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ABSTRACT

Motivation: Combinatorial therapies play increasingly important roles

in combating complex diseases. Owing to the huge cost associated

with experimental methods in identifying optimal drug combinations,

computational approaches can provide a guide to limit the search

space and reduce cost. However, few computational approaches

have been developed for this purpose, and thus there is a great

need of new algorithms for drug combination prediction.

Results: Here we proposed to formulate the optimal combinatorial

therapy problem into two complementary mathematical algorithms,

Balanced Target Set Cover (BTSC) and Minimum Off-Target Set

Cover (MOTSC). Given a disease gene set, BTSC seeks a balanced

solution that maximizes the coverage on the disease genes and min-

imizes the off-target hits at the same time. MOTSC seeks a full cover-

age on the disease gene set while minimizing the off-target set.

Through simulation, both BTSC and MOTSC demonstrated a much

faster running time over exhaustive search with the same accuracy.

When applied to real disease gene sets, our algorithms not only iden-

tified known drug combinations, but also predicted novel drug com-

binations that are worth further testing. In addition, we developed a

web-based tool to allow users to iteratively search for optimal drug

combinations given a user-defined gene set.

Availability: Our tool is freely available for noncommercial use at

http://www.drug.liuzlab.org/.

Contact: zhandong.liu@bcm.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Complex diseases, such as cancer, cardiovascular diseases and

neurological disorders, usually involve multiple genes whose

protein products play pivotal roles in controlling aberrant path-

ways and networks. In addition, disease pathways and networks

are often redundant and robust to single-point perturbations.

Because most drugs are designed to selectively target specific

proteins, single-drug treatments usually cannot break down the

whole disease pathways and networks. This is why the traditional

‘one disease, one gene, one drug’ treatment often fails (Hopkins,

2008). Multi-target treatments, especially drug combinations, can

simultaneously target multiple components of the disease path-

ways and networks, thus offering hope for treating such complex

diseases (Jia et al., 2009). There have already been many success-

ful combinatorial therapies to treat complex diseases. For

example, highly active antiretroviral therapy is a potent combin-

ation of at least three active antiretroviral drugs targeting reverse

transcriptase, protease and integrase to keep the HIV virus from

replicating itself (Lucas et al., 1999). The combination of glybur-

ide and metformin is used to treat type 2 diabetes in complemen-

tary ways (Bokhari et al., 2003). Moduretic is the combination of

amiloride and hydrochlorothiazide that can effectively treat pa-

tients with hypertension (HTN) (Frank, 2008; Wilson et al.,

1988). The combination of anastrozole and fulvestrant is more

effective than individual or sequential usage of both drugs for the

treatment of hormone-receptor-positive metastatic breast cancer

(Mehta et al., 2012).

Despite the increasing successes in using drug combinations

to treat complex diseases, most of them were developed based

on clinical experience or test-and-trial strategy, which is not

only time-consuming but also expensive. High-throughput

screening methods have also been developed to identify effect-

ive pairwise drug combinations (Borisy et al., 2003; Lehár et al.,

2009; Tan et al., 2012). However, a systematic analysis of all the

possible pairwise combinations is both labor-intensive and cost-

ineffective because of the large combinatorial space needed to

explore. Furthermore, most drug combinations may not signifi-

cantly improve the efficacy over individual drugs. Therefore,

large-scale drug combination screening is highly ineffective. In

addition, a systematic screening becomes unfeasible if combin-

ations of more than two drugs are considered. The closed-loop

control (Wong et al., 2008), stack sequential (Calzolari et al.,

2008) and other search algorithms reviewed in Feala et al.

