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Abstract

A large part of the variation in cognitive ability is known to be due to genetic factors. Researchers

have tried to identify modifiers that influence the heritability of cognitive ability, indicating a

genotype by environment interaction (GxE). To date, such modifiers include measured variables

like income and socioeconomic status. The present paper focuses on GxE in cognitive ability

where the environmental variable is an unmeasured environmental factor that is uncorrelated in

family members. We examined this type of GxE in the GHCA-database (Haworth et al., 2009),

which comprises data of 14 different cognition studies from 4 different countries including

participants of different ages. Results indicate that for younger participants (4–13 years), the

strength of E decreases across the additive genetic factor A, but that this effect reverts for older

participants (17–34 years). However, a clear and general conclusion about the presence of a

genuine GxE is hampered by differences between the individual studies with respect to

environmental and genetic influences on cognitive ability.
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Genetic and environmental influences on individual differences in cognitive ability have

enjoyed extensive investigation (see Plomin & Spinath, 2004, for an overview). Using

family-based designs, in which phenotypic variance is decomposed into additive genetic,

unique environmental, and common environmental effects shared by family members
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(denoted A, E, and C, respectively), heritability estimates have been reported between

roughly .5 and .7 for adolescents and adults (see McGue, 1997). For young children the

heritability is somewhat lower than .5 (see Haworth et al., 2010), and for infants as young as

10 months, the heritability is appreciably lower (Tucker-Drob, Rhemtulla, Harden,

Turkheimer, & Fask, 2011).

Having established that, at least beyond childhood, genetic factors explain a substantial part

of the phenotypic variance in cognitive abilities, the question arises whether the heritability

of cognitive ability is constant across the range of environmental effects. We consider

variation in heritability as a function of an environmental variable to be a potential

manifestation of Genotype by Environment interaction (GxE; Eaves, Last, Martin, & Jinks,

1977). Measures that have shown to influence or moderate the heritability of cognitive

ability include parental income (Harden, 2007), socioeconomic status (Tucker-Drob et al.,

2011; Turkheimer, Haley, Waldron, D’Onofrio, & Gottesman, 2003), parental education

(Grant et al., 2010; Rowe, Jacobson, & Van den Oord, 1999; Van der Sluis, Willemsen, de

Geus, Boomsma, & Posthuma, 2008), and educational attainment (Johnson, Deary &

Iacono, 2009). It is clear that the moderators in these studies are not strict environmental

measures, although they may have a strong influence on the effective environment (Plomin

& Daniels, 1987).

The present paper focuses on the detection of genotype by environment interaction in

cognitive ability where the environment variable is unmeasured (Jinks & Fulker, 1970; van

der Sluis, Dolan, Neale, Boomsma, & Posthuma, 2006; Molenaar, van der Sluis, Boomsma,

& Dolan, 2012). Testing for genotype by unmeasured environment is important for a

number of reasons, discussed below.

Screening

GxE can be studied in phenotypic variables while relevant environmental variables – i.e.,

variables that interact with genotype - are unknown or data on these variables are lacking.

This opens the possibility to screen phenotypic variables for GxE, in the absence of any

explicit theory identifying potential environmental moderators (see Molenaar et al., 2012).

Once GxE is detected, one could investigate which environmental variables contribute to

this interaction.

GWAS

Testing for gene by unmeasured environment is of interest in the context of Genome-Wide

Association Studies (GWAS). In GWAS, GxE interaction is usually not modeled, although

the presence of unmodeled GxE is hypothesized to affect the power to detect genetic

variants. Several authors have suggested that the failure of GWAS to detect associations

between phenotypes and common genetic variants (i.e., the ‘missing’ or ‘hidden’ heritability

problem) might at least partly be due to unmodeled GxE (e.g. Eichler et al., 2010; Maher,

2008; Manolio et al., 2009). For those phenotypes that display GxE, the identification of the

environmental factors causing the GxE would be of biological interest, and could facilitate

the detection of associated genetic variants in GWAS.
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Ability differentiation

Genotype by unmeasured environment interactions are relevant to substantive hypotheses.

