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Abstract. Protective immunity to cholera is serogroup specific, and serogrouping is defined by the O-specific poly-
saccharide (OSP) of lipopolysaccharide (LPS). We characterized OSP-specific immune responses in adult recipients
of an oral killed cholera vaccine (OCV WC-rBS) and compared these with responses in patients with cholera caused by
Vibrio cholerae O1 Ogawa. Although vaccinees developed plasma immunoglobulin G (IgG), IgM, IgA antibody and
antibody secreting cell (ASC, marker of mucosal response) to Ogawa OSP and LPS 7 days after vaccination, responses
were significantly lower than that which occurred after cholera. Similarly, patients recovering from cholera had detect-
able IgA, IgM, and IgG memory B cell (MBC) responses against OSP and LPS on Day 30 and Day 90, whereas vaccinees
only developed IgG responses to OSP 30 days after the second immunization. The markedly lower ASC and MBC
responses to OSP and LPS observed among vaccinees might explain, in part, the lower protection of an OCV compared
with natural infection.

INTRODUCTION

Cholera is a dehydrating diarrheal illness of humans caused
by toxigenic strains of Vibrio choleraeO1. Vibrio cholerae can
be divided into over 200 serogroups, but only serogroups O1
and O139 organisms have been known to cause epidemic
cholera. Globally, almost all cholera is currently caused
by V. cholerae O1 organisms.1 Cholera affects an estimated
3–5 million people annually, resulting in over 100,000 deaths
globally.2,3 Based on genotypic and phenotypic differences,
the O1 serogroup can be divided into classical and El Tor
biotypes and into Ogawa and Inaba serotypes.4 Inaba differs
from the Ogawa serotype only by the absence of a 2-O-methyl
group in the non-reducing terminal sugar of the O-specific
polysaccharide (OSP) component of the lipopolysaccharide
(LPS).5–7 The prevalent serotype often fluctuates during
cholera outbreaks, switching between Ogawa and Inaba.8

Two types of oral cholera vaccines, consisting of whole cell,
killed organisms, are currently World Health Organization
(WHO)-prequalified and commercially available internation-
ally: WC-rBS-Dukoral (Crucell, Sweden), which includes
both Inaba and Ogawa serotypes of V. cholerae O1 of both
El Tor and classical biotypes, admixed with recombinant
cholera toxin B subunit (rCtxB); and Shanchol (Shantha
Biotechnics-Sanofi, India), which includes four V. cholerae
O1 strains and one O139 strain, but without any rCtxB sup-
plement.9–13 In large-scale, randomized controlled field trials,
these vaccines (or their prototypes) were found to be safe and
immunogenic and conferred ~60–80% efficacy in preventing
cholera in adults and older children.11,14,15 However, the effi-
cacy of WC-rBS is lower and of shorter duration in young

children.3 In contrast, clinical cholera caused by wild-type
infection generally leads to more robust and durable protec-
tion that may last for 3–7 years in both young and older
individuals.14,16,17 In 2010, the WHO recommended that
choleravaccine should play a larger role in limiting cholera
disease burden.3

A number of immune responses have been characterized
during cholera. Vibrio cholerae is a non-invasive mucosal
pathogen and assessment of mucosal immunity has often
included assessment of gut-activated ASC that transiently
migrate in the systemic circulation before re-homing to
mucosal tissue.35,40 Memory B and T cells responses have also
been assessed and correlated with longevity of responses to
infection and vaccination.28,31,32,37,42

Of importance, protection against cholera is serogroup spe-
cific. Infection withV. choleraeO1 provides no cross-protection
from cholera caused by V. cholerae O139, and vice versa.18–20

Serogroup specificity is largely determined by the OSP por-
tion of LPS, with OSP being connected to lipid A in LPS
through a core oligosaccharide.21 Lipid A and core are simi-
lar across V. cholerae serogroups.22–25 Despite this, OSP
responses during wild-type disease or after vaccinaton have
only recently begun to be characterized.26,27 Here, we extend
this analysis to adult recipients of an oral killed cholera
vaccine, WC-rBS (Dukoral), in Dhaka, Bangladesh, and
compare responses after vaccination with those induced in
adult patients with cholera caused by V. cholerae O1 Ogawa,
the serotype circulating in Dhaka during the study period.

