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Abstract. One of the main challenges to malaria elimination is the resilience of vectors, such as Anopheles arabiensis,
that evade lethal exposure to insecticidal control measures or express resistance to their active ingredients. This study
investigated a novel technology for population control that sterilizes mosquitoes using pyriproxyfen, a juvenile hormone
analogue. Females ofAn. arabiensis were released in a semifield system divided into four equal sections, and each section
had a mud hut sheltering a tethered cow providing a blood source for mosquitoes. In all sections, the inner mud hut walls
and roofs were lined with black cotton cloth. In one-half of the sections, the cloth was dusted with pyriproxyfen. An
overwhelming 96% reduction in adult production was achieved in pyriproxyfen-treated sections compared with control
sections. This unprecedented level of control can be exploited to design new vector control strategies that particularly
target existing behaviorally resilient and insecticide-resistant populations.

INTRODUCTION

Current frontline malaria vector control interventions, such
as long-lasting insecticide-treated nets (LLINs) and indoor
residual spraying (IRS), have contributed greatly to the
recent successes in malaria control.1 However, these tools are
more effective against vector species that primarily feed
indoors on humans and rest indoors. They are less effective
against outdoor feeding and resting mosquitoes. Anopheles
arabiensis, currently mediating most of the residual malaria
transmission in east Africa,2,3 is not optimally controlled by
LLINs and IRS, because it commonly feeds outdoors on
humans or cattle, rests outdoors, and can enter but then rapidly
exit houses containing these products without exposure to
lethal doses of their active ingredients (AIs).3,4

Another challenge to malaria vector control is the develop-
ment of resistance in malaria vectors against all classes of
insecticides currently used for LLINs and IRS, particularly
pyrethroids, the most widely used and the only class approved
for use in bednets.5

Pyriproxyfen (PPF) is a juvenile hormone analogue that
traditionally has been used in aquatic habitats to prevent mos-
quito larvae and pupae from developing into adults. However,
it can also sterilize adult mosquitoes on contact.6–8 This study
builds from our previous work performed in laboratory condi-
tions showing that An. arabiensis mosquitoes were particularly
vulnerable to sterilization immediately after blood feeding.8

Adult mosquitoes can also transfer PPF from resting sites
to breeding sites to interfere with immature development.9,10

Here, we show, for the first time, an operationally practic-
able means of controlling a free-flying captive population of
An. arabiensis using PPF.

MATERIALS AND METHODS

This study was carried out in southern Tanzania inside a
semifield system (SFS) with walls consisting of netting only,

and therefore, the microclimate inside it closely resembled
the natural environment outside of it.11 The SFS was divided
into four equal sections, with a space volume of approxi-
mately 360 m3 each. In each section, a mud hut sheltering a
tethered cow, eight clay pots, and four plastic basins with soil
and water were designed to provide blood, resting, and ovipo-
sition sites for mosquitoes (Figure 1). In all sections, the inner
mud hut walls and roofs were lined with black cotton cloth,
and in one-half of the sections, the cloth was dusted with PPF
powder (0.6–0.8 g AI/m2). In total, 5,000 unfed 3 to 9-day-old
insectary-reared An. arabiensis females, previously caged
with equivalent numbers of males, were released per section,
with a cow to provide blood for the first 3 days only. Mosqui-
toes used in the experiments were starved 6 hours before
release. Therefore, they fed on the cow, and after 3 days, a
solution of 6% glucose was set up at multiple locations inside

the SFS for sugar feeding. These mosquitoes remained in the
SFS to complete their gonotrophic cycle. All pupae that sub-
sequently developed from the aquatic habitats were removed,
counted, and reared in small cages to monitor the numbers of
emerging adults and therefore, the impact of PPF exposure on
the mosquitoes’ ability to produce viable offspring. Seven days
after larvae were observed in the habitats, 150 mL water were
collected from every habitat using a glass beaker to determine
whether PPF had been transferred to these habitats by con-
taminated mosquitoes during oviposition.12 To assess the pres-
ence of PPF in each beaker, larval bioassays were conducted
using second and third instar larvae from the insectary. Twenty
An. arabiensis larvae were introduced in each beaker and mon-
itored daily until all larvae and pupae had either died or devel-
oped and emerged to adults. Five replicates each of the control
and treatment were completed in three separate experiments
in the following setup. In the first experiment, two replicates

(treatment and control) were run (5,000 + 4 = 20,000 mosqui-
toes); in the second experiment, two replicates (treatment and
control) were run (5,000 + 4 = 20,000 mosquitoes), and in the
third experiment, one replicate (treatment and control) was
run (5,000 + 2 = 10,000 mosquitoes), making a total of 50,000
mosquitoes reared and released.
All statistical analyses were conducted in R v2.12.213