Most notably, Molenaar et al. (2012) discussed how the ability differentiation hypothesis

(Spearman, 1927) can be investigated by testing for a GxE interaction on IQ test scores in

the ACE-model. Ability differentiation concerns the hypothesis that correlations among IQ

subtests scores decrease for increasing levels of the underlying general intelligence factor, g

(Jensen, 1998; Spearman, 1927). Ability differentiation has been operationalized as a non-

linear relation between g and the subtest scores (Tucker-Drob, 2009), a non-normal g-

distribution (Molenaar, Dolan, & van der Maas, 2011), heteroscedastic residual variances

(Hessen & Dolan, 2009), or smaller g variance at higher g levels (Reynolds, Keith, &

Beretvas, 2010). GxE represents another important avenue to the conceptualization and

analysis of ability differentiation. The observation that g is substantially heritable (e.g.,

McGue, 1997) may imply that the additive genetic factor, A, underlying g is a relatively

weaker source of individual differences as the level of g increases. This implication may

result if the unique environmental variance is greater at higher levels of A, i.e., an

interaction between A and E.

Tucker-Drob, Harden, & Turkheimer (2009) related ability differentiation to gene by

observed environment interaction. Specifically, they showed that when the environmental

measure is correlated with g (as is the case with SES for instance), ability differentiation can

result in spurious interactions between genotype and the observed environment measures.

Other research related to ability differentiation and GxE concerns studies into the

differential heritability of IQ (Detterman, 1990; Sundett, Eilertsen, Tambs, & Magnus, 1994;

Thompson, Detterman, & Plomin, 1993; Brant et al., 2012), which addressed the question

whether A is an equally strong source of individual differences across all levels of IQ (i.e.,

AxIQ interaction). Here, we follow Jinks and Fulker (1970) and address the question

whether the environmental influences on IQ are an equally strong source of individual

differences across all levels of A.

In the present article, we test for a genotype by unmeasured environment interaction on

cognitive ability in a large dataset on cognitive ability from the GHCA consortium (Genetics

of High Cognitive Abilities; Haworth et al., 2009). These data comprise IQ scores from 14

studies conducted in 4 different countries: US, UK, Australia, and the Netherlands. We

analyzed the GHCA database, taking into account the variability of the IQ measures within

the individual studies. Note that the same data has also been analyzed by Haworth et al.

(2010). In this prior study, a linear increase of heritability was found across age. In the

present study, we test for GxE in these data using the method proposed by Molenaar et al.

(2012). This method is related to the test of Jinks and Fulker (1970, see above; see also van

der Sluis et al., 2006), but has the advantage of including data of both MZ and DZ twins

which increases power due to the separation of common and unique environmental factors.

In the present paper we first present the GxE-model and describe the data in the GHCA

database, and then present and discuss the results of fitting the GxE model to these data.
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The Heteroscedastic ACE-model

Let Yij denote the phenotypic score of the j-th twin (j = 1, 2) of the i-th twin pair (i = 1, …,

N). In the standard ACE-model, Yij is described by the following linear equation:

(1)

where ν is an intercept. The additive genetic factor (Aij), the common environmental factor

(Cij), and the unique environmental factor (Eij) are assumed to follow a normal distribution

with zero-means and variances σA
2, σC

2, and σE
2 respectively. In addition, it holds that

cor(Ci1, Ci2) = 1, cor(Ei1, Ei2) = 0, cor(Ai1, Ai2) = 1, in MZ twins, and cor(Ai1, Ai2) = 0.5, in

DZ twins. Under the assumption that Aij, Cij, and Eij are uncorrelated, the phenotypic

variance σY
2 can be decomposed as follows:

(2)

Within the ACE-model, Molenaar et al. (2012) distinguished two possible GxE interactions,

i.e., the interaction between A and C, and the interaction between A and E. To model these

two interactions, we condition on A, i.e.,

(3)