MATERIALS AND METHODS

Study population. Participants, both vaccinees and patients,
were adults 18–45 years of age. Table 1 describes the age and
number of study participants. Thirty-two cholera patients
between December 2006 and December 2012 were randomly
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selected from the International Center for Diarrheal Disease
Research, Bangladesh (icddr,b) hospital with severe acute
watery diarrhea and with stool cultures positive for V. cholerae
O1. These individuals were enrolled and followed as were the
vaccinees for 1 year. Before patient enrollment, stool samples
were plated on taurocholate-tellurite-gelatin agar and gelatin
agar (Difco, Detroit, MI) overnight at 37°C. Suspected colo-
nies were identified by slide agglutination by using monoclonal
antibodies against V. choleraeO1.20 We also analyzed the stool
for other enteric pathogens, i.e., enterotoxigenic Escherichia
coli,29 Salmonella, Shigella, and Campylobacter spp.,30 and
tested stool by direct microscopy for cyst and vegetative forms
of parasites and ova of helminths. Only patients positive for
V. cholerae O1 and negative for other previous infection were
enrolled in this study.
We obtained 10 mL of venous blood at Day 0 (before

vaccination), 3 days after ingestion of each vaccine dose
(Day 3 and Day 17), and again at Days 42, 90, 180, 270, and
360 from the vaccinee cohort. From patients, we obtained
blood samples on the second day after hospitalization and
then at Days 7, 30, 90, 180, 270, and 360. All the cholera
patients were treated with intravenous fluid resuscitation and
with doxycycline, ciprofloxacin, or azithromycin.26,31,32 Stored
plasma samples were analyzed for anti-OSP, LPS, and vibrio-
cidal antibody responses.
In addition, 15 vaccinees who fulfilled similar criteria were

enrolled from September 2011 to June 2012 to assess ASC
responses to Ogawa-OSP, LPS, and CtxB in fresh cells recov-
ered from venous blood on Days 0, 7 (7 days after the first
dose of vaccine), 21 (7 days after the second dose of vaccine),
and 42, with responses compared with samples obtained from
15 patients at Days 2, 7, and 30 with V. cholerae O1 Ogawa
infection. The Institutional Review Boards of the icddr,b
and the Massachusetts General Hospital approved this study.
All study participants gave informed written consent for
study enrollment.
Antigen preparation. We used LPS, OSP, and rCtxB as

antigens to measure immunological responses. Vibrio

cholerae LPS was prepared as previously described.21 Briefly,
LPS from V. cholerae O1, Ogawa (strain X-25049) was
obtained by the standard hot phenol-water extraction proce-
dure followed by protein denaturation and enzymatic treat-
ment (proteinase K, DNase I, and RNase A), followed by
ultracentrifugation (100,000 + g for 3 hours).21,26 The OSP
was recovered by acid hydrolysis of LPS as previously
described, generating OSP attached to core oligosaccharide

(OSPc).21,26,27 The OSPc:BSA (bovine serum albumin) conju-
gates were also generated as previously described.21,26,27

To facilitate binding of OSP to immunological plates, and to
permit display of OSP in a sun-burst pattern consistent with
single point attachment similar to that occurring on wild-type
V. cholerae, we assessed immune responses targeting OSP
using OSPc:BSA (henceforth referred to as OSP in the below
described immunologic assays). To assess responses targeting
CtxB, we used recombinant antigen supplied by Professor
A. M. Svennerholm, Gothenburg University, Sweden.
Enzyme-linked immunosorbent assays (ELISAs) for OSP

