
A Random Forest Based Risk Model for Reliable and
Accurate Prediction of Receipt of Transfusion in Patients
Undergoing Percutaneous Coronary Intervention
Hitinder S. Gurm1*, Judith Kooiman2, Thomas LaLonde3, Cindy Grines4, David Share5, Milan Seth1

1 Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan, United States of America, 2 Department of

Thrombosis and Hemostasis and Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands, 3 Department of Internal Medicine, St John

Providence Health System, Detroit, Michigan, United States of America, 4 Department of Internal Medicine, Detroit Medical Center, Detroit, Michigan, United States of

America, 5 Blue Cross Blue Shield of Michigan, Detroit, Michigan, United States of America

Abstract

Background: Transfusion is a common complication of Percutaneous Coronary Intervention (PCI) and is associated with
adverse short and long term outcomes. There is no risk model for identifying patients most likely to receive transfusion after
PCI. The objective of our study was to develop and validate a tool for predicting receipt of blood transfusion in patients
undergoing contemporary PCI.

Methods: Random forest models were developed utilizing 45 pre-procedural clinical and laboratory variables to estimate
the receipt of transfusion in patients undergoing PCI. The most influential variables were selected for inclusion in an
abbreviated model. Model performance estimating transfusion was evaluated in an independent validation dataset using
area under the ROC curve (AUC), with net reclassification improvement (NRI) used to compare full and reduced model
prediction after grouping in low, intermediate, and high risk categories. The impact of procedural anticoagulation on
observed versus predicted transfusion rates were assessed for the different risk categories.

Results: Our study cohort was comprised of 103,294 PCI procedures performed at 46 hospitals between July 2009 through
December 2012 in Michigan of which 72,328 (70%) were randomly selected for training the models, and 30,966 (30%) for
validation. The models demonstrated excellent calibration and discrimination (AUC: full model = 0.888 (95% CI 0.877–0.899),
reduced model AUC = 0.880 (95% CI, 0.868–0.892), p for difference 0.003, NRI = 2.77%, p = 0.007). Procedural anticoagulation
and radial access significantly influenced transfusion rates in the intermediate and high risk patients but no clinically
relevant impact was noted in low risk patients, who made up 70% of the total cohort.

Conclusions: The risk of transfusion among patients undergoing PCI can be reliably calculated using a novel easy to use
computational tool (https://bmc2.org/calculators/transfusion). This risk prediction algorithm may prove useful for both bed
side clinical decision making and risk adjustment for assessment of quality.
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Introduction

Bleeding and transfusion after PCI have been associated with

increased morbidity, short term and long term mortality and

increased health care cost[1,2,3,4]. Although there is considerable

debate on the causal versus casual nature of the relation between

bleeding and mortality, there is general consensus that bleeding is

a negative outcome following PCI and is best avoided[5].

Assessment of transfusion after PCI as a quality measure is more

complex since blood transfusion is clearly necessary in some

patients, and occasionally may even be life-saving, whereas it may

be avoidable in others[2]. Transfusion has been associated with

several adverse outcomes and is associated with worsened short

and long term survival in patients with acute coronary syndrome

and following coronary revascularization[6,7,8]. There is increas-

ing evidence that restrictive blood transfusion policies may be

beneficial in patients with cardiac disease and there is increasing

focus on transfusion as a quality improvement objective.

Considerable variation in transfusion rates have been identified

across institutions and it remains unclear if this is driven by

variations in case mix and/or practice[9]. Lack of a validated

model to predict likelihood of transfusion serves as an impediment

to benchmarking and guiding quality improvement. Further, such

a model, if available could help guide individualized care and

guide therapeutic strategies to reduce transfusion in patients who

are most at risk.
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The widespread use of computers in medical care has opened

up the possibility of bed side application of more complex tools

that leverage developments in statistical science, and facilitate use

of algorithms that cannot be easily converted into risk

scores[10,11]. We have recently reported on such a tool for

prediction of contrast induced nephropathy in patients undergoing

PCI[12].

The goal of our work was to use a similar approach to develop a

highly accurate model for prediction of transfusion using pre-

procedural variables that are routinely collected in patients

undergoing PCI, while retaining the advantages of bed side

applicability. Further, we evaluated the impact of bleeding

avoidance strategies on observed transfusion rates based on

predicted transfusion risk.