In Equation (3), GxE can be modeled by allowing the variance of C and E to depend on the

level of A. For instance, the variance of E can be decreasing across levels of A, which would

mean that the heritability effectively increases. To this end, we specify a function to relate

σE
2 and σC

2 to A. Van der Sluis et al. (2006) and Hessen & Dolan (2009) proposed to use

the exponential function, as the range of this function is non-negative, which is desirable for

a variance parameter. Thus, the ACE-model can be extended to include GxE in the

following way:

(4)

where γ0 and β0 are baseline parameters which account for the part of the variance of C and

E that does not depend on A, while γ1 and β1 are linear interaction parameters, which model

the possible dependency of respectively the variance of C and E on A. We refer to this

model as the heteroscedastic ACE model, as the C and E factor are heteroscedastic across A.

From now, we use the term ‘GxE’ to refer to the general concept of ‘genotype-by-

environment interaction’ and we use the term AxC or AxE to refer to a specific

operationalization within the heteroscedastic ACE model. Thus, GxE can be established by

testing β1 to be significantly different from 0 (indicating an AxE interaction) and/or by

testing γ1 to be significantly different from 0 (indicating an AxC interaction).

In the heteroscedastic ACE-model, we cannot simply use σA
2 as an estimate for the

heritability as this parameter is not appropriately standardized. In the presence of GxE

effects in the ACE model, σA
2 needs to be standardized by using
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The two terms involving exp(.) in the denominator concern the marginal variance of C and E

respectively (see Hessen & Dolan, 2009). If γ1 and β1 are 0 (i.e., no AxC and AxE

interactions), the formula for h2 reduces to the traditional formula for heritability, σA
2/(σA

2

+ σC
2+ σE

2). It can therefore be seen that h2 and the traditional heritability estimate diverge

when the absolute value of γ1 and/or β1 increases.

The tests of β1 and γ1 discussed above (Equation 4) concern generalized linear GxE

interactions.1 It is possible to test for generalized curvilinear interactions by extending

Equation (4) into

(5)

Here, β2 and γ2 are curvilinear interaction parameters that can be tested on significance

similarly as discussed above.

The statistical properties of the model in Equation (4) are well documented (Jinks & Fulker,

1970; van der Sluis et al., 2006; Molenaar et al., 2012). It has been shown that parameter

recovery is satisfactory, that both AxE and AxC interactions can be estimated together, and

that power to detect AxE is generally good. The detection of AxC interactions, however,

requires large samples (Molenaar et al., 2012).2 It should be noted that the approach in

Equation (4) does not take into account the possibility that C and E interact (i.e., CxE).

Molenaar et al. showed that the presence of CxE does not appreciably affect tests of AxC.

However, if C is the main source of variation, the detection of AxE is affected by the

presence of CxE (i.e., unmodeled CxE may be incorrectly detected as AxE). Nevertheless,

we found that, when A is the main source of variation, the presence of CxE hardly affects

the detection of AxE. As A can be considered the predominant source of variation in IQ data

(at least from childhood onwards), the presence of CxE in the data is not expected to affect

tests on GxE using the present method (see Molenaar et al., 2012). We note, however, that

there is empirical support for CxE in cognitive ability (Kremen et al., 2005; Hanscomb et al.,

2011). Thus, although presence of CxE does not appreciably affect tests on GxE, heritability

estimates might be affected. In a small simulation study based largely on the setting of the

simulation in the Molenaar et al paper (results are available upon request), we found that the

presence of CxE did not affect heritability estimates (percentage bias were close to 0). In

addition, we found a minor effect on the estimate of σC
2, i.e., percentages bias of 3 to 8

percent for increasing effect size of the CxE effect. We believe that such biases are within

1The interactions are not purely linear as we use exponential functions in Equation (4). However the interactions are linear in the
logarithm of the variance of E and C, we therefore refer to the interactions as generalized linear interactions.
2The exact sample size needed for sufficient power to detect AxC interactions depends on a number of aspects (e.g., strength of A,
effect size of the AxC interaction, and the effect sizes of other interactions in the data). In a ‘basic setting’ (A is the predominant
source of variation, AxC effect size is moderate, and there are no other interactions in the data) a total sample size of 4000 is needed
(2000 MZ and 2000 DZ twins) for a power of 0.8.