and LPS-specific Immunoglobulin A (IgA), IgG, and IgM
antibodies in plasma. We quantified anti-OSP and anti-LPS
IgA, IgG, and IgM responses in plasma using a standard
ELISA as previously described.20,21,26,27 Briefly, we coated
96-well polystyrene plates (Nunc F, USA) with V. cholerae
O1 Ogawa OSPc:BSA (1 mg/mL) dissolved in carbonate
buffer (pH 9.6), and Ogawa LPS (2.5 mg/mL) dissolved in
phosphate buffered saline (PBS) (pH 7.2–7.4).20,28,33 To each
well, we added 100 mL of plasma (diluted 1:50 in 0.1% BSA in
PBS-0.05% Tween), and after incubation and washing,
detected antigen-specific antibodies in the sample using
horseradish peroxidase-conjugated rabbit anti-human IgA,
IgG, and IgM (Jackson Immunoresearch, West Grove, PA,
1:1,000 dilution) as secondary antibodies. After incubation at
37°C for 90 minutes, the plates were washed and developed
with ortho-phenylene diamine (Sigma, St. Louis, MO) in
0.1 M sodium citrate buffer (pH 4.5) and 0.012% hydrogen
peroxide by reading the plates kinetically for 5 min at
14-second intervals.26,28,31,33 The maximum slope for an opti-
cal density change of 0.2 U was reported as milli-optical
density units per minute (mOD/min). We normalized data
to ELISA units by calculating the ratio of the mOD/min of
the test sample to that of a standard of pooled convalescent
phase plasma that was included on each plate. The pooled
plasma was prepared from samples obtained from patients
with V. cholerae O1 Ogawa (N = 5) or V. cholerae O1 Inaba
(N = 5) infection.
Vibriocidal antibody assay in plasma. Vibriocidal antibody

responses in plasma samples were measured using a standard
laboratory protocol described previously, with guinea pig
complement and the homologous serotype of V. cholerae O1
Ogawa (X-25049) as the target organism for measurement
in patients.26,28,31,34 The same strain was used to measure the
vibriocidal responses in vaccinees. The vibriocidal titer was
defined as the reciprocal of the highest plasma dilution
resulting in more than 50% reduction of the optical density
associated with V. cholerae O1 growth compared with that
of positive control wells without plasma.32

Quantification of circulating IgA, IgG, and IgM ASC to
OSP, LPS, and CtxB. Ogawa-OSP, -LPS, and CtxB-specific
ASC responses were measured by enzyme-linked immunosor-
bent spot (ELISPOT) following a standard protocol.26,31,32,35,37

Briefly, nitrocellulose-bottomed plates (Millipore, Bedford,
MA) were coated with Ogawa OSPc:BSA (10 mg/mL),
Ogawa-LPS (25 mg/mL), affinity-purified goat anti-human Ig
(5 mg/mL; Jackson Immunology Research, West Grove, PA)
in PBS (pH 7.3–7.4), monosialotetrahexosylganglioside (GM1
ganglioside, 3 nM/mL), or keyhole limpet hemocyanin (KLH,
Pierce Biotechnology, Rockford, IL, 2.5 mg/mL), and were
incubated overnight at 4°C.20 Before blocking, 100 mL of
rCtxB (2.5 mg/mL)/well was added to the GM1-coated plates,

Table 1

Age and numbers of cholera patients and vaccinees enrolled in this
study

Specimen
tested

Vibrio cholerae
O1 serotype

No. of patients
or vaccinees

Median age in yr
(25th, 75th percentile)

Vaccinees ASC* 15 27 (23, 35)
Plasma† 33 32 (26, 39)
MBC-CS† 24 33 (28, 40)

Patients ASC‡ Ogawa 12 31 (20, 40)
Plasma§ Ogawa 17 29 (26, 33)
MBC-CS§ Ogawa 14 36 (29, 44)

