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ABSTRACT

Motivation: The recently released Infinium HumanMethylation450

array (the ‘450k’ array) provides a high-throughput assay to quantify

DNA methylation (DNAm) at �450 000 loci across a range of genomic

features. Although less comprehensive than high-throughput sequen-

cing-based techniques, this product is more cost-effective and

promises to be the most widely used DNAm high-throughput meas-

urement technology over the next several years.

Results: Here we describe a suite of computational tools that incorp-

orate state-of-the-art statistical techniques for the analysis of DNAm

data. The software is structured to easily adapt to future versions of

the technology. We include methods for preprocessing, quality as-

sessment and detection of differentially methylated regions from the

kilobase to the megabase scale. We show how our software provides

a powerful and flexible development platform for future methods. We

also illustrate how our methods empower the technology to make

discoveries previously thought to be possible only with sequencing-

based methods.

Availability and implementation: http://bioconductor.org/packages/

release/bioc/html/minfi.html.
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1 INTRODUCTION

DNA methylation (DNAm) is a chemical modification of DNA
that plays a key role in regulating gene expression. Epigenetic
mechanisms, including DNAm, allow a single genome to give

rise to hundreds of phenotypically diverse cell types. In addition

to its importance in normal development, DNAm is thought to

play an important role in diseases when dysregulated.

Chemically, DNAm involves the addition of a methyl group to

a cytosine base (C), forming methylcytosine. In adult mamma-

lian cells, this modification occurs almost exclusively at Cs

immediately followed by a G in the 50–30 direction, denoted by

CpG. CpGs are depleted in mammalian genomes and those that

remain tend to cluster in regions termed CpG islands

(Gardiner-Garden and Frommer, 1987) that are enriched near

gene promoters.

The health implications of deciphering the DNAm code have

recently received much attention (Dawson and Kouzarides, 2012;

Feinberg, 2007). DNAm is best understood in the context of

cancer biology, where it is clear that aberrant gains and losses

of DNAm almost universally accompany the initiation and pro-

gression of tumors (Feinberg and Tycko, 2004). Much of the

excitement surrounding epigenetics relates to the promise of

therapies that reverse disease-associated epigenetic alterations,

thereby activating or silencing aberrantly expressed disease-

related genes.
As a result of DNAm’s role in developmental and disease

biology, there is great interest in measuring DNAm at a compre-

hensive genomic scale. Although next-generation sequencing

technologies offer several promising new approaches (Krueger

et al., 2012), currently, Illumina Infinium arrays are the most

widely used technology for this purpose. For example, The

Cancer Genome Atlas (TCGA) project is using this array and

has already processed46000 samples (as of September 30, 2013)

and made the data publicly available (http://cancergenome.nih.

gov/). Furthermore, large cohort studies are becoming interested

in measuring methylation and are expected to use cost-effective

arrays with some studies already published (Rakyan et al., 2011).

This work introduces a software development framework for

the analysis of Illumina Infinium methylation arrays. Although

the design is general, the current version of our software focuses

on the Illumina Infinium HumanMethylation450 Bead array (the

‘450k’ array), their most recent product. This array has been

extensively described (Bibikova et al., 2011), but we include a
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short description here for completeness. The two-color array in-
terrogates the methylation status of 485 512 methylation loci
(mostly CpG sites, but a small number of cytosines outside of

the CpG context are also present), using bisulfite-converted
DNA. For each methylation locus, two signals of interest are
recorded. One signal measures the amount of methylated DNA

(Meth), and the other signal measures the amount of unmethy-
lated DNA (Unmeth). In principle, the proportion Meth/
(UnmethþMeth) is the methylation ratio (referred to as beta

value by Illumina’s software) in the population of cells from
which we extract DNA. The methylation ratio, or its logit trans-
form, is the quantity used in downstream analysis. In the

scientific literature related to the 450k platform, logit-
transformed beta values are referred to as M-values.
The Meth and Unmeth signals do not relate to the green and

red channels in a straightforward way. The 450k platform
includes two different methylation assay designs, referred to as
Infinium I and Infinium II, or type I and type II. Each methy-

lation locus is interrogated by one of these designs. For a type I
locus, the Meth and Unmeth signals are measured by two paired
probes, with a given locus using either the red or green signal

from these probes. Type II loci are assayed using a single probe,
with Meth and Unmeth signals derived from the green and red
channels, respectively. In addition to the methylation loci, the

array contains a small number of control probes and 65 probes
measuring common single-nucleotide polymorphisms (SNPs), in-
tended for sample tracking.