Molenaar et al. Page 5

Behav Genet. Author manuscript; available in PMC 2014 May 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the acceptable range given the purposes of the present undertaking. We therefore conclude

that the presence of unmodeled CxE will not importantly affect the results as reported

below.

The GxE model can be fitted to data of both MZ and DZ twins using marginal maximum

likelihood (MML; Bock & Aitkin, 1981). In this procedure, the observed data, conditional

on A, are assumed to follow a normal distribution. Note that unconditionally, the phenotypic

data may be non-normal, as the presence of GxE will generally result in non-normality

(Eaves et al., 1977). In principle, a marginal test on normality could be conducted on

singleton data to test for GxE (e.g., the Shapiro-Wilks test on normality, Shapiro & Wilks,

1965). However, as the present tests on non-normality are more specific, power to detect

non-normality is larger as compared to the marginal tests (see Molenaar, Dolan, & Verhelst,

2009). In addition, to be able to distinguish AxC from AxE, singleton data is not sufficient

and twin data is required. The model from Equation (5) is fitted using the freely available

software package Mx (Neale, Boker, Xie, & Maes, 2002). As both AxC and AxE can be

combined in a single model, the free parameters to be estimated are: σA
2, β0, β1, β2, γ0, γ1

and γ2. Example script are available on the website of the first author.

Application to GHCA data

Description of the data

The database comprises univariate IQ scores of 14 studies conducted in four countries: US

(Colorado, 3 studies; Minnesota, 2 studies; Ohio, 1 study), UK (1 study), Australia (1 study),

and the Netherlands (6 studies). Aggregating all of these data yields a total of 10897 twin

pairs (4911 MZ pairs and 5986 DZ pairs). The age of the participants varies from 4 to 71.

For each twin in the database, an IQ measure is available. Across the different studies,

different test batteries have been used to obtain IQ score. For instance, in one of the US

studies, the short form of the Stanfort-Binet Intelligence Scale was used; in the UK study, 3

subtests of the WISC-III were administered together with Raven’s progressive matrices; and

in another study from the US, the full WISC-III was used. We refer to Haworth, et al. (2009)

and the references therein, for a detailed overview of the IQ test batteries used in the

different studies.

Analysis

As the aggregated data are heterogeneous with respect to age, we follow Haworth et al.

(2010), and perform the analysis within more age-homogenous subgroups. Haworth et al.

considered 3 age categories: 4–10, 11–13, and 14–34. All participants above age 34 are

omitted as there were too few participants in this age range to construct a reasonably

homogenous subgroup with respect to age. In our analysis, we modified the age categories

of Haworth et al., because we considered it possible that the nature of GxE differs between

adolescents (who presumably are still in school and live at home) and young adults.

Specifically, we created the categories: 4–10, 11–13, 14–16, and 17–34. We note that the

general pattern of results, as presented below, does not depend on the exact age categories

that are used: results are generally the same for the Haworth et al. age categories. However,

our categorization does provide a clearer picture of how GxE changes across age. See Table
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1 for the sample sizes within the age groups of both Haworth et al. and our age

categorization.

As can be seen in Table 1, in our alternative categorization, the third category of Haworth et

al. (2010) is split into one relatively homogenous age group (14–16), and an additional

group (age 17–34). We also considered a second alternative in which this additional group

was made more homogenous (i.e., participants of ages 17–20), but this categorization did

not alter the results.

The aggregated data are potentially heterogeneous as they originated from 14 different

studies. To establish whether the results within the age groups hold across the different

studies, we conduct the analyses on both the aggregated data and on the data of each of the

14 individual studies. Table 2 provides the distribution of participants over age categories

and studies. Some studies include only participants in one age category (e.g., Netherlands

#1), while other studies include participants in multiple age categories (e.g., Colorado #1).