Methods

We developed and validated the transfusion model using data

from the Blue Cross Blue Shield of Michigan cardiovascular

consortium (BMC2), a quality improvement collaborative that

tracks the inpatient outcome of consecutive patients undergoing

PCI at all non-federal hospitals in the State of Michigan. The

details of the BMC2 and its data collection and auditing process

have been described previously[13,14]. BMC2 registry is a clinical

registry that tracks the outcome of all consecutive patients

undergoing PCI at the participating institutions. Procedural data

are collected using standardized data collection forms. Baseline

data include clinical, demographic, procedural, and angiographic

characteristics as well as medications used before, during, and after

the procedure, and in-hospital outcomes. All data elements have

been prospectively defined. In addition to a random audit of 2% of

all cases, medical records of all patients undergoing multiple

procedures or coronary artery bypass grafting (CABG) and of

patients who died in the hospital are reviewed routinely to ensure

data accuracy. The audit has revealed a data accuracy of over

95% for the study population.

The BMC2 registry and waiver of patient consent has been

either approved by or the need for approval waived by the IRB at

each of the participating hospitals. The University of Michigan has

waived the need for IRB approval on all analysis that are

performed using BMC2 data. The need for consent has been

waived since all data are anonymous and no patient identifiers are

collected.

The study population for this analysis included all consecutive

patients who underwent PCI between July 2009 through

December 2012. Patients who underwent coronary artery bypass

grafting during the same hospitalization were excluded from the

analysis since a post –operative transfusion could not be

distinguished from post PCI transfusion. The choice of vascular

access, procedural anticoagulation and decision to transfuse was as

per the operator preference guided by institutional policy and

practice.

Table 1. Patient/procedural characteristics included in Full model.

History and risk factors: Clinical presentation:

Current Smoker (w/in 1 year) Cardiomyopathy/LV systolic dysfunction

Former smoker Pre-operative evaluation prior to Non-Cardiac Surgery

Hypertension Cardiogenic Shock w/in 24 hours prior to presentation

Dyslipidemia Cardiac Arrest w/in 24 hours prior to presentation

Family history of Premature CAD Stress/imaging study performed

Prior MI Exercise stress test results

Prior Heart Failure Stress Echo imaging results

Prior Valve Surgery/Procedure Cardiac CTA performed

Prior PAD Cardiac CTA results

Prior PCI Coronary Calcium score

Prior CABG CAD Presentation

Prior ICD Anginal Classification w/in 2 weeks

Height NYHA class w/in 2 weeks

Weight

Age Pre-Procedural Lab values:

Currently on Dialysis Creatine kinase -MB

Cerebrovascular disease Troponin I

Chronic lung disease Troponin T

Diabetes/Diabetes Therapy (Diet, Oral Rx, Insulin) Creatinine

Gastro-intestinal Bleeding Hemoglobin

Valve disease

Surgery within the prior 7 days

Atrial Fibrillation

Cardiac transplant

Cardiac arrest

doi:10.1371/journal.pone.0096385.t001

Transfusion Risk Model for PCI
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Table 2. Characteristics of patients in the training and the validation cohort.

Characteristic Training Validation p-value Abs. Std. diff

Number of patients: 72,376 30,985 NA NA

BMI 30.6267.49 30.5167.54 p = 0.040 1.40

Age 64.86612.11 64.91612.08 p = 0.551 0.40

Sex: Male 47,888/72,375 (66.2%) 20,329/30,984 (65.6%) p = 0.084 1.17

Race – White 62,566/72,376 (86.4%) 26,782/30,985 (86.4%) p = 0.964 0.03

Current/Recent Smoker (w/in 1 year) 21,172/72,321 (29.3%) 9,208/30,962 (29.7%) p = 0.133 1.02

Hypertension 61,598/72,325 (85.2%) 26,380/30,968 (85.2%) p = 0.946 0.05

Dyslipidemia 59,811/72,279 (82.8%) 25,777/30,953 (83.3%) p = 0.039 1.41

Family History of Premature CAD 14,468/72,350 (20.0%) 6,227/30,973 (20.1%) p = 0.693 0.27