(R Development Core Team, University of Auckland,
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Auckland, New Zealand) using the lme4 package for general-
ized linear mixed effects models.14 To determine any differences
in the numbers of pupae or adults produced between treated
and control sections, a generalized linear mixed effects model
with a Poisson distribution and a log link function for count data
was performed. The treatment group (control or PPF) was clas-
sified as a fixed effect, whereas SFS section nested within exper-
iment was put in as a random effect as per the experimental
design. A visual inspection of the plots of error versus fitted
values distribution was used to determine the best model fit.
The model was then tested with each nested parameter sepa-
rately to determine the underlying variation. SFS section was
found to count for a lot of variation and therefore, required the
full nested model to be retained. The differences in pupal
emergence rates in both SFS habitats and the bioassays exper-
iments were compared by fitting a generalized linear mixed
effects model with binomial error structure and logit link func-
tion for proportion data. The data were fitted to a model
including treatment as a fixed effect and breeding habitat
nested within SFS section nested within experiment as a ran-
dom effect as per the experimental design. Visual inspection of
the plots of error versus fitted values distribution was used to
determine the best model fit. Model reduction was conducted
by removing nested parameters one by one; however, the full
nested model was retained.

RESULTS

Experiments lasted between 11 and 16 days from release
of adult mosquitoes to collection of the last pupae in the
breeding habitats. An overwhelming 95% reduction in pupal
production and 96% reduction in adult production were
achieved in PPF-treated sections compared with control sec-
tions (Figure 2A and B). In four of five replicates, exposure
to this juvenile hormone analogue completely sterilized all
mosquitoes; not a single pupa or new adult was seen. The

few adults emerging from a PPF-treated section in the fifth
replicate probably resulted from mosquitoes that had been
contaminated with PPF but were not completely sterilized
and managed to lay eggs. The pupae collected in the PPF-
treated section showed a significantly lower emergence rate
(82%; 164/201) compared with the control (95%; 4,132/4,349;
c2 [1] = 65.6, P < 0.001) (Figure 2C). This result suggested
possible PPF autodissemination to the breeding habitats by
contaminated mosquitoes. However, bioassays with insec-
tary larvae reared in water from the control and PPF-treated
habitats showed similar emergence rates (Figure 2D). A sim-
ilar pattern has been observed in recent studies (Lwetoijera
DW and others, unpublished data), where PPF activity is
more pronounced in breeding habitats with organic material
than water samples kept in glass beakers.

DISCUSSION

The striking level of sterilization seen in this key malaria
vector reveals an exciting new opportunity for malaria vector
control. This technology is a practical, novel technology for
population control that sterilizes mosquitoes rather than kill-
ing them. It offers the chance to develop new tools that are
not compromised by existing resistance mechanisms. New
paradigms in vector control are in great demand, especially
for vectors such as An. arabiensis4,15 and other anophelines16

that exhibit flexibility in feeding and resting indoors and out-
doors and minimize their contact with conventional adulticides
applied indoors. The findings reported here have limitations
given that the experiments were conducted within an enclosed
environment on insectary-reared mosquitoes that had never
been subjected to insecticide pressure. However, this tech-
nology can be readily adapted in natural conditions to assess
its impact on wild populations of An. arabiensis.
Treating walls and roof linings with PPF comprehensively

sterilizes captive populations of free-flying An. arabiensis,

Figure 1. Semifield system (SFS) setup. (A) SFS with (B) mud huts built inside each section to shelter a cow and (C) breeding habitats.
(D) Mud huts were lined with black cloth and dusted with PPF in treatment sections.
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making it a powerful control tool and an easy complement to
LLINs and IRS. PPF-treated materials could be deployed
outdoors in areas where mosquitoes rest or transit, such as
areas where people gather in the early hours of the evening
and inside and outside of cattle sheds. These treated materials
could also be specifically designed to attract resting mosqui-
toes. Similar substrates are already exploited for the delivery
of conventional insecticides.17 Our prototype uses a safe and
registered insecticide class that has yet to be deployed against
adult malaria vectors. Alternatives to conventional adulticides
are desperately needed. The physiological resistance to pyre-
throids, recently characterized in populations of An. arabiensis
from Zanzibar, precipitated the substitution of pyrethroids
for a less cost-effective carbamate compound with a history
of resistance development in malaria vectors.18,19 No resis-
tance to PPF has been reported in mosquitoes (J. Invest and
others, unpublished data), and no cross-resistance has been
observed between PPF and other classes of insecticides of
public health interest. PPF could be applied in combination,
mosaics, or rotations with current insecticides to mitigate the
emergence of resistance.5 It is remarkably stable in the shade
and available in a variety of commercial formulations that fit
this new application.
The indication that the few mosquitoes that managed to lay

eggs from the PPF-treated section also transferred PPF to
their breeding habitats and significantly reduced subsequent
mosquito emergence is a welcome development. The auto-
dissemination of PPF by adult mosquitoes has been already
observed in Aedes species,9,10 and we are working to prove
the same phenomenon in malaria vectors.
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