The reasoning behind using two different probe designs is
simple, but illuminating for potential developers. Type II
probes use only one probe per methylation locus and hence

allow more loci on the array, at a fixed array size. However,
owing to the chemistry used by the type II probe design, type
II probes can only tolerate up to three CpGs within the 50-bp

probe. The type I design tolerates more CpGs within the 50-bp
probe, but assumes that all methylation loci in the probed
sequence are in the same state, i.e. the probe measuring Meth

assumes all CpGs within the probed sequence to be methylated,
and the probe measuring Unmeth assumes all CpGs in the
probed sequence are unmethylated. The ability to tolerate

more CpGs in the probe allows type I probes to be used in
regions of high CpG density, such as CpG islands (CGI).
Until recently, studies of DNAm have focused largely on CGI.

For example, the Illumina products that preceded the 450k
included the widely used Infinium 27k array exclusively targeted
CGI, primarily at gene promoters. However, Irizarry et al.

(2008), using a non–CGI-centric array design, referred to as com-
prehensive arrays for relative methylation (CHARM), demon-
strated that greater variability is present in regions outside

CGI and coined the term ‘CGI shores’ for regions within 2kb
of CGI. The 450k array design includes a set of regions identified
as tissue- or cancer-specific using CHARM data, including CGIs

and CGI shores, as well as probes in other regions, which
Illumina refers to as shelf and open sea (Table 1).
Here we present a software suite containing an assortment of

new functionality for the analysis of this array, but also contain-
ing an infrastructure useful as a development platform for the
research community. We note that Subset-quantile Within Array

Normalization (SWAN) (Maksimovic et al., 2012), one of the
first alternative preprocessing methods, was developed by

another group using our infrastructure. Among the tools de-

veloped by our group, we specifically describe bump hunting

(Jaffe et al., 2012) and block finding (Hansen et al., 2011) cap-

abilities. Although current data analyses for these arrays have

relied on single probe analysis (Marabita et al., 2013; Pidsley

et al., 2013; Touleimat and Tost, 2012; Wessely and Emes,

2012), we have previously pointed out the advantages of borrow-

ing strength across neighboring loci (Aryee et al., 2011; Doi et al.,

2009; Jaffe et al., 2012). Furthermore, a recent finding related to

cancer was the observation of large genomic [10–1000kb] hypo-

methylated blocks (Hansen et al., 2011). We introduce an ap-

proach that permits the discovery of hypo- and hypermethylated

blocks with 450k data. We illustrate the advantages of our soft-

ware with publicly available data.

2 METHODS

2.1 Annotation

Meaningful analysis of 450k data depends on annotating probes with

genomic location and their relationship to islands, genes and other gen-

omic features. Although probe sequence is fixed as part of the array

design, annotation can change for a number of reasons, such as a

change of the human genome build. For this reason, our software pack-

age separates data from annotation and annotation from array design. By

annotation we mean how methylation loci are associated with genomic

locations and nearby features. By design we mean how probes on the

array are matched with relevant color channels to produce the Meth and

Unmeth signals. At the time of writing, the annotation information was

stored in a separate Bioconductor (Gentleman et al., 2004) package

IlluminaHumanMethylation450kanno.ilmn12.hg19, and the array design

was stored in IlluminaHumanMethylation450kmanifest. The annotation

package will change, but we will use careful version control such that

any given analysis can be reproducible.

We also maintain independence by defining two types of data classes

for the experimental data: one stores data independently of annotation

and the other includes genomic annotation. The two types of classes are

distinguished by the presence or absence of the word Genomic in their

class name as explained in detail in the next section.