(2010) have been developed together with biological experi-

ments to identify the optimal drug combinations from a huge

drug-dose space. However, given thousands of individual drugs,

careful preselection of a subset of drugs within which to search*To whom correspondence should be addressed.
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for optimal combinations in experimental testing is not an easy
task.
Several systematic computational approaches for predicting

drug combinations have recently been developed and could pro-
vide a guide to limit the search space for experimental methods.
For example, Vazquez (2009) proposed identifying the optimal

drug combinations by searching for the minimal number of
drugs that can target all the cancer cell lines using the highest-
degree-first and simulated annealing algorithms. However, this
heuristic search algorithm does not have optimum guarantee,

and the convergence rate for large-scale datasets could be slow.
Wu et al. (2010) integrated a molecular interaction network and
gene expression data of individual drugs to identify subnetworks

affected by individual or combinatorial drugs. The drug effect on
these subnetworks is measured by taking into account both effi-
cacy and side effect and then used to prioritize drug combin-

ations. They successfully identified effective drug combinations
used to treat type 2 diabetes, but the dependency on the avail-
ability of gene expression data treated with individual and com-

binatorial drugs as well as the high computational cost when
handling the vast combinatorial space makes their approach
unsuitable for large-scale application. Zhao et al. (2011) and

Xu et al. (2012) proposed two similar computational approaches
to prioritize pairwise drug combinations using feature patterns
enriched in the known drug combinations and got some promis-

ing predictions. However, their approaches rely heavily on the
known drug combination data that are of small size, thus biasing
their predictions toward those combinations that are similar to

the known ones. Therefore, the current computational
approaches are limited, and there is a great need to develop
new algorithms for drug combination prediction.

Drug design is usually specific, but one drug may target mul-
tiple proteins due to promiscuous binding (Paolini et al., 2006;
Yildirim et al., 2007). One protein can be targeted by multiple

drugs as well. The drugs and proteins form an intricate drug–
target network. When used to treat diseases, a drug can affect
both disease on-target proteins for which it was designed and

some off-target proteins that are not related to the diseases.
When different drugs are combined, there could be a large
number of additive off-targets whose effects are undesired.

Thus, given a set of disease genes, the problem of finding the
optimum drug combinations that maximize on-target coverage
and minimize off-target effects is important and challenging.

This is similar to the efficacy maximization and side effect mini-
mization problem in combinatorial therapy. Also, such off-target
effects in drug combination have not been considered in the sys-

tematic computational studies (Vazquez, 2009; Xu et al., 2012;
Zhao et al., 2011), with the exception of the work (Wu et al.,
2010).

To address the on-target maximization and off-target mini-
mization problem, we first formulated the optimal combinatorial
therapy problem using an optimization framework and solved it

using mixed integer linear programming (MILP). Then, we com-
pared our approach with exhaustive search using simulation and
demonstrated a better performance of our approach over ex-

haustive search. Finally, we demonstrated the good performance
of our approach through searching optimal drug combinations
for six disease gene sets from a drug–target network. Our ap-

proach not only captured the well-known drugs and drug

combinations, but also suggested novel uses for some other

drugs. The drug combinations discovered using our approach

can target the protein products of disease genes with minimal

perturbations to the other proteins and are worthy of further

testing to treat such diseases. To make our approach more ac-

cessible to the general drug discovery community, we developed

a web-based tool to allow users to iteratively search for optimal

drug combinations from a user-defined gene set.

The remaining part of this article is organized as follows: we

first describe the optimization approach in Section 2; application

of the approach on both the simulated and real data is presented

in Section 3; and a brief discussion on current issues and poten-

tial future improvements is described in the concluding section of

the article.

2 METHODS

2.1 Drug–target network

We extracted the drug–target interactions from the DrugBank database

(version 3.0) (Knox et al., 2011) and constructed a bipartite network, in

which nodes represent drugs or targets and edges represent drug–target

interactions. We further removed the targets with no human gene symbol

annotation. The remaining network contains 4233 drugs, 2058 target

genes and 9669 drug–target interactions. We also extracted the adverse

drug–drug interaction effects and the drug action information from the

DrugBank database. Given an input disease gene set, drugs with the same

set of targets, actions and interacting drugs were merged into a single

meta-drug, as they are equivalent to our algorithm. Details on drug

data processing are provided in Supplementary Text S1. Unless otherwise

specified, we used the term drug instead of meta-drug in the remaining

text and the term disease gene to represent the protein product of disease

gene.