In some cases, a study contained too few participants in a given age category to enable

model fitting on this subsample (e.g., Netherlands #4 only contains 13 MZ twins and 14 DZ

twins between 14 and 16 years old). Therefore, for our analyses, we only select 17

subsamples that we considered large enough to provide stable parameter estimates. These

samples are shown in boldface print in Table 2. Note that we omitted Netherlands #5

because we considered the total sample size to be too small, and we omitted Netherlands #6,

as this study only contains participants of age 40–70. In the analysis on the aggregated data

however, we do include Netherlands #5. The data are standardized within each study by the

original authors (Haworth et al., 2009). We additionally standardized the data within each

age group. The resulting data thus are standardized in each age × study cell of the design.

Results

MZ and DZ twin correlations of the IQ measures in the 17 subsamples are presented in

Table 3. In the Table the skewness, kurtosis, and the Shapiro-Wilks test of normality are

also given as non-normality could be an indication of GxE. As can be seen, normality is

rejected in the first two aggregated age categories. As indicated by the skewness, the IQ

distributions have a heavier lower tail (negatively skewed), suggesting that the variance of E

and or C might be decreasing across A. However, these are just indications; more elaborate

tests are possible with the heteroscedastic ACE model. We present these results next.

Table 4 gives the parameter estimates of the heteroscedastic ACE model with linear and

curvilinear effects for the AxE and AxC interactions on the aggregated data. In the

aggregated data, we investigated within each age group, whether the linear and quadratic

effects improved model fit. These results are in Table 5. As can be seen, the model with a

linear AxE effect only is favored by the likelihood ratio test (LRT), AIC and BIC in all age

groups except age group 14–16. In this age group, results are mixed as the AIC favors the

full model and the BIC indicates that none of the GxE effects (i.e., AxE and AxC) are

significant. As the latter model is more parsimonious, we accept that in age group 14–16, no

interactions are present. As none of the AxC interactions were significant and at most linear

AxE interactions were found, we focused on the results of the ACE model with a linear AxE

interaction in all age groups for the remaining analyses. See Table 6 for the heritability and
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standardized parameter estimates within each age group for each individual study and the

aggregated data. As can be seen, in most cases h2 is close to σA
2 indicating that heritability

as operationalized in the ACE model (i.e., as the standardized estimate of σA
2) is only

mildly affected by the AxE.3

In Figure 1, we plotted the heritability estimates within each of the 17 subsamples against

the average age of the subsamples. The plot is consistent with the findings of Haworth et al.

(2010) in this dataset, i.e., that heritability increases monotonically with age. As can be seen

in the figure, there are substantial differences in the heritability estimates across studies.

Some of these differences may be attributed to sample size (i.e., the small studies of

approximately the same average age show differences due to sampling fluctuations).

However, results of some of the larger studies also show substantial differences, even

though the average age is approximately the same over the studies. We return to this point

below.

The AxE interactions as obtained in each study and in the aggregated data are depicted in

Figure 2 for each age group. From the results of the aggregated data in Figure 2a and Figure

2b, it appears that in age categories 4–10 and 11–13, the variance of E is decreasing across

levels of A. The decrease is significant at α=.05, according to both the likelihood ratio test

and the 95% confidence interval of β1 (see Table 6).4 Within the individual studies some

differences in the form of the GxE are apparent, but individual study results tend to follow

the trend from the aggregated data. Main departures are Colorado #1 in age group 4–10, and

Minnesota #1 in age group 11–13. Both studies show a significant effect in the opposite

direction as compared to the effect in the aggregated data, i.e., the variance of E increases

with A. Other studies show no effect or an effect consistent with the aggregated result.