Prior MI 25,336/72,355 (35.0%) 10,956/30,979 (35.4%) p = 0.281 0.73

Prior Heart Failure 11,261/72,330 (15.6%) 4,851/30,966 (15.7%) p = 0.695 0.27

Prior Valve Surgery/Procedure 1,132/72,327 (1.6%) 539/30,966 (1.7%) p = 0.041 1.38

Prior PCI 32,606/72,366 (45.1%) 14,043/30,980 (45.3%) p = 0.420 0.55

Prior CABG 13,650/72,355 (18.9%) 5,788/30,976 (18.7%) p = 0.498 0.46

Height 171.05610.59 170.95610.59 p = 0.181 0.91

Weight 89.60621.44 89.20621.03 p = 0.005 1.89

Cerebrovascular Disease 11,031/72,325 (15.3%) 4,743/30,964 (15.3%) p = 0.788 0.18

Peripheral Arterial Disease 11,848/72,325 (16.4%) 5,171/30,970 (16.7%) p = 0.211 0.85

Chronic Lung Disease 13,358/72,328 (18.5%) 5,770/30,962 (18.6%) p = 0.526 0.43

Diabetes Mellitus 27,229/72,362 (37.6%) 11,491/30,975 (37.1%) p = 0.106 1.10

Diabetes Therapy: Insulin 11,301/27,132 (41.7%) 4,757/11,463 (41.5%) p = 0.780 0.31

CAD Presentation: No symptom, no angina 5,199/72,351 (7.2%) 2,276/30,979 (7.3%) p = 0.360 0.62

CAD Presentation: Stable angina 12,491/72,351 (17.3%) 5,405/30,979 (17.4%) p = 0.477 0.48

CAD Presentation: Unstable angina 27,978/72,351 (38.7%) 11,905/30,979 (38.4%) p = 0.467 0.49

CAD Presentation: Non-STEMI 14,093/72,351 (19.5%) 6,001/30,979 (19.4%) p = 0.689 0.27

CAD Presentation: ST-Elevation MI (STEMI) or equivalent 10,875/72,351 (15.0%) 4,640/30,979 (15.0%) p = 0.827 0.15

Heart Failure w/in 2 Weeks 7,422/72,340 (10.3%) 3,161/30,971 (10.2%) p = 0.795 0.18

NYHA Class w/in 2 Weeks: Class I 546/7,361 (7.4%) 227/3,141 (7.2%) p = 0.732 0.73

NYHA Class w/in 2 Weeks: Class II 1,793/7,361 (24.4%) 738/3,141 (23.5%) p = 0.344 2.02

NYHA Class w/in 2 Weeks: Class III 2,860/7,361 (38.9%) 1,184/3,141 (37.7%) p = 0.264 2.38

NYHA Class w/in 2 Weeks: Class IV 2,162/7,361 (29.4%) 992/3,141 (31.6%) p = 0.024 4.81

Cardiomyopathy or Left Ventricular Systolic Dysfunction 7,630/72,359 (10.5%) 3,370/30,979 (10.9%) p = 0.111 1.08

Pre-operative Evaluation Before Non-Cardiac Surgery 1,494/72,335 (2.1%) 686/30,968 (2.2%) p = 0.125 1.04

Cardiogenic Shock w/in 24 Hours 1,241/72,350 (1.7%) 543/30,978 (1.8%) p = 0.671 0.29

Cardiac Arrest w/in 24 Hours 1,326/72,325 (1.8%) 553/30,969 (1.8%) p = 0.599 0.36

Fluoroscopy Time 14.72611.28 14.74611.69 p = 0.716 0.25

Fluoroscopy Dose 721.5961277.24 719.5061189.73 p = 0.941 0.17

Contrast Volume 191.58678.34 190.62677.84 p = 0.072 1.22

IABP 1,721/72,351 (2.4%) 761/30,975 (2.5%) p = 0.452 0.51

Other Mechanical Ventricular Support 512/72,341 (0.7%) 217/30,968 (0.7%) p = 0.901 0.08