2.2 Representing methylation data in R

To enable flexible development of preprocessing and analysis methods,

we operate with a number of different representations of the array data

through S4 classes (Chambers, 1998). Our software starts with .idat files,

a binary format containing the raw red and green channel intensities. The

‘RGChannelSet’ class organizes these data into an object for which

Table 1. Number of 450k array loci stratified by probe design and gen-

omic region

Region type Probe design Total

I II

CpG Island 77 674 72 580 150 254

CpG Island Shore 22 371 89 696 112 067

CpG Island Shelf 6913 40 231 47 144

Open sea 28 518 147 529 176 047

Total 135 476 350 036 485 512
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several useful accessor methods are available. Once these data are pro-

cessed into methylation measurements, they can be stored in four add-

itional classes representing several stages of preprocessed data:

‘MethylSet’, ‘GenomicMethylSet’, ‘RatioSet’ and ‘GenomicRatioSet’.

The ‘Genomic’ prefix in the class name indicates that methylation loci

have been associated with a genomic location. This is a nonreversible

transformation, as it entails choosing a reference genome and discards

unmapped probes. The operation is achieved by the function

‘mapToGenome’, which permits the user to choose a human genome

build. The MethylSet and GenomicMethylSet classes directly represent

the Meth and Unmeth measurements and are useful for preprocessing

routines delivering final measurements in these channels, such as the nor-

malization routines currently included with Illumina’s GenomeStudio

Software. The RatioSet and GenomicRatioSet classes represent the

data as methylation ratios (beta values) or M-values (log ratios of beta

values). Both classes include the option of including a copy number meas-

urement [e.g. CN¼ log2(MethþUnmeth)]. The ratioConvert function

converts MethylSet to RatioSet and GenomicMethylSet to

GenomicRatioSet. This design provides a flexible framework for method

development and analyses. The natural starting point for analysis is usu-

ally the GenomicRatioSet class.

Note that although our software makes it particularly easy to import

raw data from the primary .idat files, it is also possible to import pro-

cessed data exported from GenomeStudio (Illumina’s default software),

which is often encountered in public data repositories. These data can

also be conveniently stored in GenomicRatioSet objects.

2.3 Preprocessing/normalization

Preprocessing raw microarray intensities into usable methylation meas-

urements is an important step in data analysis (Triche et al., 2013).

Several successful techniques have been developed for gene expression

arrays, with quantile normalization being one of the most popular tech-

niques (Bolstad et al., 2003). Illumina developed a new procedure that did

not take full advantage of these previous developments (our software

includes preprocessIllumina: an implementation of this procedure that

can be applied to RGChannelSets). Several groups have found that this

procedure can be improved upon by borrowing ideas from normalization

techniques developed for expression arrays (Maksimovic et al., 2012;

Pidsley et al., 2013; Teschendorff et al., 2013; Touleimat and Tost,

2012; Triche et al., 2013). However, quantile normalization was not

used in part because these groups noticed that the empirical distributions

of type I and type II were different (Fig. 1). We implemented a version of

subset quantile normalization (Wu and Aryee, 2010) that takes into ac-

count this characteristic. This normalization procedure is essentially simi-

lar to the one previously presented (Touleimat and Tost, 2012), but has

been independently reimplemented owing to the present lack of a released

supported version. We apply our procedure to the Meth and Unmeth

intensities separately. We force the distribution of type I and type II to be

the same by first quantile normalizing the type II probes across samples

and then interpolating a reference distribution to which we normalize the

type I probes. Because probe types and probe regions are confounded

(Table 1) and we know that DNAm distributions vary across regions

(Fig. 1), we stratify the probes by region before applying this interpol-

ation. For the probes on the X and Y chromosomes, we normalize males

and females separately. Sex is determined by the getSex function using

copy number information. The stratified quantile normalization method

is implemented by the preprocessQuantile function (the function does no

background correction and removes zeros using the fixMethOutlier func-

tion). Note that this algorithm relies on the assumptions necessary for

quantile normalization to be applicable and thus is not recommended for

cases where global changes are expected, such as in cancer–normal com-

parisons. We also note that whereas most currently available methods

(e.g. Illumina, Beta MIxture Quantile dilation (BMIQ), SWAN) are

within-array procedures, our stratified quantile normalization procedure

involves both within- and between-sample normalization.