2.2 Optimal combinatorial therapy

Given a set of disease genes, we first removed those genes that have no

associated drugs in the drug–target network. The remaining set of disease

genes is called on-target set, denoted as T ¼ ft1, t2, . . . , tpg. We then ex-

tracted the drugs associated with the on-target genes from the drug–target

network. The set of off-targets, S ¼ fs1, s2, . . . , sqg, is the set of genes that

are connected with the on-target-associated drugs in the drug–target net-

work, but does not overlap with T. Mathematically, the associated drugs

can be formulated asM¼ fMijMi � T [ S, i ¼ 1, 2, . . . ,mg, where each

drugMi can target some disease genes in T and some off-target genes in S

as well. Finding the optimal drug combination for a disease is to maxi-

mize the coverage on T and minimize the overlap with S using a subset of

M. This problem can be defined as follows.

PROBLEM 1.

Balanced Target Set Cover (BTSC) problem. Given a disease

D ¼ ðT,SÞ and a collection of drugs M, find a subset C �M and

Cj j � k that minimize the costðD, CÞ ¼ �jT nð[CÞj þ ð1� �ÞjS \ ð[CÞj,

where [C ¼ [C2CC, k is the upper bound on the cardinality of the solu-

tion set C and � is the weight balance of the coverage between on-target

set T and off-target set S.

A natural choice of � is 0.5. When � is set to 1, BTSC is equivalent to

the maximum coverage problem. In practice, users may have a small set

of highly confident drug targets and would require full coverage on these

targets while minimizing the number of off-targets. BTSC cannot be used

directly to solve this problem.

To overcome this limitation, we further propose to fully cover the on-

targets in T and minimize the number of off-targets in S. In other words,
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we require any selected combination of drugs to cover all the on-target

disease genes. This can be achieved by setting � to 0 and adding a con-

straint of full set cover. Mathematically, the restricted problem can be

defined as follows:

PROBLEM 2.

Minimum Off-Target Set Cover (MOTSC) problem. Given a disease

D ¼ ðT,SÞ and a collection of drugsM, find a subset C �M that min-

imizes the costðD, CÞ ¼ jS \ ð[CÞj, where jT \ ð[CÞj ¼ jT \ ð[MÞj and

[C ¼ [C2CC.

2.3 BTSC and MOTSC problems are NP-hard

The NP-hard property of the BTSC problem can be proved through

reduction mapping. By setting � to 1, the maximum coverage problem

becomes finding a maximum cover on the disease genes in T using at

most k drugs fromM. This reduction shows that BTSC is at least as hard

as the maximum coverage problem, which is in the NP-hard problem set

(Cohen and Katzir, 2008).

MOTSC can be viewed as a modified version of the Red-Blue Set

Cover, which is also a generalization of the standard set cover problem

(Miettinen, 2009). Red-Blue Set Cover problem is much harder than the

standard set cover problem, and there exists no polynomial approxima-

tion with a factor of 2ð4 lognÞ
1��

for any �40 (Peleg, 2007).

2.4 Mathematical programming formulation

Mathematically, BTSC can be formulated using MILP as follows:

minimize �
Xp

i¼1

ð1� yiÞ þ ð1� �Þ
Xpþq

i¼pþ1

yi ð1Þ

subject to ðBxÞi � y0i ¼ 0 ð2Þ

byi � y0i � 0 ð3Þ

yi � y0i � 0 ð4Þ

Xm

j¼1

xj � k ð5Þ

ðLxÞ � 1 ð6Þ

y0i 2 Z
þ, yi,xj 2 f0, 1g ð7Þ

The formulation has three variables, x, y and y0. The first two are

binary, and the last one is nonnegative. The binary solution vector x

indicates which drugs are selected. The nonnegative cost variable y0i
counts the times that the ith gene is covered by the selected drugs. The

binary cost vector y is derived from y0, yi ¼ 1 if y0i � 1; otherwise, yi ¼ 0.

