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Abstract

Training with haptic guidance has been proposed as a technique for learning complex movements

in rehabilitation and sports, but it is unclear how to best deliver guidance-based training. Here, we

hypothesized that breaking down a complex movement, similar to a tennis backhand, into simpler

parts and then using haptic feedback from a robotic exoskeleton would help the motor system

learn the movement. We also examined how the particular form of the decomposition affected

learning. Three groups of unimpaired participants trained with the target arm movement broken

down in three ways: 1) elbow flexion/extension and the unified shoulder motion independently

(“anatomical” decomposition), 2) three component shoulder motions in Euler coordinates and

elbow flexion/extension (“Euler” decomposition), or 3) the motion of the tip of the elbow and

motion of the hand with respect to the elbow, independently (“visual” decomposition). A control

group practiced the same number of movements, but experienced the target motion only,

achieving eight times more direct practice with this motion. Despite less experience with the target

motion, part training was better, but only when the arm trajectory was decomposed into

anatomical components. Varying robotic movement training to include practice of simpler,

anatomically-isolated motions may enhance its efficacy.

Index Terms

Haptic arm exoskeleton; motor learning; parallel mechanism; robot assisted movements; whole-
part practice

I. Introduction

Learning complex limb movements is of interest for athletes in many sports and for patients

undergoing rehabilitation training following neurologic injuries such as stroke and spinal

cord injury. With the increasing emergence of robotic arm exoskeletons for human

movement training [1]–[10], it is now possible to deliver haptic demonstrations of complex

arm motions (Fig. 1) to try to aid in learning them [11]. However, it is currently not well

understood how haptic input from an exoskeleton can be designed to optimally train a

complex limb movement. Haptic guidance has sometimes been shown to have no effect or

even reduce motor learning [5], [12]–[20] while in other tasks it may be beneficial [21]–

[24].
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To date, haptic guidance has almost exclusively been used to demonstrate entire movements,

but a strategy sometimes used by sports or rehabilitation trainers is to break a complex

motion into component parts using haptic guidance, to allow the trainee to master an isolated

motion that is simpler than the whole motion. This strategy relies on what the motor learning

literature refers to as “part-whole transfer” [25]–[32]. Most previous studies on part-whole

transfer have examined sequence learning, which refers to motor tasks that require the

performance of a sequence of independent movements. Practicing parts of a sequence can

improve performance on the whole task, but practicing the whole sequence is typically more

effective [33], [34]. However, when coordination between parts is not a key element, part

training can sometimes have more beneficial results towards the whole task if compared to

whole training [35]. The few studies that have examined part-whole transfer in tasks that

require simultaneous coordination of multiple joints, (also referred to as “continuous tasks”

[30], which are common types of tasks in sports and rehabilitation) are ambiguous. One

study suggested that the extent to which coordination is involved in a complex task (the task

being tested was piloting a helicopter during liftoff, where four separate controls must be

operated simultaneously) is directly related to the importance of training the task as a whole

[36]. However, practice of individual elements of a complex task can sometimes transfer to

the overall task, even though practice of the complex task is usually more effective [33].

In the experiment reported here, we studied part-whole transfer for complex arm movement

training performed using haptic guidance. We hypothesized that breaking a movement down

into movements with fewer degrees-of-freedom (DOF) would be more effective than simply

practicing the whole movement. Further, we hypothesized that the specific form of the

decomposition of the whole motion into individual joint motions would influence the

amount of learning.

II. Experimental Methods

The experiment was approved by the Institutional Review Board of University of California-

Irvine, and participants provided informed consent. For this experiment we used a four DOF

arm exoskeleton developed in our laboratory called “BONES” (Fig. 1) [37] to guide the

joints of the participant’s arm along desired movement trajectories. BONES is

pneumatically actuated, and provides compliant assistance to multi-joint arm movements

using a nonlinear control algorithm [38]. A total of 40 healthy adult volunteers (age: 28.6 ±

5.5, 57.5% male) attempted to learn a desired multi-joint arm movement with haptic

guidance from BONES.

A. Experimental Protocol

Subjects tried to learn to perform a complex arm movement which we will call the “main

motion”, and which we will denote as θ(t) or simply θ. The main motion involved

simultaneous movement of the shoulder in abduction–adduction θ1, flexion–extension θ2,

internal–external rotation θ3, and elbow in flexion–extension θ4 along sinusoidal

trajectories.