In age category 14–16, no effect is observed in the aggregated data according to the

likelihood ratio test and the confidence interval of β1 (see Table 6). Within the individual

studies some differences in the form of the AxE are apparent, but results tend to follow the

results from the aggregated data. Some studies show an effect in the opposite direction (i.e.,

Colorado #1, Ohio, Colorado #2, and Minnesota #1). However, none of these effects are

significant at α = 0.05, see Figure 2c and Table 6. In age category 17–34, Figure 2d, the

aggregated data show an increase of σE
2 across A. This effect is significant according to the

likelihood ratio test and the confidence interval of β1 (see Table 6). The effect in the

aggregated data is reproduced in the Minnesota #3 study. However, the Colorado #3 study

shows an effect in the opposite direction.

If we compare the results from Table 6 to those from Table 3, we can conclude that

generally, GxE is present in the data (Table 6) if normality is rejected (Table 3). However,

for some cases this does not hold. For instance, the Colorado #3 study in age group 14–16 is

not associated with a GxE interaction, but normality is rejected. The opposite is also

observed, e.g., in the Colorado #3 study GxE is present but normality is not rejected.

3In the absence of both AxE and AxC (i.e., β1=0 and γ1=0), h2and standardized σA2 are equivalent, see the formula for h2 above.
4We considered 95% one-at-a-time confidence intervals as an exploratory tool to see which parameters are significantly different from
0 for α=0.05. We also conducted likelihood ratio tests on β1 which can be used to provide a stricter test on the significance of this
parameter for any α, see Table 4.
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Conclusion on aggregated data

In the aggregated data, we observed that for participants between the age of 4–10 and 11–13,

the influence of the unique environmental factor, E, decreases with increasing levels of the

additive genetic factor, A. In participants between the age of 14 and 16, no effect was

detected. In the participants between 17 and 34, the influence of factor E increased with

increasing levels of A. Taken at face value, this pattern of results suggests that the direction

of the AxE on IQ reverts during adolescence and young adulthood. However, as we discuss

next, given the differences in the results between the samples, this conclusion should be

drawn with care.

Different results across studies—The pattern of results as presented in Table 6 reveals

substantial differences between the individual studies.5 First, estimates of the additive

genetic effects, σA
2, within each age group vary considerably over the studies. For age 4–10,

11–13, 14–16, and 17–34, estimates range from .32 to .65, from .49 to .64; from .54 to .79;

and from .53 to .85, respectively. Part of these differences can be explained by the small

sample size of some of the studies, which renders the estimate of σA
2 subject to large

sampling error. Still, some of the larger studies within the same age group show substantial

differences in the estimates of σA
2. For instance, in the age category of 4–10, the estimate

is .32 in UK study (N = 1108), but .65 in the Colorado #1 study (N = 925). In addition to the

differences with respect to σA
2, we see some differences with respect to the effect of the

common environment, σC
2. For age 4–10, 11–13, 14–16, and 17–34, estimates of σC

2 range

from 0.19 to 0.34; from 0.16 to 0.27; from 0.00 to 0.24; and from 0.06 to 0.31, respectively.

Again, some of these differences may be due to sampling error, yet, large studies do show

variable results, for instance, the estimate of σC
2 is 0.34 in the UK study, and 0.19 in the

Colorado #1 study in the age range 4–10.

Finally, we see similar variability with respect to the estimates of the AxE effect, β1. Within

age groups, estimates vary widely and can even be of opposite sign. Large studies also show

substantial differences, e.g., within age group 17–34, the β1 of the Colorado #3 study equals

−0.38, while the Minnesota #2 study is associated with an opposite effect (β1 = 0.53).

Differences in additive genetic and shared environmental influences

Given the variability we observed with respect to estimates of σA
2 and σC

2, even in the

larger studies, the question arises how these differences come about. Here, we discuss

possible causes.