The value of yi indicates whether the ith gene is covered. We note that in

vectors y and y0, the first p elements are associated with the on-target

genes and the next q elements are associated with the off-target genes.

The relation between a given disease D and the associated drugs M

can be represented using a binary matrix B, where the rows are indexed

by the on-targets (p) and off-targets (q), and the columns represent the

drugs. Bim ¼ 1 if the ith gene in D is covered by the mth drug in M;

otherwise, Bim ¼ 0. The nonzero elements in the product vector of B

and x indicate the corresponding genes targeted by a selection of drugs.

The drug–drug adverse interaction effects are encoded in L, a l�m

binary matrix where, for each row k, Lki ¼ Lkj ¼ 1 if the drugs Mi and

Mj have an adverse effect when used together.

The intuition of the MILP formulation is as follows. The equality

constraint (2) counts the number of times that an on-target or an off-

target is covered by the selected drug combination. However, y0 cannot be

directly used in the objective cost function (1). Thus, the binary cost y is

introduced and related to y0 by the inequality constraints (3) and (4). The

inequality constraint (3) requires yi ¼ 1 if y0i � 1. For that, the value of b

needs to be at least the maximum value of all y0i. The inequality constraint

(4) guarantees that yi ¼ 0 whenever y0i ¼ 0. The maximum number of

drugs for any feasible solution is bounded by the inequality constraint

(5). The inequality constraint (6) guarantees any feasible solution to avoid

the drug–drug adverse effects encoded in L. In this article, we solved

BTSC problem using the GNU Linear Programming Kit package

(http://www.gnu.org/software/glpk/). MOTSC can be formulated simi-

larly (Supplementary Text S2). The dual problems of BTSC and

MOTSC are further discussed in the Supplementary Texts S3 and S4.

2.5 Iterative search and online tool

To make our approach more accessible in practice, we developed a web-

based interactive tool (http://www.drug.liuzlab.org/) that will allow users

to iteratively refine the search results. Both BTSC and MOTSC are im-

plemented with the options to filter out drugs based on approval status,

drug–drug adverse interaction and drug action direction. In addition, our

web tool can also generate the output result files for Cytoscape visual-

ization (Shannon et al., 2003).

3 RESULTS

3.1 Time complexity and accuracy analysis

To evaluate the time complexity and accuracy of our algorithm,

we compared it with exhaustive search (ES) on a simulated
dataset. According to the formulation in Section 2.4, the simu-

lated dataset is controlled by four parameters: (i) the number of
columns in B, which represents the number of drugs associated
with a disease gene set; (ii) the number of rows in B, which

represents the total on-target and off-target space; (iii) the dens-
ity of B, which represents the percentage of genes targeted by a

drug; and (iv) the value of p, which represents the number of
on-targets.
The first parameter, the number of columns in B, is the most

important factor affecting the running time of ES. Therefore, we
generated B by varying the column size from 10 to 30 with a step

size equal to 2. At the same time, the second parameter was set to
1000, and B was sampled from a Bernoulli distribution with

hitting probability equal to 0.01 (the third parameter). In add-
ition, we further removed those rows in B for which the sum
across the columns is equal to 0. We sampled p indexes (the

third parameter) of the rows in B, with a sampling rate equal
to 10%. Then, we simulated the data 10 times with each varying

number of the columns in B, applied BTSC and ES to find
the solution x and compared their differences in the cost and

running time.
Our results demonstrated that there is no difference in the cost

function between the BTSC and ES solutions. However, the

running time of ES increases exponentially, while BTSC tends
to generate the correct results significantly faster (Fig. 1). From

these results, we found that ES is impractical even for finding
combinations among a small number of drugs. For example, a

