRDP. Next, we attempted to investigate
another central rule of learning, the spike-rate dependent plas-
ticity, which reflects the influence of the synaptic activation
frequency on the long-lasting modification16,17.

All spikes are triangle voltage pulses with 5 ms rising time and 5 ms
falling time. The voltage amplitudes are 1.2 V for the presynaptic
spikes and 0.8 V for the postsynaptic spikes. The postsynaptic mean
firing rate is tuned from 10 kHz to 83 kHz, and the presynaptic mean
firing rate is fixed at 50 kHz. As shown in Fig. 4a, the efficacy of the
synapse is decreased if the postsynaptic activity stays below a critical
rate, fh (50 kHz), and the weight is increased when the level of post-
synaptic excitation exceeds the threshold. When the frequencies are
10, 50, 70 kHz, the synaptic weight changes are approximately 220%,
0%, 20%, respectively. The AIST-based device is a voltage-controlled
memristor, and the total flux (time integral of voltage) flowing through
the device determines the conductance change8,33, and at low post-
synaptic frequencies (,50 kHz), the total flux flows from the bottom
electrode to the top electrode, leading to long-term depression,
whereas high frequencies (.50 kHz) induce long-term potentiation.

Figure 2 | Ideal STDP learning rules. (a) Asymmetric Hebbian learning

rule. (b) Asymmetric anti-Hebbian learning rule. (c) Symmetric Hebbian

learning rule. (d) Symmetric anti-Hebbian learning rule.

www.nature.com/scientificreports
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Here, we used 50 pairs for each plot in Fig. 4a to achieve a relatively
repetitive and stable magnitude, and 5 repeated measurements were
carried out for statistics. Obviously, the magnitude of the potentiation
and depression can be increased by increasing the pair number.

To determine whether the induction of potentiation and depres-
sion is long-term, the nonvolatile property of synaptic weight is also
measured (Fig. 4b). After the 70 and 30 kHz postsynaptic stimu-
lation, the conductance was changed to 15 and 10 mS, indicating

Figure 3 | STDP implementation. (a) Pulse schemes used to implement STDP. The upper part shows a pair of pre- and postspikes with a 25-ms negative

temporal difference. The middle shows the total effective voltage on the memristor, which is Vpre(t) 2 Vpost(t). The lower part shows the voltage

trace captured by an oscilloscope. (b) The asymmetric Hebbian learning STDP rule of memristor. The synaptic weight changes are plotted as a function of

the time difference between the presynaptic spikes and postsynaptic spikes. The percentage changes are calculated with respect to the same initial value for

all Dt, and the maximum change is approximately 15%. The error bars represent one standard deviation obtained from four measurements. The insets

show two effective voltage pulses for Dt 5 10 ms and 60 ms, respectively. (c–e) Demonstration of three other biological STDP forms in our memristor.

Figure 4 | Implementation of SRDP in the inorganic memristor. (a) Dependence of synaptic modification on the frequency of the postsynaptic firing

rate induced by 50 repetitive stimulations. For postsynaptic firing rates below fh (50 kHz), the synapse is depressed, while synaptic potentiation can be

observed beyond fh. The presynaptic rate is fixed at 50 kHz. (b) Changes in synaptic conductance following potentiation (upper) or depression

(lower) stimulation. The synaptic efficacy remains stable over 2200 s, indicating a long-term modification. In the tests, all spikes are triangle voltage pulses

with 5 ms rising time and 5 ms falling time. The voltage amplitudes are 1.2 V for the presynaptic spikes and 0.8 V for the postsynaptic spikes.

www.nature.com/scientificreports
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that the electronic synapses were potentiated and depressed, respect-
ively. The conductance remained at the same level over 2200 s,
proving that the potentiation and depression are long-lasting
modifications.

Synaptic voltage dependent plasticity modulation. Some biological
experiments further suggest that the bidirectional learning rule could
also be controlled by the postsynaptic voltage amplitude, that is, LTD
and LTP can be induced by repetitive coincident pre- and
postsynaptic stimulation with low and high postsynaptic voltage
amplitudes19,20. The paring protocol then is employed to study
the voltage-response function for induction of LTD and LTP. The
postsynaptic voltage amplitude is tuned from 0.2 to 0.8 V, and the
presynaptic voltage is fixed at 1.2 V. The pre- and post- spike
frequencies are all 50 kHz. Figure 5a shows that a similar
dependence to SRDP was demonstrated in the device. A threshold
voltage amplitude (Vh 5 0.52 V) exists and divides the voltage-
response function into two parts. LTD is induced when Vpost is
more polarised than Vh, and LTP is generated when Vpost is more
depolarised than Vh.

Synaptic saturation. The above experiments show that the synaptic
weight can be modified by the cooperation of pre- and postsynaptic
spikes, and the amount of variation relies on an effective flux, which
is determined by the spike parameters, including the pulse
amplitude, pulse width, pulse number and pulse interval. We
further investigated the relationship between the amount of
variation and the pulse parameters of the unidirectional square
wave spikes applied to the device. Taking LTP as an example,
Fig. 6a shows the dependence of the device conductance on the
pulse amplitude and pulse number, with the pulse width and
interval fixed at 5 ms and 1 s. Figure 6b shows the dependence of
the device conductance on the pulse width and pulse number, with
the pulse amplitude and interval fixed at 1 V and 1 s. When
sustained spikes are applied to the device, the increase rate of the
conductance decreases, and the conductance finally reaches an upper
limit, which is higher with a larger pulse amplitude or width. In other
words, the learning effect is most pronounced early in the
exponential learning process, and the synaptic weight is only
reinforced and saturated as the learning process continues, which
is consistent with biological phenomena37. According to the Hebbian
learning rule for LTP, synaptic activity increases the synaptic

Figure 5 | Bidirectional learning rule as a function of the postsynaptic potential. (a) In our memristor, the voltage-response function for the induction of

LTD and LTP exhibits two parts: at a postsynaptic potential below Vh, the synapse is depressed, whereas synaptic potentiation can be observed beyond Vh.