Arterial Access Site: Femoral 64,854/72,342 (89.6%) 27,763/30,969 (89.6%) p = 0.994 0.00

Arterial Access Site: Radial 7,195/72,342 (9.9%) 3,078/30,969 (9.9%) p = 0.973 0.02

PCI Status: Elective 29,810/72,327 (41.2%) 12,886/30,948 (41.6%) p = 0.207 0.86

PCI Status: Urgent 31,116/72,327 (43.0%) 13,251/30,948 (42.8%) p = 0.543 0.41

PCI Status: Emergency 11,270/72,327 (15.6%) 4,753/30,948 (15.4%) p = 0.362 0.62

PCI Status: Salvage 131/72,327 (0.2%) 58/30,948 (0.2%) p = 0.829 0.15

Pre-PCI Left Ventricular Ejection Fraction 51.95612.69 52.08612.67 p = 0.186 1.02

CK-MB Pre-Procedure 27.41666.99 26.14660.42 p = 0.202 1.99

CK Pre-Procedure Drawn and Normal 6,574/19,792 (33.2%) 2,877/8,551 (33.6%) p = 0.481 0.91

Troponin I Pre-Procedure 4.49621.54 4.13615.73 p = 0.053 1.94

Transfusion Risk Model for PCI
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Study endpoints
The primary endpoint for our study was blood transfusion.

Transfusion was defined as transfusion of packed red cells or whole

blood after the PCI procedure but prior to hospital discharge

irrespective of the total number of units transfused. Baseline

hemoglobin was collected within a month of the procedure.

Among patients who had multiple assessments of hemoglobin, the

value closest to the time of the procedure was considered as the

baseline value.

Model development
The model was developed using a random forest method as

previously described.[12] The study cohort was divided randomly

into training and validation datasets, with 70% of procedures

assigned to training, and the remaining 30% utilized for

validation. A random forest regression model was trained for

predicting transfusion using 45 baseline clinical variables including

pre-procedural medications, with missing predictors imputed to be

the overall median for continuous values and mode for categorical

variables. Details of random forest methods have been described

elsewhere[15]. Briefly random forest is an ensemble classification

method that determines a consensus prediction for each observa-

tion by averaging the results of many individual recursive

partitioning tree models. Each of the individual trees are fitted

to a randomly selected subset of the observations, and utilize a

random subset of the available predictors at each node as

candidates for splitting. Random forests have been shown to have

good predictive value, and are generally robust to issues of over-

fitting, and missing data, and are particularly suited for evaluating

a large number of possible predictors and exploiting potential

interactions between predictors and their relationship with the

outcome[16]. The transfusion outcome was entered as a contin-

uous variable coded as 1 in patients who were transfused, and 0 for

those not meeting the criteria to facilitate regression rather than

classification modeling, so that estimated means (leaf node

probabilities of transfusion) assigned to a given observation were

then aggregated in the ensemble. To facilitate the development of

an easy to use bedside tool, a reduced model was also trained using

only the fourteen most important predictors as assessed in the full

Table 2. Cont.

Characteristic Training Validation p-value Abs. Std. diff

Troponin T Pre-Procedure 0.8566.54 0.7163.26 p = 0.190 2.61

Pre-Procedure Creatinine 1.1660.94 1.1660.97 p = 0.529 0.43

Pre-Procedure Hemoglobin 13.4261.89 13.4361.91 p = 0.282 0.74

CK-MB Post-Procedure 57.776131.53 56.486119.93 p = 0.406 1.02

Troponin I Post-Procedure 27.88662.48 28.24668.46 p = 0.694 0.56

Troponin T Post-Procedure 6.24626.14 5.50615.83 p = 0.272 3.45

Post-Procedure Creatinine 1.1961.08 1.2061.10 p = 0.539 0.44

Post-Procedure Hemoglobin 12.2461.92 12.2461.94 p = 0.944 0.05

Myocardial Infarction (Biomarker Positive) 1,432/72,318 (2.0%) 660/30,969 (2.1%) p = 0.114 1.06

RBC/Whole Blood Transfusion 2,156/72,328 (3.0%) 922/30,966 (3.0%) p = 0.977 0.02

Hemoglobin Prior to Transfusion 8.1061.25 8.0861.16 p = 0.657 1.73

Bleeding Event w/in 72 Hours 1,796/72,327 (2.5%) 767/30,967 (2.5%) p = 0.952 0.04

Discharge Status: Alive 71,352/72,376 (98.6%) 30,554/30,985 (98.6%) p = 0.766 0.20

doi:10.1371/journal.pone.0096385.t002

Table 3. Patient/procedural characteristics selected for reduced model.