search for combinations among 30 drugs using ES will take �4.7
days to get the optimal solution. However, BTSC can obtain the
optimal solution within 9 s. We also varied the other three par-

ameters in simulation. There is still no cost difference between
BTSC and ES, and the effects of these three parameters on the

running time difference are much less important than that of the
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first parameter (data not shown). Similar results were obtained

on MOTSC (Supplementary Fig. S1). Thus, through this simu-

lation, we demonstrated that our algorithms can achieve high

accuracy with much faster running time.
To demonstrate the power of our approach in searching for

optimal drug combinations, we applied it on six disease gene sets:

acute myocardial infarction (AMI), EGFR-PI3K-AKT-mTOR

(EPAM) pathway, HTN, type 2 diabetes mellitus (T2DM),

Parkinson’s disease (PD) and schizophrenia (SZ). All the

search parameters used for the following results are available

in the Supplementary Text S5. All the following networks are

visualized using Cytoscape (Shannon et al., 2003). Drugs are

represented using DrugBank names, except that drugs with

long names are represented using DrugBank IDs. Further details

are provided in the online document.

3.2 Acute myocardial infarction

AMI is the irreversible necrosis of heart muscle with the usual

cause that a coronary artery is obstructed by an acute thrombus.

The AMI-related 20 genes were derived from BioCarta AMI

pathway (http://www.biocarta.com), which is collected in the

Molecular Signatures Database (version 3.1) (Liberzon et al.,

2011; Subramanian et al., 2005). From 35 associated drugs,

BTSC predicted that streptokinase, fondaparinux so-

diumjenoxaparin, DB04134 and DB07376 can be combined to

target the AMI gene set (Fig. 2).
In the four-drug combination, streptokinase is able to dissolve

blood clots that have formed in the blood vessels. Fondaparinux

and enoxaparin are anticoagulants that help prevent the forma-

tion of blood clots. The coadministration of streptokinase and

fondaparinux in a published cohort of ST-elevation myocardial

infarction patients significantly reduced the risk of death, recur-

rence and severe bleeding (Peters et al., 2008). The combination

of streptokinase and enoxaparin is effective in patients with AMI

(Giraldez et al., 2009; Simoons et al., 2002).
Two experimental compounds, DB04134 and DB07376, were

also identified in the solution. DB04134 is an antifibrinolytic

agent that acts by inhibiting plasminogen activators that have

fibrinolytic properties. DB07376 is an anticoagulant that can

prevent blood clotting. Because these two compounds tar-

get different AMI genes, the use of these two compounds

in combination with streptokinase and/or fondaparinux

sodiumjenoxaparin may exert additional benefits in treating

AMI patients.
This result indicated that BTSC is able to identify known drug

combinations as well as novel compounds that are not covered

by existing therapies.

3.3 EPAM pathway

EPAM pathway plays an important role in a lot of cellular

processes and is abnormally activated in a variety of human

diseases including cancer and neurological disorders.

Eighteen genes in the EPAM pathway were obtained from

Hennessy et al. (2005) and Morris et al. (2011). From 41 asso-

ciated drugs, BTSC predicted that lapatinib, everolimus,

DB08059, DB07812 and DB06831 can be combined to target

the EPAM pathway (Fig. 3).
In the five-drug combination, lapatinib is a selective inhibitor

developed for both EGFR and ERBB2 (Diaz et al., 2010;

Opdam et al., 2012). Everolimus, a derivative of rapamycin,

can act as an mTOR inhibitor and block the signal transduction

for cell proliferation. Through literature search, we discovered

that the combination of lapatinib and everolimus shows effi-

cacy in patients with advanced cancers in a phase I study

(Gadgeel et al., 2013). This combination is also under a clinical

Fig. 2. The disease–gene–drug network of AMI. The disease gene set

name AMI is represented using a cyan hexagon, and there are 20 genes

(red, orange or chocolate circles) in the AMI gene set. Four (green

squares) of 35 associated drugs (green or gray squares) selected by

BTSC can cover seven AMI genes (red circles) with no known off-

target. Eight genes (orange circles) have no associated drugs, and five

genes (chocolate circles) associated with drugs are not covered by the

selected drug combination

Fig. 1. Running time difference between BTSC and ES. The number of

associated drugs is simulated from 10 to 30 with a step size equal to 2.