To evaluate the ability of the subject to make the target arm movements, we characterized a

four DOF movement using four coordinates. We chose to represent the three shoulder
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coordinates in Euler coordinates, which express rotations about orthogonal axes in a certain

order. There are other shoulder coordinate systems that we could have used, such as Cardan

angles, which express rotations in a different order [39]. We represented the elbow as a

relative angle between the upper arm and forearm. The anatomical DOF corresponding to

θ1, θ2, θ3, and θ4 are shown in Fig. 2. The main motion was defined as

(1)

(2)

Table I shows the values of A, T, φ, and B used for the main motion, which somewhat

resembled a tennis backhand.

We also assessed how learning the main motion θ affected the performance on a transfer

movement θ′, which was also described by (1) and (2), but had a slightly shorter period T of

its components, and different amplitude A, phase φ and offset B (Table I). The transfer

motion θ′ was similar to a front crawl swimming stroke. We included this transfer

movement in order to determine if the participants became more skilled at a movement

substantially different from the trained movement; i.e., to assess specificity of training.

Each participant was assigned randomly to one of four training groups (for a total of 10

subjects in each group): 1-Whole (age: 28.1 ± 2.7, 80% male), 2-Euler (age: 31.9 ± 9.3, 40%

male), 3-Anatomical (age: 28.0 ± 2.9, 50% male), and 4-Visual training techniques (age:

26.4 ± 3.4, 60% male). All groups received the same number of training movements (Table

II). The “Whole” group served as a control group and always practiced the main motion in

its entirety. For the other three training groups, subjects repeatedly practiced parts of the

main motion, and then practiced a single example of the main motion in its entirety. The

“Euler” training group experienced the parts of the main motion in Euler coordinates (Fig.

2). The “Anatomical” training group experienced the complete shoulder movement (i.e., θa1

= [θ1(t) θ2(t) θ3(t) 0]) as one component, and the elbow flexion/extension movement θa2 =

[0 0 0 θ4(t)] as the other. The “Visual” training group experienced the shoulder motion,

absent shoulder internal/external rotation (i.e., θv1 = [θ1(t) θ2(t) 0 0]) as one component, and

then experienced shoulder internal/external rotation with elbow flexion/extension θv2 = [0 0

θ3(t) θ4(t)] as the other component. The reason we named this decomposition “Visual” is

that it traces out the desired path of the tip of the elbow on the inside surface of a virtual

sphere (with center at the shoulder), and the desired path of the hand on the inside surface of

a second sphere (with center at the elbow). It is easy to visualize how to form the complete

movement by summing these two paths.

The experiment consisted of 7 phases: 1-Baseline, 2-Baseline Transfer, 3-Training, 4-

Assessment, 5-Assessment Transfer, 6-Retention, and 7-Retention Transfer. During the

Baseline phase, the robot assisted the subjects in performing the main motion θ twice, and

then the subjects were asked to try to reproduce the whole movement without assistance

(Table II; see also Fig. 5). This process was repeated twice for a total of six movements,
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producing assessments 1 and 2. The Baseline Transfer phase repeated the protocol of the

Baseline phase with the transfer motion θ′, producing assessments 3 and 4. After

completing the Baseline Transfer phase, subjects rested for 5–10 min. During the resting

periods subjects were not strapped into the robot and were allowed to leave the room.

Then, in the Training phase, each group was taught the main motion using the group’s

assigned training strategy. There were 10 training sets in this phase. For each set, each group

received eight demonstrations of their respective joint components (with the component

presentation order block randomized), or of the whole movement for the whole training

group (see Table II). Then, for the ninth movement in the set for all groups, the robot

showed the main motion θ. For all of these training movements (i.e., movements 1–9 in each

training set) subjects were asked to follow along with the haptically displayed movement—

i.e., to actively participate in learning. For the tenth movement of each set, the subject was

asked to perform the main motion without assistance (a movement which we denote with θ̂).

The transfer motion was not trained during this phase. Note that because of this protocol, the

Whole group experienced the main motion eight times more than the part groups, although

all groups performed a total number of training movements that were equal. During the

training phase there were 10 assessments in which the subject performed the movement

without assistance, which we number assessments 5–14.