Reduced Model variables:

History and risk factors Clinical presentation

Height Heart Failure w/in 2 Weeks

Weight CAD Presentation

Age Anginal Classification

History of Chronic Lung Disease Cardiogenic Shock (within 24 hours prior to or at start of PCI)

Diabetes/Diabetes Therapy (Diet, Oral therapy, Insulin)

Pre-Procedural Lab values

Creatine kinase-MB

Troponin I

Troponin T

Creatinine

doi:10.1371/journal.pone.0096385.t003

Transfusion Risk Model for PCI
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model by the incremental decrease in node impurity (residual sum

of squares) associated with splitting on the predictor averaged over

all trees in the ensemble.

Model validation
The full and reduced models were evaluated in terms of

discrimination and calibration in the validation dataset through

evaluation of the area under the ROC curve (AUC), and by

graphical examination of observed versus predicted transfusion

rates after grouping observations by predicted risk (,1%, 1–2%,

2–3%, 3–5%, 5–10%, 10–15%, 15–20%, 20–30%, 30–40%, and

.40%). The net reclassification index was used to compare full

and reduced model performance, after classifying the predicted

risk as low, medium and high; p-values and confidence intervals

were obtained through bootstrapping[12,17,18]. Random forest

estimates for observations in the validation dataset were scaled so

that the overall predicted transfusion rate for the validation sample

matched the overall transfusion rate observed in the training

dataset.

The potential application of the tool for guiding individualized

decision making was assessed by comparing the predicted and

observed transfusion rates in the low, medium, and high risk

categories in patients treated with heparin alone, heparin and

platelet glycoprotein IIbIIIa inhibitor (GPI) and bivalirudin. For

patients in each risk category, the unadjusted number needed to

treat (NNT) with bivalirudin compared to GPI in order to prevent

one transfusion was estimated as the inverse of the absolute

difference in observed transfusion rates. A similar calculation was

made for use of radial versus femoral access.

All analyses were performed in R version 2.14.1 using freely

distributed contributed packages[19,20].

Results

Our study cohort comprised of 103,294 (99%) of 104,408

procedures performed across Michigan between July 2009

through December 2012. We excluded 1047 (1%) patients since

they underwent CABG during the same hospitalization (n = 1,018)

or when post procedural CABG data were not available (n = 29),

and 67 patients for whom post-procedural transfusion data were

not available.

The training dataset consisted of 72,328 PCI procedures of

which 2156 (3.0%) were accompanied by transfusion, and the

validation dataset of 30,966 procedures of which 922 (3.0%) were

Table 4. Distribution of abbreviated model covariates by transfusion status in the training dataset.

Characteristic No Transfusion Transfusion p-value Abs. Std. diff

Age 64.72612.02 71.20612.46 p,0.001 52.9

Height 171.11610.53 165.94611.26 p,0.001 47.4

Weight 89.44620.94 81.34622.59 p,0.001 37.2

Chronic Lung Disease 5,496/30,023 (18.3%) 267/920 (29.0%) p,0.001 25.4

Diabetes Mellitus 11,032/30,034 (36.7%) 450/922 (48.8%) p,0.001 24.6

Diabetes Therapy: None 465/11,007 (4.2%) 19/447 (4.3%) p = 0.979 0.1

Diabetes Therapy: Diet 661/11,007 (6.0%) 24/447 (5.4%) p = 0.578 2.7

Diabetes Therapy: Oral 5,337/11,007 (48.5%) 157/447 (35.1%) p,0.001 27.3

Diabetes Therapy: Insulin 4,508/11,007 (41.0%) 246/447 (55.0%) p,0.001 28.5

Diabetes Therapy: Other 36/11,007 (0.3%) 1/447 (0.2%) p = 0.706 2.0

Cardiogenic Shock w/in 24 hours or at start of PCI 607/30,005 (2.0%) 149/921 (16.2%) p,0.001 50.8