*Specimens were analyzed on Day 0 before vaccination and on follow-up Days 7, 21
(7 days after 2nd dose of vaccine), and 42.
†Analyzed on Days 0, 3, 17 (3 days after 2nd dose of vaccine), 42, 90, 180, 270, 360.
‡Analyzed on Days 2, 7, 30.
§Analyzed on Days 2, 7, 30, 90, 180, 270, 360.
ASC = antibody-secreting cell assay; MBC-CS = memory B cell assay using culture

supernatant.
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and the plates were incubated for 1 hour at 37°C. All plates
were then blocked for 2 hours at 37°C with RPMI 1640 that
included 10% fetal bovine serum before use. Peripheral blood
mononuclear cells (PBMCs) were harvested as previously
described by centrifugation of whole blood samples diluted
two times in PBS (pH 7.2–7.4) on Ficoll-Isopaque (Pharmacia,
Piscataway, NJ).32,35 A total of 5 + 105 PBMCs/well were
added to the OSPc:BSA, LPS, and CtxB-coated plates,
whereas 1 + 105 PBMCs/starting well were added to the total
Ig-coated plates and serially diluted. After incubating the
plates at 37°C for 3 hours, plates were washed and IgG, IgM,
and IgA ASCs were detected using horseradish peroxidase-
conjugated mouse anti-human IgM (Hybridoma Reagent
Laboratory, Baltimore, MD), and horseradish peroxidase-
conjugated goat anti-human IgA and alkaline phosphatase-
conjugated IgG (Southern Biotech, Birmingham, AL), diluted
1:500. After overnight incubation at 4°C, wells with the IgG
conjugate were developed with 5-bromo-4-chloro-3-indolyl-
phosphate–nitroblue tetrazolium and wells with the IgA and
IgM conjugates were developed with 3-amino-9-ethylcarbazole.
The ASC were independently quantified by two individuals
using a stereomicroscope (Leica WILD M3Z). The KLH-
coated plates were used as a negative control. The number of
antigen-specific IgG, IgM, and IgA ASC were expressed per
106 PBMCs.
ELISAs for OSP-, LPS- and CtxB-specific IgA, IgG, and

IgM antibodies in supernatants of memory B-cell culture.
We stimulated PBMCs with a polyclonal B cell mitogen mix-
ture optimized to stimulate antigen independent proliferation
and differentiation of memory B cells (MBCs) into ASCs
as previously described31,32,38,39; supernatants of these MBC
cultures were then assayed for anti-OSP, anti-LPS, and anti-
CtxB IgA, IgG, and IgM responses, using a standard ELISA
protocol.33 In brief, PBMCs were cultured in a medium that
consisted of RPMI-1640, 10% fetal bovine serum, 200 U/mL
penicillin, 200 mg/mL streptomycin, 2 mM L-glutamine, 50 mM
b-mercaptoethanol, and a mixture of three B-cell mitogens;
6 mg/mL of CpG oligonucleotide (Operon, Huntsville, AL);
a 1/100,000 dilution of crude pokeweed mitogen extract; and
a 1/10,000 dilution of fixed Staphylococcus aureus Cowan
(Sigma). One-half million PBMCs per well were placed
in 24-well cell culture plates (BD Biosciences, San Jose, CA)
containing 1 mL of this medium. As a negative control,
PBMCs were also placed into wells containing this culture
medium without mitogens. Plates were incubated at 37°C
in a 5% CO2 incubator. After 5 to 6 days, contents of culture
wells were collected and centrifuged. All stimulated or all
unstimulated culture supernatants from a given patient on a
given day of study were pooled together, mixed with a prote-
ase inhibitor cocktail,31 and frozen at −70°C for subsequent
use in ELISA assays as described previously.
Statistical analyses. We compared the magnitude of acute

to convalescent phase responses using the Wilcoxon Signed
Rank test. The Mann-Whitney U test was used to compare
between the immune responses to OSP and LPS or between
vaccinees and patients. We used Pearson correlation analysis
to check the correlation coefficient, and linear regression
to draw a line graph. All reported P values were two-tailed,
with a cutoff of P £ 0.05 considered a threshold for statistical
significance. Analysis and figure preparation were performed
using Graphpad Prism 5.0 (GraphPad Software, Inc., La Jolla,
CA) and SPSS 14 (SPSS Inc., Chicago, IL).