After completing the 100 movements, and another 5–10 min rest, subjects started the

Assessment phase and the Assessment Transfer phase, which duplicated the Baseline phase

and the Baseline Transfer phase, accordingly, except they started with an assessment before

experiencing the desired movement (producing assessments 15–20). Subjects returned

approximately one week later to perform the Retention and Retention Transfer phases,

which duplicated the Assessment and Assessment Transfer phases (producing assessments

21–26).

The specific training procedure for each movement attempt was as follows. At the beginning

of each movement, a computer displayed a graphical countdown and provided an auditory

alert to aid participants in synchronizing their movements with the desired trajectory, and

subjects were allowed to watch the movement of their arm. During the assisted movements a

semi-transparent rendered arm offered visual guidance on the monitor, following the desired

arm trajectory. Simultaneously, a solid rendered arm displaying the actual position of the

subject’s arm was overlapped over the semi-transparent “guide” arm. Thus, subjects could

gauge how well they were performing the desired movement by watching the overlap of the

semi-transparent and solid arms. Furthermore, during these assisted movements, the robot

actively positioned the arm joints according to each group’s experimental condition while

the unassisted arm joints were fixed in their corresponding initial position. For example,

when the Anatomical group trained θa1, the robot actively assisted θ1, θ2, and θ3, while the

unassisted joint (θ4) was locked at θ4(t) = θ4(0). Although the stiffness of the robot was set

to be relatively high, we observed small average variations of θi(0) ± 3° on the locked joints.

During the assessment movements, the robot was set to fully operate in backdrive mode with

gravity compensation, and provided no assistance for moving. Furthermore, during these

unassisted assessments, the semi-transparent arm showing the desired trajectory was not
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displayed and only the solid arm showing the subject’s actual arm configuration was shown.

At the end of each unassisted assessment, the subject’s performance evaluation was

determined by computing the norm of the mean absolute tracking error (in degrees) for each

joint and displayed on the computer monitor. The score was calculated as

(3)

where θ is the desired joint angle as a function of time from (1) and θ̂ is the measured joint

angle. This score was only measured when each group performed the whole movement

without assistance (assessment movements), therefore all groups were assessed under the

same conditions. This performance evaluation not only reflected the accuracy of each DOF

during the “Whole” motion, but also the synchronicity between them. The lower the score,

the closer the performed movement was to the desired motion (both in space and time).

B. Data Analysis

We characterized the subjects’ performance with a score that represented the trajectory error

for each movement without penalizing time delays between the desired and the actual

starting time. To minimize the effect of any initial time delay, we defined the post hoc score

(ScorePH, in degrees) as follows:

(4)

where θ and θ̂ are the same as in (3), and d is a time delay applied to all four movement

components simultaneously. To determine the value of d that minimized the score, we used

the Matlab function fminsearch [40], an unconstrained function minimum value finder. For

each movement, the initial time shift was set to 0 ms (with respect to the beginning of the

target motion). The iteration step was set to 4 ms, corresponding to the period of the

sampling rate of the data acquisition system (250 Hz). We repeated the search of the global

minima with two different initial time delays (3 s before and 3 s after the actual movement

start, confirming that the algorithm converged to the same values (and not local minima)

with different initial conditions. For instance, an optimal value d = 0.4 s would indicate that

if the subject had started moving 0.4 s later, the movement θ̂ would have been closer to the

desired trajectory θ (Fig. 3).

The primary outcome measure was the post-hoc score. The Shapiro–Wilk (S-W) normality

test was performed on the scores at the key assessments as well as on the differences in

scores for each group during training, short term retention and long term retention. The

Mann–Whitney U-Test (M-W) was used to compare differences between groups and the

Wilcoxon Signed Rank Test (WSR) was performed to analyze score improvements within

each group. The statistical analysis was processed using PASW version 18.0 (formerly

SPSS). The statistical significance level in all tests was set at p ≤ 0.05.
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To gain further insight on the performance of each individual movement component θ̂i, we

determined a least squares optimal spatiotemporal fit  for the measured trajectory of each

joint θ̂i as a function of amplitude Â, period T̂, phase delay φ̂ and offset B̂ using

(5)

The optimal parameters (Â, T̂, φ̂, B̂) were determined using Matlab’s fminsearch, as

described earlier. The initial values for Â, T̂, φ̂, and B̂ were set to the ones described in

Table I. An example of a sinusoidal fit to θ̂1 is shown in Fig. 4.