In this case, Vh is approximately 0.52 V. (b) Dependence of synaptic modification on the pulse number. After approximately 40 coincident

stimulations, the synaptic efficacy achieves stability, so 50 pairs of pre- and postsynaptic stimulations are used in each plot measurement of (a).

Figure 6 | Synaptic saturation. (a) Dependence of the device conductance

on the pulse amplitude and pulse number. The pulse width and interval

were 5 ms and 1 s, respectively. (b) Dependence of the device conductance

on the pulse width and pulse number. The pulse amplitude and interval

were 1 V and 1 s, respectively. Continual spikes push the plastic electronic

synapse to its maximum strength, preventing further learning.

www.nature.com/scientificreports
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strength, and the increased synaptic strength leads to more activity
and further modification. This positive feedback process may result
in the uncontrolled growth of synaptic strengths and excessive neural
firing. The synaptic saturation, i.e., the existence of a limited value of
synaptic weight, is an inherent imposed constraint to modify the
Hebbian rule. When saturation is reached, no further LTP or LTD
can be induced, preventing new learning, even when the Hebbian
induction criterion is met38. Physically, the saturation can be
explained by the mechanism of the Ag/AgInSbTe/Ag memristor
proposed in our previous work. During the application of
continual spikes, multiple complete Ag filaments are formed, and
the charge traps are filled, leading to a stable high-conductance
state33.

Discussion
Although synaptic plasticity is governed by a multifactor and mul-
tiform rule according to the type or location or function of the
synapses, and the interaction between timing- and rate- and volt-
age-dependent processes is still under intense debate, independent
STDP or SRDP function is widely utilised in computational and
experimental neural networks to implement more complex cognitive
functions, such as associative learning and pattern classification39–41.

We see the implementation of activity-dependent synaptic plas-
ticity in an electronic synapse as a solid step toward constructing
neuromorphic systems, but these results still call for additional
research efforts on large-scale integration42. On the one hand, the
performances of electronic synapses, such as power consumption
and device scaling, need to be improved43. On the other hand, novel
network architectures are urgently demanded44. The coordinated
developments of above two aspects would breed the success of mem-
ristor-based neuromorphic computing.

In summary, in one Ag/AgInSbTe/Ag structure chalcogenide
memristor-based electronic synapse, we have experimentally
demonstrated the activity-dependent synaptic plasticity that is the
basic phenomenon for learning in various neuronal systems. The
spike-timing dependence of the four forms of plasticity were emu-
lated, and long-term synaptic modification depends on the exact
timing of the pre-and postsynaptic spikes. Spike-rate dependent
changes and voltage-based modifications in synaptic plasticity were
also performed, showing that LTP and LTP also depend on stimu-
lation frequency and synaptic voltage. Moreover, synaptic saturation
was observed in our electronic synapse, which is a crucial adjustment
of Hebbian rules to stabilise the growth of synaptic weights. We
believe that the demonstrated synaptic operation in this study,
together with the booming development of sub-ns memristive
devices with high density and low power consumption, will contrib-
ute to the construction of next-generation neuromorphic computing
architecture that requires plastic electronic synapses.

Methods
Device fabrication. The electronic synaptic device consists of two 200-nm Ag
electrodes with a thin AgInSbTe film with a thickness of 25 nm sandwiched between
them. All layers were prepared by DC magnetron sputtering (JZCK-640S) at room
temperature. The AIST film, which is the functional layer, was deposited with a 30 W
sputtering power and a 0.5-Pa argon pressure. The bottom Ag electrode covers the
whole SiO2/Si substrate. The pattern of the upper two layers was formed by
photolithography (Karl Suss MJB3) with a dimension of approximately 100 3

100 mm2, followed by a AIST/Ag deposition and lift-off process. The schematic and a
SEM (Nova NanoSEM 450) image of the device are shown in Figure 1a and 1b.

AIST film characterisation. For characterisation, 100-nm AIST films were deposited
on quartz and silicon substrates and were characterised using X-ray diffraction (X9

Pert PRO Dy2198, Cu K-alpha radiation at a wavelength of 0.15418 nm, scan rate of
0.2u/s) and energy dispersive X-ray spectrum (Nova NanoSEM 450 scanning electron
microscopy with EDX analysis). The XRD results for the as-deposited AIST indicate
the films are in an amorphous state (supplementary Fig. S2). The EDX spectrum
shows that the Ag5In5Sb5Te atom ratio is 4.5155.89558.52531.08 (supplementary
Fig. S3).

Device characterisation. A scanning electron microscope, working at room
temperature, was used to take an image of the device array. The current-voltage (I-V)
characteristics were measured using a four-probe system (Cascade S300) equipped
with a semiconductor characterisation system (Keithley 4200-SCS) in the DC voltage
sweep mode with a 100-mA current compliance. Pulse mode was utilised to provide
pulse stimulus during the gradual conductance modulation, STDP and SRDP tests.
The two terminals of the device were regarded as the pre- and post- synaptic locations
and connected to two channels of the Keithley 4200, respectively. The various pulse
schemes utilised in our test are programming generated by Keithley 4200, and
captured with an oscilloscope (Agilent DSO5012A). During the electrical
measurements, the positive bias was defined by the current flowing from the top
electrode to the bottom one, and a small electrical pulse with low amplitude (10 mV)
and short width (5 ms) was used as the read voltage. All measurements were
performed at room temperature in air.
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