CAD Presentation: No symptom, no angina 2,216/30,038 (7.4%) 58/922 (6.3%) p = 0.213 4.3

CAD Presentation: Symptom unlikely to be ischemic 736/30,038 (2.5%) 14/922 (1.5%) p = 0.070 6.7

CAD Presentation: Stable angina 5,339/30,038 (17.8%) 64/922 (6.9%) p,0.001 33.4

CAD Presentation: Unstable angina 11,661/30,038 (38.8%) 238/922 (25.8%) p,0.001 28.1

CAD Presentation: Non-STEMI 5,719/30,038 (19.0%) 276/922 (29.9%) p,0.001 25.5

CAD Presentation: ST-Elevation MI (STEMI) or equivalent 4,367/30,038 (14.5%) 272/922 (29.5%) p,0.001 36.7

Anginal Classification w/in 2 Weeks: No symptoms 3,370/29,993 (11.2%) 137/919 (14.9%) p,0.001 10.9

Anginal Classification w/in 2 Weeks: CCS I 1,043/29,993 (3.5%) 15/919 (1.6%) p = 0.002 11.7

Anginal Classification w/in 2 Weeks: CCS II 4,711/29,993 (15.7%) 71/919 (7.7%) p,0.001 25.0

Anginal Classification w/in 2 Weeks: CCS III 10,451/29,993 (34.8%) 229/919 (24.9%) p,0.001 21.8

Anginal Classification w/in 2 Weeks: CCS IV 10,418/29,993 (34.7%) 467/919 (50.8%) p,0.001 32.9

Heart Failure w/in 2 Weeks 2,840/30,031 (9.5%) 316/921 (34.3%) p,0.001 63.0

CK-MB Pre-Procedure 25.99660.80 30.58650.70 p = 0.201 8.2

Troponin I Pre-Procedure 3.97615.56 7.58618.90 p,0.001 20.8

Troponin T Pre-Procedure 0.6663.18 1.9564.73 p = 0.006 32.0

Pre-Procedure Creatinine 1.1460.93 1.7561.70 p,0.001 44.0

Pre-Procedure Hemoglobin 13.5161.84 10.8562.10 p,0.001 134.8

doi:10.1371/journal.pone.0096385.t004

Transfusion Risk Model for PCI
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followed by a transfusion. All baseline variables presented in

Table 1 were included in the full random forest model. The

training and validation datasets were similar in terms of baseline

covariates (Table 2). The variables with the largest model

determined importance are listed in Table 3, and Table 4 provides

their distribution in training dataset patients both with and without

transfusion. This set of predictors was used to fit the reduced

random forest model that is available for use at https://bmc2.org/

calculators/transfusion.

When evaluated in the validation dataset, both models provide

good discrimination for transfusion, with the full model having a

small but statistically significant advantage in AUC (full model

AUC: 0.888 [95% CI, 0.877–0.899], reduced model AUC: 0.880

[95% CI, 0.868–0.892]. p for difference = 0.003). Both models

demonstrated high calibration (Figure 1) with good concordance

between observed and predicted transfusion rates.

The full and reduced model predictions were grouped into low

risk (,1%), intermediate risk (1–5%), and high risk (.5%)

categories and the number of patients along with the observed

transfusion rate in each group is presented in Table 5. The

patients in the highest risk category comprised one sixth of the

total population but received over 75% of the transfusions. The

net reclassification improvement statistic for the full model relative

to the reduced model for these categories was small but statistically

significant (NRI: 2.77%, [0.62–5.06%], p = .007).