III. Results

The baseline and first training assessment scores of Group 4 failed the Shapiro–Wilk

normality test (p = 0.01). Moreover, the difference in scores during training for Group 4 also

failed the normality test (p = 0.02). Therefore, nonparametric statistics were used.

There were no significant differences in ScorePH between groups at the beginning of

training. All training groups significantly improved their ScorePH during training (Fig. 5).

However, Group 3 (the anatomical decomposition group) exhibited the greatest

improvements (7.5° ± 4.2°, WSR p = 0.049) during training (Fig. 5).

When we analyzed the task performance 5–10 minutes after training (assessment 15) and

compared it to the first Baseline assessment (assessment 1) we observed a significant effect

of training technique, with the anatomical decomposition group again improving the most

compared to groups 1, 2, and 4 (M-W, p = 0.043, p = 0.063, and p = 0.042, respectively).

Group 3 also performed the best score improvement at the retention test one week later (6.5°

± 4.1°, WSR, p = 0.007). This improvement was marginally significant compared to Group

4 (M-W, p = 0.080) but not significant compared to the rest.

In order to gain insight into why Group 3 tended to perform better, we looked at the results

from the optimized movement component  analysis. During the training phase, short term

retention test and long term retention test, Group 3 presented the best amplitude (Âi)

learning in all four components , and  out of all groups. At the same time, Group

3 showed the best angle offset (B̂i) learning in , and . No significant differences were

observed regarding the learning of the period (T ̂i) and phase shift (φ̂i) of the four motion

components.

A possible reason why Group 3 may have performed better is that during the decomposed

movements they may have held the joints in positions that may have given clues about how

to hold the arm during the main motion. We, therefore, calculated the distance in joint angle

space between the time-averaged arm position of the main motion and the time-averaged

arm position for each of the decomposed movements experienced during the training

techniques (i.e., one movement for the group that performed the main motion only, four

movements for Euler decomposition, two for anatomical decomposition, and two for visual

decomposition). The scores for each group’s movement components were: S1,1 = 0°, S2,1 =
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28.0°, S2,2 = 28.0°, S2,3 = 26.8°, S2,4 = 23.3°, S3,a1 = 20.0°, S3,a2 = 23.3°, S4,v1 = 25.0°, and

S4,v2 = 17.8°, where Si,j is the score, i is the group number and j is the movement component

code (as noted in Table II). For example, S3,a1 is the score that Group 3 would obtain if they

were to repeat θa1 during the assessment phase. Thus, Groups 3 (the anatomical

decomposition group) and 4 (the visual decomposition group) did on average hold the arm

closer to the main motion during training. Similar results apply to the transfer motion.

The ability to perform the untrained movement θ̂′ did not improve significantly following

training or during the short-term retention test, or at the beginning or the long-term retention

test (assessment 24), indicating the specificity of training with haptic guidance.

Nevertheless, all groups improved their ScorePH for the untrained movement significantly

by the end of the long-term retention test (assessment 26). Group 3, again, presented the

smallest tracking error in the last long-term retention test, although differences between

groups were not significant.

IV. Discussion

We found that breaking a complex motion into parts benefited trainees, but only when the

parts were presented in the anatomical decomposition—i.e., as individual shoulder and

elbow movements. Note that this benefit was gained in comparison to the “Whole” group

(Group 1), which, although it practiced the same number of total movements, practiced the

main motion eight times more than the part training group. We first discuss implications of

these findings for mechanisms of human motor learning and then for design of robotic

movement training.