RESULTS

Comparison of IgA, IgG, and IgM antibody responses in
plasma to V. cholerae O1 OSP and LPS antigens in vaccinees
and patients. We administered two doses of oral cholera vac-
cine WC-rBS (Dukoral) separated by 2 weeks to 30 healthy
volunteers between October 2008 and June 2010 and followed
these individuals for a year.28 We found significant IgA, IgG,
and IgM antibody responses to Ogawa OSP and LPS in vacci-
nees, starting 3 days after the first dose of vaccine (Figure 1).
These responses remained significantly elevated compared
with baseline until 1 month after the second dose of vaccine
(Day 42; Figure 1A–C). When plasma IgA, IgG, and IgM

Figure 1. Mean normalized immunoglobulin A (IgA), IgG, and
IgM responses in plasma of vaccinees and patients to Ogawa OSPc:
BSA (OSP, O-specific polysaccharide) and lipopolysaccharide (LPS).
Asterisks indicate a statistically significant difference (P £ 0.05, two-
tailed) from baseline (Day 0 or Day 2) levels within a particular
antigen group and “#” indicates a statistically significant difference
(P £ 0.05) between similar days in vaccinees and patients.
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antibody responses to Ogawa OSP and LPS in vaccinees were
directly compared with those in adult patients infected with
V. cholerae O1 Ogawa, we found that the responses in vacci-
nees at comparable time points were significantly lower than
those following natural infection (Figure 1A–C). The anti-
body responses in plasma to OSP in vaccinees over 1 year
were correlated with responses to LPS on the same days
(IgA, 0.61, IgG, R = 0.60, IgM, 0.70, P < 0.01, respectively),
as we had found previously in adult patients with cholera.26

Figure 2. Correlation between vibriocidal antibody responses and
plasma immunoglobulin A (IgA), IgG, or IgM antibody responses
to OSPc:BSA (OSP) and lipopolysaccharide (LPS) in adult vaccinees.
The lines indicate the correlations between the different responses
to OSP and LPS, and the vibriocidal antibody response.

Figure 3. Antibody secreting cell (ASC) responses to Ogawa
OSPc:BSA (OSP, O-specific polysaccharide), lipopolysaccharide
(LPS), and CtxB in patients and vaccinees. Mean circulating antigen-
specific immunoglobulin A (IgA), IgG, and IgM ASC responses to
Ogawa OSP, LPS, and CtxB with standard error bars (Figure 3A–C,
respectively). Asterisks indicate a statistically significant difference
(P £ 0.05) from baseline (Day 0 or Day 2) and “#” indicates a statis-
tically significant difference (P £ 0.05) between similar days in vacci-
nees and patients.
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Comparison of plasma antibody responses to OSP and LPS
with vibriocidal antibody responses in vaccinees. We com-
pared vibriocidal antibody responses in vaccinees with plasma
IgM, IgG, and IgA responses to Ogawa OSP and LPS
(Figure 2A–C). We found that the IgM responses to Ogawa
OSP and LPS in vaccinees best correlated with vibriocidal
responses on the same day (R = 0.64, R = 0.60, P < 0.001,
respectively) (Figure 2C). Ogawa OSP and LPS responses in
the IgG isotype were less strongly correlated with vibriocidal
antibody responses (R = 0.50, R = 0.59, P < 0.001, respec-
tively) (Figure 2B). There was a fairly poor, although signifi-
cant, correlation between anti-OSP and anti-LPS responses
in the IgA isotype and vibriocidal responses (R = 0.37, R =
0.33, P < 0.001, respectively; Figure 2A).
Circulating IgA, IgG, and IgM antibody secreting cells after

vaccination or infection.We assessed IgA, IgG, and IgM ASC
responses to Ogawa OSP, LPS, and CtxB in peripheral blood
of 15 vaccinees at four time points: Day 0 before vaccination

(baseline), Day 7 after each vaccine dose (Day 7 and Day 21
after first dose of vaccine), and at Day 42 after the first vacci-
nation day (Figure 3A–C). The ASC assay quantifies the gut
associated lymphoid tissue-activated ASCs as they transiently
circulate in the blood before returning to mucosal effector
sites; this response therefore is considered to reflect a recent
mucosal exposure35,40 and may be used as a proxy measure for
mucosal immunity.41 We found the ASC responses to both
OSP and LPS in vaccinees were comparable, and peaked on
Day 7 after the first dose of vaccine, returning to baseline by
1 month after intake of the second dose. Notably, however,
the second dose of vaccine did not stimulate a similar ASC
response as the first dose of vaccine. In comparing ASC
responses after vaccination with those following infection,
the responses to OSP and to LPS were significantly higher
in the patients than in the vaccinees. Responses to CtxB
(which is present in high amounts in the oral vaccine) did not
differ significantly between infected patients and vaccinees.