Each data point represents the average running time of 10 replicates. For

the simulated data with 30 associated drugs, ES takes �4.7 days, whereas

BTSC needs only 9 s
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trial (NCT01272141) in patients with advanced triple-negative

breast cancer and under a phase 1b/2 clinical trial

(NCT01783756) for treatment of HER-2 positive breast cancer

with central nervous system metastasis.
One consequence of mTOR inhibition by rapamycin or its

derivatives is the loss of inhibition on PI3K and AKT, resulting

increased pathway activity. In addition, patients treated with

EGFR inhibitors often develop drug resistance through second-

ary mutations (Kobayashi et al., 2005). To address these issues,

our combinatorial therapy selected DB08059 (wortmannin), a

known inhibitor of PI3K, and an experimental inhibitor

(DB07812) of AKT and GSK3�. Therefore, simultaneously tar-

geting multiple genes in the EPAM pathway will offer the hope

to increase the efficacy of drug treatment and delay the develop-

ment of drug resistance.
This result indicated that BTSC is effective in identifying op-

timal drug combination to target multiple components of an

aberrant pathway.

3.4 Hypertension

HTN or high blood pressure is a chronic medical condition char-

acterized by the elevated blood pressure in the arteries. Yue et al.

(2006) curated a set of 26 HTN-related genes including key regu-

lators in the renin–angiotensin pathway, endothelin regulation,

natriuretic peptide regulation and bradykinin–kallikrein path-

way. From 77 associated drugs, BTSC predicted that the

combination of bupranolol, triamterene, chlorthalidone, sitaxen-
tan and remikiren could be effective for treating HTN (Fig. 4).
In the five-drug combination, bupranolol is a nonselective

beta blocker, triamterene is a potassium-sparing diuretic, and
chlorthalidone is a thiazide diuretic. The combination of bupra-

nolol and triamterene has been well documented as an effective
agent for HTN treatment (Schrey, 1981). The combination of

triamterene and chlorthalidone shows clinical efficacy in redu-
cing blood pressure, and keeping serum potassium concentration

from decreasing too much (Spiers and Wade, 1996).
Two other HTN drugs, sitaxentan and remikiren, were also

identified in the solution. Sitaxentan is an endothelin receptor
antagonist, and remikiren is a renin inhibitor. Because these two

drugs target different pathways, they may provide additional
benefits for patients who are not responsive to the above drug

cocktails.
This result indicated that BTSC is also effective in identifying

optimal drug combination to target multiple altered pathways.

3.5 Type 2 diabetes mellitus

T2DM is a chronic metabolic disorder in which blood glucose is

increased to a high level due to altered insulin signaling. We
extracted Kyoto Encyclopedia of Genes andGenomes insulin sig-

naling pathway (http://www.genome.jp/kegg/) and REACTOME
insulin receptor signaling cascade pathway (http://www.reactome.

org) from the Molecular Signatures Database (version 3.1)
(Liberzon et al., 2011; Subramanian et al., 2005). These two path-

ways share 41 genes, which were used as T2DM-related genes for

optimal drug combination search. From 13 associated drugs,
BTSC predicted that insulin aspartjinsulin detemir, metformin,

everolimusjtemsirolimus and pegademase bovine could be com-
bined to treat T2DM (Supplementary Fig. S2).
In the four-drug combination, insulin aspart is a fast-acting

insulin analog, while insulin detemir is a long-acting insulin ana-
log. Metformin can help control blood sugar levels. Insulin

including insulin aspart and insulin detemir in combination
with metformin is routinely used in the treatment of T2DM