A. Part-Whole Learning Mechanisms

Why did breaking the movement into parts improve motor learning? Note first that the

observed effect was not a generalized learning effect, as subjects did not improve

performance on the transfer motion; training affected the main motion performance. When

we analyzed which movement parameters of the main motion the participants improved, we

found significantly greater improvements in the amplitude and angle offset of shoulder

internal/external rotation and elbow flexion/extension respectively ( , , , and ). We

found no significant improvements related to the temporal parameters of the movement

components (  and ). Thus, we speculate that individual joint guidance alerted the motor

system to the desired range and average position in space for the exercised joint, presumably

using both haptic and visual sensory channels. Given such amplitude/range templates for

individual joints, the motor system was apparently then able to shape the multi-joint

movement. We note, however, that the temporal cues for these movements were relatively

simple and very similar between joints. Looking at movements with more complex temporal

components may be of interest for future studies.

A key point is that the experience of component movement features helped in learning the

target motion more than practicing the target motion itself, which is a somewhat

counterintuitive result. Somehow, the information added from the part practice was more

valuable than the repetitive experience of the target motion. One possibility is that the motor

system has trouble determining where the problems lie in making, accurate, complex
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movements; breaking the movements down may allow better identification and then more

focused practice on key problems.

It is significant, however, that the benefit of adding part training was gained only when the

whole arm motion was decomposed into the anatomical decomposition—i.e., the shoulder

and elbow moving through their complete motions, one at a time. The Euler decomposition

was complex and “unnatural,” but the Visual decomposition was intuitive in visual space,

requiring addition of two viewed trajectories. These results suggest that the spatiotemporal

summation mechanism that facilitates part-whole transfer operates in joint and not visual

coordinates. This finding is consistent with other research that has found that the motor

system represents arm movement in joint-based or shoulder-based coordinate frames [41]–

[44].

It should be noted that the average position of the arm during the decomposed movements

was closer to the average position of the arm during the main motion for the anatomical and

visual decompositions. The average position of the arm during training may have been a cue

that helped subjects perform the main motion better. However, the average position was

about equally close to the main motion for the anatomical and visual decompositions, so this

explanation does not distinguish the differential benefit seen for training with the anatomical

decomposition.

A possible caveat is that we measured the performance using Euler coordinates. Thus, one

might speculate that training with the Euler decomposition would have allowed subjects to

learn to perform better by this outcome measure. However, the results still favored the

anatomical decomposition, and thus the conclusion that anatomical decomposition was the

best training technique remains unchanged. It is interesting to note that the human motor

learning system is very different from a typical robotic movement learning system. A robot

that experienced individual joint movements once could typically learn a whole movement

immediately afterwards simply by memorizing and then simultaneously replaying the

individual movements. The human motor system took many movements to integrate the

information contained in the part movements; thus its performance is much less than what is

theoretically possible.

B. Using Robots to Enhance Motor Learning

There is increasing interest in using physically-interacting robotic devices to create dynamic

training environments, such that when people practice moving in these environments, they

learn motor skills more quickly or better [45], [46]. An obvious approach, but not the only

approach [47], is to use a robot to guide the person’s limbs through a desired movement

trajectory to help learn the target movement. Results with this haptic guidance strategy have

been mixed. For unimpaired people, haptic guidance can help in learning the timing of a

complex trajectory [21] or steering or hitting task [22], [47], [48], but has provided little

measurable benefit or a learning decrement, compared to visual demonstration [19], [20]. In

a clinical setting, robotic guidance of the arms during rehabilitation of stroke patients has

been found to provide no additional benefit compared to a matched amount of unguided,

active exercise [5], [49], although there is at least one exception with a hand robot [23], and

another study found almost significantly better improvement on at least one key functional
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outcome (Frenchay Arm Test) with robot guidance [24]. Interestingly, both of these latter

studies guided the hand or the arm along simplified joint movements. Robotic guidance

during gait training of ambulatory stroke patients reduced clinical benefit compared to

walking with assistance from a therapist [50].

The present study demonstrated that varying the type of guidance was more effective than

always guiding along the final, integrated, goal movement. As stated above, this is a

somewhat counterintuitive result: the “Whole” training group experienced the main motion

eight times more than the part groups, but this experience did not avail them as much as

experiencing specific components of the main motion. Thus, we conclude that practicing the

same thing again and again, even if it is the thing one wishes to learn, is not always the best

practice. Instead, practicing simpler parts of the thing one wishes to learn may be better, if

the simpler parts are designed appropriately. This observation is consistent with the long-

standing practice in sports and rehabilitation training of isolating individual joint movements

to facilitate learning of complex multi-joint movements, but to our knowledge this study

provides quantitative evidence that supports this practice for the first time. Note however,

that, since mechanisms of learning with and without haptic guidance may not be identical,

the benefit of decomposition noted here may only exist with haptic guidance. Future studies

should examine if a similar benefit of decomposition exists when the decomposition is

provided using visual feedback only.