Figure 4. Antigen-specific B-cell memory responses of immunoglobulin A (IgA), IgG, and IgM isotypes in cholera patients and vaccinees,
determined from enzyme-linked immunosorbent assay (ELISA) measurements of culture supernatant of memory B cells(MBCs). Asterisks
indicate a statistically significant difference (P £ 0.05) from baseline (Day 0 or Day 2) levels within a particular antigen group.
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Of note, neither patients nor vaccinees generated significant
IgM ASC specific for CtxB after infection or vaccination.26,33

Development of memory B-cell responses as assessed in
memory B-cell culture supernatants. Supernatants from MBC
cultures were available from 14 patients and 22 vaccinees at
Days 2, 30 (patients) or 42 (vaccinees), as well as on Days 90,
180, 270, and 360. Antigen-specific (OSP, LPS, and rCtxB)
ELISAs were performed on these supernatants for antigen-
specific IgA, IgG, and IgM responses. Although patients devel-
oped significantly elevated OSP-, LPS- and rCtxB-specific
memory B-cell responses in the IgA, IgG, and IgM isotypes on
Day 30 and Day 90 that waned by Day 180, these responses
were largely absent from vaccinees (Figure 4A–I). In vaccinees
within the first 90 days after immunization, only an anti-OSP
IgG response was detectable at Day 42 (30 days after the
second immunization).

DISCUSSION

This study characterizes immune response to the Ogawa
O-specific polysaccharide of LPS in adult recipients of an
oral killed cholera vaccine, and compares responses to those
that occur after natural infection in adult cholera patients
in Bangladesh. These results add to our understanding
of immunologic events that follow cholera disease or vacci-
nation.28,31,33,42,44

The vibriocidal response, a complement-dependent serum
bactericidal antibody response of patients who have previ-
ously had cholera, is an indirect marker of protection.45,46

Studies on cholera patients and vaccinees implicate cholera
LPS-specific immune responses as playing a role in mediating
protective immunity to cholera, and suggest that LPS, or an
antigenic component of LPS, i.e., OSP, might be an attractive
target for vaccine design.26,32,37,47,48 However, the analysis of
immune responses to V. cholerae LPS is complicated by the
heterogeneous nature of standard LPS preparations. In a
previous study, we used mass spectrometry to analyze a
V. cholerae O1 LPS preparation and found that the sample
contained over 600 V. cholerae proteins in addition to poly-
saccharide and lipid components.26 As the OSP of V. cholerae
LPS defines serogroup specificity, this polysaccharide may
contribute significantly to the observed and specific protec-
tion afforded by anti-LPS antibodies.
The vaccinees in our study showed very similar plasma IgG,

IgM, and IgA antibody responses to either OSP or LPS from
the homologous Ogawa serotype. The plasma antibody
responses to OSP and LPS increased significantly at convales-
cence compared with those at the acute phase, and strongly
correlated with each other for all three antibody isotypes over
the year of follow-up. These plasma antibody responses after
oral cholera vaccination also correlated well with the
vibriocidal antibody levels at comparable time points, partic-
ularly the IgM antibodies to OSP or LPS. We found a similar
trend after natural infection with V. cholerae26; the data sug-
gest that responses against LPS, and more specifically OSP,
may mediate the observed vibriocidal antibody responses.
In support of this, in a previous study we showed that the
vibriocidal response could be largely adsorbed away in a
concentration-dependent manner by addition of OSP.26