First, studies differ substantial in the IQ measures that were used. Some studies used full test

batteries (Colorado #1, Colorado #2, Netherlands #3, and Netherlands #4); others used only

2 subtests (Colorado #3), 4 subtests (Ohio, UK, Minnesota #1, Minnesota #2), 5 subtests

(Australia), or 6 subtests (Netherlands #1 and Netherlands #2). These psychometric

5Our implementation of AxC involves fitting the model subject to var(Cj) = exp(γ0+γ1Aj) where j = 1,2, with cov(C1,C2) =
sqrt(exp(γ0 + γ1 A1)) × sqrt(exp(γ0 + γ1A2)), see Molenaar, et al (2012). This can be interpreted as a scalar effect of Aj on the
variance of C. In the light of comments by an anonymous reviewer, we also fitted the AT-model with AxT interaction, where ‘T’
denotes the total environment, i.e., T = C + E, as proposed by Carey (2009). Our results in terms of the interactions and their
heterogeneity over samples do not depend on our specific modeling choice. That is, in the AT analyses, the direction of the effects in
Table 6 were replicated for all studies. These additional results are available from www.dylanmolenaar.nl
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differences result in variation in the exact composition of the IQ measure. For instance,

some studies rely only on the subtest from the Verbal Comprehension and Perceptual

Organization domain (e.g., the Minnesota studies), while in other studies (e.g., Colorado #1

and #2 studies) measures are included from all major cognitive domains (Working Memory,

Perceptual Speed, etc). This variation is important as genetic, unique and common

environmental influences and GxE may differ across specific cognitive abilities (e.g., Finkel,

Pedersen, McGue, & McClearn, 1995).

Another source of differences in results between the individual studies are the possible

differences on background variables which are known to be related to heritability, e.g.,

parental income, educational attainment, or SES (Turkheimer et al., 2003). First,

representativity of the samples may differ across countries. For instance, in the Australia

study, twins are mainly from the entire Brisbane area while in the Minnesota studies, all

twins lived close to the laboratory were testing took place. Thus the Minnesota sample is

from a specific region (i.e., where the laboratory was located), while in the Brisbane sample,

participants are from much more varied regions. In addition, there are differences between

the individual studies in the way in which participants were recruited. Some studies relied on

birth records (e.g.., Colorado #2), others relied on primary and secondary schools (e.g.,

Australia) or media advertisements (e.g., Ohio). Such variability in recruitment might have

resulted in differences on background variables across countries.

Differences in genotype by environment interaction across studies

The differences in the estimates of the AxE effect, β1, are such that they defy substantive

explanation. From Table 6, it appears that the β1 estimates vary, with opposite effects across

studies within the same age group. For instance, in age group 14–16, the Colorado #2 study

shows a significant effect with β1 = 0.57, while the Australia study is associated with a

significant effect in the opposite direction, β1 = −0.24. Similarly, in age category 17–34, two

opposite yet significant effects are observed: Colorado #3 with β1 = −0.38 and Minnesota #2

with β1 = 0.53. Such differences across studies render substantive conclusion in terms of

genuine genotype-by-environment interaction difficult. Whether the AxE effects on the

aggregated data can be interpreted substantively remains an open question. We discuss this

further below.

Discussion

In this study we used a heteroscedastic ACE model to investigate the presence of GxE in

cognitive ability in 14 different studies conducted in 4 countries covering 4 different age

groups.

Similar to the standard ACE model, the heteroscedastic ACE model assumes that A, C, and

E are uncorrelated and the question arises whether violations of this assumption affect

results on GxE (i.e., tests on AxC and/or AxE). In the Molenaar et al. (2012) study, we

showed that a linear correlation between A and E due to shared genetic effects between the

phenotype and a measure of E did result in spurious GxE. However, it remains to be

investigated whether a direct correlation between A and E influences tests on GxE. For

instance, it is possible that AxE as operationalized in the heteroscedastic ACE model, could
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arise due to difference in the A–E or A–C correlation across environments or genotypes.

This would imply a nonlinear relation between A and E or A and C which can possibly

influence the results concerning AxE and AxC respectively. This is an interesting topic for

further research.