The implications for robotic movement training are that training on a variety of target

motions may in fact improve the outcomes of robot-assisted training, if the target motions

are selected appropriately, which, according to our results, means in “anatomical bundles.”

Practically, this means that simpler robotic devices may be able to play an important role in

training complex movements (for example [51], [52]). One could imagine a wearable

device, for example, that focuses on the appropriate use of an individual joint in relation to a

complex task. Finally, we expect the results described here to inform rehabilitation therapy

in as much as normal motor learning mechanisms continue to operate in rehabilitation, a

possibility which seems highly likely.
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Fig. 1.
BONES (Biomimetic Orthosis for Neurorehabilitation of the Elbow and Shoulder) allows

three DOF at the shoulder as well as elbow flexion/extension. A distal module

accommodates forearm supination/pronation and wrist flexion/extension, but was not used

in this study.
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Fig. 2.
Definition of joint angles used in this paper.
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Fig. 3.
Time shifting example. A 0.38 s delay is applied simultaneously to the four components of

the original measured movement, θ̂ (dashed line). The resulting delayed movement (solid

line) is, overall, closer to the desired trajectory, θ (dotted line).
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Fig. 4.
A sinusoidal function (solid line) closely fits the subject’s measured trajectory (dashed line).

The subject started about 0.3 s late and did not reach the desired amplitude levels compared

to that of the desired trajectory for this joint (dotted line).
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Fig. 5.
Top: Score during different training phases. The top left plot shows the assessments for the

main motion. The top right shows the assessments for the transfer motion. Bottom: Amount

of learning during training (assessment 5 versus 14, left), at short-term retention 5 min after

training (assessment 1 versus 15, middle) and at long-term retention one week after training

(assessment 1 versus 21, right). Group 1-Whole, 2-Euler, 3-Anatomical, and 4-Visual

training techniques. Asterisks denote significance at p = 0.05, + denote marginal

significance p < 0.1.
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TABLE I

Parameters of the Main Motion θ(t) and the Transfer Motion θ′(t)

Component A [deg] T [sec] φ [rad] B [deg]

θ1 20.0 4.0 0 −10

θ2 12.5 4.0 π/2 −5

θ3 15.0 4.0 −π/2 35

θ4 20.0 4.0 π/2 55

θ′1 15.0 3.3 0 −10

θ′2 7.5 3.3 π/2 −5

θ′3 10.0 3.3 −π/2 35

θ′4 15.0 3.3 π/2 55
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TABLE II

Experimental Protocol

GROUP BASELINE1 (x2) TRAINING (x10) ASSESS./RET.2 (x2)

1-Whole θ × 2/θ̂ θ × 8/θ/θ̂ θ̂/θ × 2/θ̂

2-Euler θ × 2/θ̂ rand{θ1/θ2/θ3/θ4} × 2/θ/θ̂ θ̂/θ × 2/θ̂

3-Anatomical θ × 2/θ̂ rand{θa1/θa2} × 4/θ/θ̂ θ̂/θ × 2/θ̂

4-Visual θ × 2/θ̂ rand{θv1/θv2} × 4/θ/θ̂ θ̂/θ × 2/θ̂

θ refers to the target multi-joint movement that the robot guided the arm along, and θ̂ refers to unassisted assessment movement in which the
participant tried to reproduce θ. rand{} indicates a block of the included motions presented in a randomized order.

1
The Baseline Transfer phase was performed after the Baseline phase shown in the table, and consisted of the same movement sequence pattern as

Baseline replacing θ and θ̂ with θ′ and θ̂′ i.e. the target transfer movement.

2
The Assessment phase occurred 5–10 minutes after the training phase, and the Retention phase approximately 1 week later. The Assessment

Transfer and Retention Transfer phases followed the same sequence as Assessment and Retention phases, using θ′ as the target movement, and
occurred immediately after the Assessment and Retention phases, respectively.
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