Figure 2 depicts the observed transfusion rates across the three

predicted risk categories in patients treated with heparin only,

bivalirudin and GPI (with heparin).The use of GPI is associated

with the highest transfusion rates while bivalirudin was associated

with the lowest transfusion rates overall, although in the lowest risk

category the transfusion rates for all three anticoagulant strategies

were very small, so that the absolute differences were not clinically

meaningful (,.5%). The highest risk group by contrast, demon-

strated the greatest absolute difference in bleeding (.5%) so that

only 19 patients would need to be treated with bivalirudin instead

of GPI to prevent one transfusion (Table 6). Figure 3 provides

transfusion rates by risk categories for patients with radial and

femoral vascular access. When the impact of access site on

Figure 1. Calibration plot depicting observed transfusion across predicted risk using the full and the abbreviated model.
doi:10.1371/journal.pone.0096385.g001

Table 5. Model Comparison by risk category.

Reduced Model

Estimated risk: # of Procedures: # of Transfusions: Transfusion rate: % of procedures: % of Transfusions:

Low (,1%) 18,239 89 0.49% 58.90% 9.65%

Medium (1–5%) 7,648 141 1.84% 24.70% 15.29%

High (.5%) 5,079 692 13.62% 16.40% 75.05%

Full Model

Estimated risk: # of Procedures: # of Transfusions: Transfusion rate: % of procedures: % of Transfusions:

Low (,1%) 18,479 76 0.41% 59.68% 8.24%

Medium (1–5%) 7,144 138 1.93% 23.07% 14.97%

High (.5%) 5,343 708 13.25% 17.25% 76.79%

doi:10.1371/journal.pone.0096385.t005

Transfusion Risk Model for PCI
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transfusion was considered, the greatest benefit of radial access was

seen in patients in the highest risk category although a lower

transfusion rate was observed with radial access in all risk groups.

The number needed to treat with radial versus femoral approach

to prevent one transfusion was 18 for the highest risk category and

244 for the lowest risk cohort.

Discussion

The key finding of our study is that the risk of transfusion in

patients undergoing PCI can be reliably estimated using standard

clinical and laboratory variables that are routinely collected in this

population. Secondly, this tool helps identify patient subgroups

that are at higher or lower risk of needing a transfusion and can

therefore guide appropriate choice of pharmacotherapy or

vascular access in a cost effective fashion. The robust discrimina-

tion and calibration of this method, combined with the ease of use

for simplified bedside prediction, makes this model an easy tool for

routine clinical practice.

Risk stratification models have been advocated for two broad

usages: patient level decision making (for guiding informed

consent, and therapeutic decision-making) and risk adjustment

for assessment of quality of care. Our model has several

advantages that make it especially suited for these purposes.

First, to the best of our knowledge, this is the only model to

predict transfusion that has been developed and validated on a

contemporary patient population. Secondly, the model has a very

high discrimination that should improve reliability and accuracy of

risk estimates. While there are no contemporary models to predict

transfusion, the NCDR bleeding prediction model is perhaps the

closest in its clinical application[21]. The modest discrimination of

that model (C statistics of 0.72) raises concerns about misclassi-

fication when it is applied for individualized decision making.

Thirdly, our model should be generalizable to routine clinical

practice since it is developed and validated on all consecutive

patients treated in Michigan and reflects contemporary practice

across multiple institutions and operators. The model is based only

on pre-procedure variables, and thus can be used for risk

stratification prior to the procedure. This can help facilitate better

informed consent as well as consideration of alternate therapeutic

strategies that would minimize the risk of bleeding and the

resultant need for transfusion.

Unlike traditional risk scores, our model requires a computer for

calculation and cannot be converted into a bedside arithmetic risk

score. While, the need to favor simplicity over accuracy might

have been reasonable in the past, these considerations should no

longer be relevant in the era of the widespread use of smart devices

Figure 2. The observed transfusion rates across the three
predicted risk categories in patients treated with heparin only,
bivalirudin and platelet glycoprotein IIbIIIa inhibitor (with
heparin) is depicted in panel A. Panel B depicts the total number of
patients treated with each anticoagulation strategy across the three
transfusion risk groups.
doi:10.1371/journal.pone.0096385.g002

Figure 3. The observed transfusion rates across the three
predicted risk categories in patients treated with femoral
versus radial access is depicted in panel A. Panel B depicts the
total number of patients treated with the two access routes across the
three transfusion risk groups. There is an inverse association between
predicted transfusion risk and access route with radial access being
more commonly used in the low risk patients.
doi:10.1371/journal.pone.0096385.g003

Table 6. Projected numbers needed to treat (NNT) to prevent one transfusion across categories of predicted risk.