In the present study, it appeared that results on the aggregated data are difficult to interpret

in terms of a genuine GxE effect because results differed considerably with respect to

presence, as well as direction of the GxE effect, across countries and ages. The possibility

that differences in measurement instruments across countries caused artificial GxE in

different directions cannot be ruled out (see Eaves et al., 1977). We would have been more

confident about the genuineness and interpretation of the GxE results on the aggregated data

if we had observed consistent effects across countries, studies, and age groups.6

Representativeness of the samples analyzed in a GxE analysis is another important issue. As

mentioned by Turkheimer et al. (2003) and Hanscombe et al. (2012) unrepresentativeness

can affect GxE results if the sample under consideration differs from the population on

important background variables. For instance, it has been argued that the direction of GxE

may be different at the extremes of SES (Scarr, 1992), suggesting that GxE results can

diverge across samples that differ with respect to SES. Another problem with

unrepresentative samples is that the unrepresentativeness itself may be an spurious source of

non-normality (e.g., by oversampling either extreme of the IQ distribution), which in turn

may result in the detection of spurious GxE.

Given its relative statistical and substantive importance, it is remarkable to see that the

detection of GxE in general, and genotype by unmeasured environment interactions in

particular, is a challenging task (see Eaves, et al., 1977; Eaves, 2006). A main problem is

that measurement issues such as floor or ceiling effects, and poor scaling may give rise to

spurious GxE. The question rises how we may overcome these problems. First, univariate

applications, as in this paper, are particularly vulnerable to scale problems as the unique

environment factor E in an ACE decomposition includes measurement error (Turkheimer &

Waldron, 2000; Loehlin & Nichols, 1976). As a result, heteroscedastic measurement error

due to floor, ceiling, and poor scaling effects can give rise to GxE (see also Tucker-Drob et

al., 2009). A possible solution to this problem is to use multiple measures of the same

phenotypic construct (e.g., multiple subtests scores of a given IQ domain). Given multiple

measures, measurement error can be separated from the E component in the common-

pathway model (McArdle and Goldstein, 1984; see also Martin and Eaves, 1977). To this

end, a measurement model needs to be specified, linking the observed phenotypic measures

to the latent phenotypic construct. In the measurement model, residuals may be

heteroscedastic to accommodate poor scaling effects. GxE can then be tested at the level of

the latent phenotype, in a similar way as above. Results pertaining to GxE at this level can

then be more confidently interpreted in terms of a true GxE effect, as all measurement

problems are captured in the residuals (Molenaar et al., 2012).

6Note that in such a situation, in principle, one still should be careful as the same artificial scale effects could have been replicated
across countries (see Eaves, 2006). However, as –in this study- different instruments were used across countries, we think that this
would not have been the case.
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Another possible solution is to test for GxE on the phenotypic item level instead of on test or

subtest level. Using the appropriate measurement models, e.g., a Rasch model (Rasch 1960)

or a 2-parameter model (Birnbaum 1968), each answer category of the item is modeled

explicitly. As a result, floor, ceiling, and poor scaling effects cannot give rise to spurious

GxE. Tests for GxE on item level are readily available in the case of a measured

environmental variable, see Medland, Neale, Eaves, & Neale (2009), and in case of an

unobserved environment (the methodology proposed by Molenaar, Dolan, & De Boeck,

2012, could be used).

Taking all together, using the heteroscedastic ACE model we did not find a consistent

pattern of results between age groups, datasets, and countries. We think that these results are

a clear illustration of the profound scale issues that make investigations on GxE a

challenging undertaking. However, we hope to have touched on some promising

possibilities above, to address these scale issues in future research.
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Figure 1.
Heritability (h2), as estimated in the 17 samples from the 14 individual studies, plotted

against the average age of the sample. Sizes of the dots are proportional to the sample size of

the corresponding sample. Both the regression line and correlation coefficient take the

differences in sample size into account.

Molenaar et al. Page 15

Behav Genet. Author manuscript; available in PMC 2014 May 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2.
Variance of E (σE

2) as a function of A within each age group. Dashed lines represent the

results of the individual studies; the solid bold line represents the results of the aggregated

data.
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