(Hollander et al., 2011; Kvapil et al., 2006; Wulffelé et al., 2002).
Inhibition of mTOR leads to upregulation of insulin receptor

substrate and increased activity of AKT (O’Reilly et al., 2006),
thus being able to ameliorate insulin resistance. Everolimus and

temsirolimus, two inhibitors of mTOR selected by BTSC, are
worthy of further testing in combination with insulin and/or

metformin to combat T2DM.
This result demonstrated that BTSC has the ability to identify

well-known combination regimen regularly used in disease man-
agement and promising combination component with additional

beneficial effect.

3.6 Parkinson’s disease

PD is a movement disorder caused by depletion of brain dopa-

mine. We obtained 10 genes involved in dopamine synthesis and
metabolism pathway from Youdim et al. (2006). From 28 asso-

ciated drugs, BTSC predicted that the combination of levodopa,
carbidopa, entacapone, selegiline and metyrosine is able to fully

cover PD-related genes (Supplementary Fig. S3).
Among the five selected drugs, there are several well-known

combinations that have already been used to treat PD. For

Fig. 3. The disease–gene–drug network of EPAM. The disease gene set

name EPAM is represented using a cyan hexagon, and there are 18 genes

(red, orange or chocolate circles) in the EPAM gene set. Five (green

squares) of 41 associated drugs (green or gray squares) selected by

BTSC can cover 10 EPAM genes (red circles) with no known off-

target. Six genes (orange circles) have no associated drugs, and two

genes (chocolate circles) associated with drugs are not covered by the

selected drug combination
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example, the triple combination of levodopa (a dopamine re-

placement), carbidopa (a dopa decarboxylase inhibitor) and

entacapone (a catechol-O-methyltransferase inhibitor) has been

approved by Food and Drug Administration (FDA) for treating

PD (Hauser, 2004). In addition, selegiline (a monoamine oxidase

inhibitor) in combination with levodopa, carbidopa

or entacapone shows improved treatment of PD (Cedarbaum

et al., 1991; Elizan et al., 1991; Lyytinen et al., 1997).

This result further demonstrated the good performance of

BTSC in identifying optimal drug combination.

3.7 Schizophrenia

SZ is a chronic, severe and disabling brain disorder affecting

�1% of the population worldwide and is linked to the dysfunc-

tion of dopamine, gamma-aminobutyric acid, glutamate and

serotonin pathways. We extracted 28 SZ-related receptor and

transport genes involved in these four pathways from the

Schizophrenia Gene Resource database (Jia et al., 2010; Sun et

al., 2008, 2009).
From 102 associated drugs, BTSC predicted that haloperidol,

sertraline, dolasetron, methohexital and vilazodone could be

combined to treat patients with SZ (Supplementary Fig. S4).

To validate the prediction, we did a literature search and dis-

covered that the coadministration of haloperidol and sertraline

to schizophrenics results in clinical improvement of negative

symptoms and aggravation of extrapyramidal symptoms

(Lee et al., 1998).

BTSC also unveiled possible new uses of three FDA-approved

drugs that have not been previously used in SZ. In particular,

dolasetron targeting the serotonin pathway has been used to

treat nausea and vomiting following chemotherapy. Because

the serotonin pathway plays a key role in mood control, this

drug may improve the existing treatment schema. Such drugs

could be reused to target SZ in a cost-effective way because

their safety and side effects have already been well studied.
This result not only further demonstrated the good perform-

ance of BTSC in optimal drug combination prediction, but also

suggested the potential utility of BTSC in drug repositioning.