Predicted risk ,1% 1–5% .5%

NNT with Bivalirudin instead of Heparin only to prevent one transfusion 1721 664 28

NNT with Bivalirudin instead of Glycoprotein IIbIIIa inhibitor and Heparin to prevent one transfusion 202 76 19

NNT with radial access versus femoral approach to prevent one transfusion 244 69 18

doi:10.1371/journal.pone.0096385.t006
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and electronic medical records. We developed two different

models, with the full model providing a slightly greater discrim-

ination compared with the abbreviated model. In the ideal world,

models like ours would be embedded in the electronic medical

record, and would be an integral part of the clinical workflow,

providing physicians and patients with accurate risk estimates. All

the predictors in this model are routinely ascertained and are

embedded in the templates that are used for the documentation of

the initial history and physical assessment of a patient being

evaluated for PCI. Therefore, real time automatic risk estimation

is feasible and hopefully will be adapted in the near future by the

vendors of electronic medical record systems.

We envision multiple application of this model. The BMC2

consortium is using this model for calculating risk adjusted

transfusion rates for physicians and operators and this will guide

quality improvement efforts. Initial application of this approach

has identified institutions where the rate of transfusion is

significantly greater than expected and these hospitals have

initiated focused efforts geared towards reducing transfusion.

Secondly, the model can be used to personalize the consent

process and the patient provided with their personalized risk

estimate rather than the standard average risk of bleeding.

Thirdly, the model helps identify the 16% of patients who are

most likely to need transfusion and thus the ideal subset for use of

strategies that have been proven to reduce the risk of transfusion

such as bivalirudin or use of radial approach. Conversely, the

model helps identify the large subset of patients who are at the

extremely low risk and in whom the use of such therapies may not

be that beneficial or cost effective. The use of the model to target

therapies like bivalirudin (with demonstrated reduction in trans-

fusion but increased expense relative to heparin) to the highest risk

patients, while avoiding it in the low risk patients has the potential

to reduce both cost and complications and should be evaluated in

future studies. Use of the NCDR bleeding model in this fashion

has been recently demonstrated to be associated with clinically

meaningful reductions in bleeding and transfusion and it likely that

the use of our model with its greater accuracy would enhance

those benefits[22]. In our exploratory analysis, we demonstrate

that the absolute benefit of bleeding avoidance therapies is

dependent on both the baseline bleeding risk as well as the type of

therapy used. As expected, radial access is the most effective

approach towards preventing transfusion with a number needed to

treat of 19 among patients at high risk while the benefit is less

impressive and of uncertain clinical significance in patients at low

risk of bleeding. This is also evident in the comparison of heparin

and bivalirudin in low risk patients where the absolute difference

in events is too small to be clinically meaningful and many

institutions may not be able to prevent one transfusion in a year

even if they treated all their low risk patients with bivalirudin

instead of heparin. It is expected that as clinicians use this tool in

practice, other uses will emerge that will lead to further

optimization of patient care, as well as modification and

refinement of the prediction tool.

Like most observational studies, our study findings must be

evaluated with certain caveats. We developed a model to predict

transfusion, which is distinct from bleeding. While both bleeding

and transfusion can be considered negative outcomes following

PCI, transfusion, unlike bleeding, is occasionally necessary and

cannot be considered a never event. Secondly, while bleeding that

does not require transfusion is associated with adverse long term

outcomes, it is unclear if the relationship is causal. On the other

hand transfusion, if not needed, is best avoided both due to its

negative health impact, and the associated cost. A model for

predicting transfusion thus can help guide quality improvement as

well as guide clinical practice. Furthermore, the decision to

transfuse in our population was clinically driven and may vary

from physician to physician and across institutions. However, we

believe this makes our model more generalizable to routine clinical

care since it reflects findings from contemporary practice across

the entire patient population undergoing PCI in Michigan.

Conclusion

We have developed a simple tool for accurately predicting risk

of transfusion among patients undergoing PCI. This risk

prediction algorithm may prove useful for both bed side clinical

decision making and risk adjustment for assessment of quality.
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