Immune responses at the gut surface play a critical role in
mediating protection from cholera, and previously infected
patients may have an anamnestic immune response mediated

by mucosal lymphocytes.28,37 Gut homing ASCs in the blood
shortly after infection are considered a marker of a subse-
quent mucosal response.20,37 In this study, we found that cir-
culating levels of ASCs specific for OSP and LPS in the IgG,
IgM, and IgA isotypes in vaccinees increased similarly after
7 days, and that these ASC responses then returned to base-
line levels by Day 42. Of note, there was no detectable ASC
response after administration of the second dose of WC-rBS,
suggesting a possible lack of mucosal boosting in this popula-
tion from a highly cholera-endemic area. The number of
ASCs specific to LPS and to CtxB was consistent with previ-
ous studies in vaccinees.20,26,32,33,36 However, the OSP- or
LPS-specific ASC responses seen following natural infection
were markedly higher than those in vaccinees (Figure 3).
The total number of MBC-derived ASCs can be detected

directly for a given isotype by ELISPOT at the end of 5–
6 days of in vitro culture.28,31,32,49 The supernatants of these
MBC cultures can be used to assess both the number of ASCs
produced during in vitro culture and the amount of isotype-
specific antibodies secreted by these ASCs.33 In previous
studies, our group has shown antibodies specific to LPS and
CtxB in supernatants of MBC cultures up to 3 months after
infection.33 In this current study, we analyzed MBC responses
against OSP, LPS, and CtxB in culture supernatants from
both patients and vaccinees during 1 year of follow-up.
We found evidence of MBCs to OSP, LPS and CtxB out to
3 months after infection however little evidence of develop-
ment of MBC responses after vaccination. In a previous study,
we had found detectable memory B-cells by ELISPOT assay
out to one year after infection by V. cholerae.28,32 Our results
suggest that the MBC assay using culture supernatant may be
less sensitive than assessing the MBC response by ELISPOT,
perhaps caused by the infrequency of antigen-specific MBCs
in in vitro culture and the resultant low levels of antibodies in
culture supernatants. This may explain the difference in our
previous study showing evidence of antigen-specific MBCs
in the circulation out to 1 year after infection using the
ELISPOT assay, but out to just 3 months after infection when
using an ELISA of culture supernatants of MBCs. However,
the most important observation in this current study is that
vaccinees produce less detectable MBC responses to major
cholera antigens (LPS, OSP, and CtxB), and reduced magni-
tudes of IgA, IgG, and IgM plasma antibody and ASC
responses compared with responses in patients recovering
from wild-type cholera.
Our study has limitations. We focused our analysis on anti-

Ogawa responses because that was the predominant serotype
of V. choleraeO1 in Dhaka at the time of the study. However,
our earlier observations suggest similar responses to OSP and
LPS after both Ogawa and Inaba wild-type infection,26 there-
fore we anticipate that our results would be similar if done at
a time of predominantly circulating Inaba V. cholerae infec-
tion. Second, our study focused on vaccinees who received
WC-rBS (Dukoral), and a newer generation oral cholera vac-
cine, Shanchol, has been WHO-prequalified and is now part
of the WHO vaccine stockpile portfolio. Shanchol is bivalent
for V. cholerae O1 and O139 and is not supplemented by
rCtxB. Preliminary reports suggest that protection against
cholera after vaccination with Shanchol may be longer in
duration than that afforded by immunization with Dukoral
(WC-rBS). We however, do not have results of the MBC
responses in participants given Shanchol and are not able to
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compare the longevity of responses with that seen in response
to Dukoral. Third, our vaccinees whom we followed up for
1 year, did not have plasma or MBC culture supernatant at
Day 7 or Day 21 similar to that of Day 7 in our patient
group.28 Our study also did not include assessment of memory
B responses by the more sensitive ELISPOT assay. Despite
these limitations, our findings that there is a markedly lower
response targeting OSP, especially of mucosal and MBC
immune responses, after immunization with an oral killed
cholera vaccine compared with natural infection, may help
explain differences in protective immunity produced by vacci-
nation compared with natural infection, and could lead to
development of improved cholera vaccination strategies.
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