3.8 Performance on DCDB

We further performed an independent validation of BTSC by

applying it to predict the FDA-approved drug combinations in

Fig. 4. The disease–gene–drug network of HTN. The disease gene set name HTN is represented using a cyan hexagon, and there are 26 genes (red,

orange or chocolate circles) in the HTN gene set. Five (green squares) of 77 associated drugs (green or gray squares) selected by BTSC can cover 10 HTN

genes (red circles) with only one off-target (blue circle). Seven genes (orange circles) have no associated drugs, and nine genes (chocolate circles)

associated with drugs are not covered by the selected drug combination
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the Drug Combination Database (DCDB) (Liu et al., 2010).
Using the FDA-approved drug combinations derived from
DCDB, we first generated an approximately gold standard data-

set of 68 known associations between disease gene sets and drug
combinations. We then performed search to see the extent to
which these approved drug combinations can be recovered by

our online tool. Totally, 59 of 68 (recovery rate ¼ 86.8%)
approved drug combinations can be fully or partly recovered,
whereas 55 of 68 (recovery rate ¼ 80.9%) approved drug com-

binations can be fully recovered. Details are provided in the
Supplementary Text S6. This result demonstrated that BTSC is
able to identify known drug combinations with high accuracy in

a large scale.
Taken together, these results indicated that BTSC has good

performance in predicting both known and novel drug combin-

ations. In addition, MOTSC identified similar, but slightly dif-
ferent, drug combinations when applied to the five disease gene

sets that are not fully covered by BTSC (Supplementary Figs
S5–S9). The difference between the results of BTSC and
MOTSC further indicated that MOTSC is more applicable if

the user has a specific requirement on the full coverage of the
input genes. Thus, BTSC and MOTSC provided two comple-
mentary ways to identify optimal drug combination.

4 CONCLUSION

Optimal combinatorial therapy discovery is an important and
challenging problem. In this article, we introduced two comple-
mentary approaches for this problem and solved them using

MILP. There are many heuristic search algorithms that can pro-
vide greedy solutions for this problem. However, we are inter-
ested in finding the global optimum solution, and these heuristic

search algorithms cannot provide such accuracy. Therefore, we
excluded this category of algorithms in solving the optimal com-
binatorial therapy problem and did not compare our approaches

with any heuristic search algorithms. Instead, we compared our
approaches with exhaustive search and demonstrated that our
algorithms can obtain the same optimum solution with much

faster running time. Application of our approach on real disease
gene sets demonstrated its good performance in identifying
known drug combinations as well as predicting novel drug com-

binations. In addition, our approach has the potential to unveil
new functions of existing drugs for drug repositioning.
We have developed an online tool for our proposed algo-

rithms. The online tool provides many features, such as exclusion
of adverse drug–drug interaction, constraint on the number of

drugs, iterative search, highly efficient solver and email notifica-
tion. In addition, the online tool allows the user to assign the
weight balance on the on-target and off-target sets as well as to

choose how to handle drugs with opposite actions on input
genes. The online tool is also flexible to include new constraints,
such as the importance weight of input disease genes and the

penalty weight of potential off-target genes. The availability of
the online tool will make our algorithm accessible not only to the
computational biologists but also to the bench scientists.

The mathematical analysis presented here provides a general
framework for the solution of multi-target therapeutic design.
Although running our algorithm on arbitrarily large set of

drugs is not possible due to the nature of NP-hard problem,

most of the real applications fall into the small and mid-size

categories. In practice, our algorithm and online tool demon-

strate accurate and fast performance on those applications.

One weakness of our approach stems from its use of incomplete

drug–target interaction data. However, in recent years, a signifi-

cant amount of effort has been devoted to drug target annotation

and prediction. With the improved size and quality of such data,

we believe that our approach and web-based tool will play an

increasing role in drug discovery and development. In addition,

personal variants in protein-coding genes can be easily obtained

with the advances in next-generation sequencing technologies.

Owing to the heterogeneity of complex diseases, even individual

patients with the same disease may have a distinct set of causal

genes and thus will need different treatment strategy. This prob-

lem is challenging and cannot be resolved in an effective way

now. However, our tool offers one way to help predict optimal

drug combination for targeting individual set of disease genes,

which will have a non-trivial contribution to personalized

medicine.
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