2.4 Quality assessment

Quality assessment is an important step in microarray analysis. Detecting

and removing low-quality samples that normalization cannot correct has

been shown to improve downstream results (McCall et al., 2011). As

larger datasets using the 450k array have become available, our ability

to detect low-quality samples has improved. Our infrastructure permits

the development of such statistical tools. We have found it useful to

inspect the median of the Meth and Unmeth signals for each array. We

demonstrate this feature in Section 3 using a publicly available dataset

composed of 100 arrays hybridized to DNA from whole blood.

2.5 Annotating probes affected by genetic variation

It has been noted that the manufacturer’s array design manifest contains

incomplete annotation of SNPs at probed sites and that these polymorph-

isms may affect DNAm measurements (Dedeurwaerder et al., 2013; Price

et al., 2013; Touleimat and Tost, 2012; Wang et al., 2012; Yousefi et al.,

2013; Zhi et al., 2013). Therefore, we have included a more comprehen-

sive SNP annotation in minfi. We obtained all common SNPs from

dbSNP137 (minor allele frequency41%) within each 450k probe and

identified whether SNPs were at the single base extension site (position

0), at the proximal CpG on the probe (positions 1–2) or within the probe

body (positions 3–50). Using this SNP annotation, which is available in

the package, users can decide the stringency of probe filtering appropriate

for their analysis. We have developed scripts for this purpose, which are

included in minfi.

2.6 Bump hunting

Frequently, the goal of a study involving DNAm profiling is to identify

regions of contiguous CpGs associated with a phenotype of interest. For

example, we may find a CGI showing higher methylation levels in cancer

cells compared with normal controls. We have developed an approach for

identifying and attaching statistical uncertainty to such regions. These

methods are implemented in the bumphunter Bioconductor package.

The minfi package interfaces seamlessly with bumphunter and provides

a more robust method for detecting differentially methylated loci than the

standard approach of analyzing each CpG individually (Marabita et al.,

2013; Pidsley et al., 2013; Touleimat and Tost, 2012; Wessely and Emes,

2012). Many of the loci on the 450k array are clustered into regions

similar to those found on CHARM arrays, with 315 420 being located

Fig. 1. Beta density estimates for a typical sample showing type I (solid)

and type II (dashed) loci located in CGIs, CGI shores, CGI shelves and

open sea regions
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within 300bp of another probed locus. The array includes 72 611 such

clusters with the average region spanning 332bp and containing an aver-

age of 4.3 loci. Therefore, we can apply the original bumphunter imple-

mentation as described in (Jaffe et al., 2012). To do this, the bumphunter

package includes the clusterMaker function, which, given a

maximum gap between probes, groups them into clusters. We perform

a probe-level regression and smooth the coefficient of interest within

clusters to identify bumps along the genome. We demonstrate the advan-

tages of identifying regions in Section 3.

2.7 Block finding

Because bump hunting focuses on methylation changes on the scale of

gene promoters (1–2kb), it is not designed to find long-range alterations

such as the recently identified hypomethylated blocks (Berman et al.,

2012; Hansen et al., 2011). Blocks have, to date, only been detected

using whole-genome bisulfite sequencing because microarrays include

only select regions of the genome. However, we have developed a

method that uses �170 000 open sea probes on the 450k to detect long-

range changes in the methylation status. To do this, we first use the

cpgCollapse function to group adjacent open sea loci into clusters with

a default maximum gap of 500bp and a maximum cluster width of

1500bp (Fig. 2). The loci within each cluster are then averaged, resulting

in a single mean estimate per cluster. The resulting cluster centers are then

grouped into large regions (Fig. 2) in which the bump hunting procedure

is applied with a large (250 KBþ) smoothing window. In Section 3, we

demonstrate that published hypomethylated blocks identified from

whole-genome bisulfite sequencing data can be recovered with this ap-

proach. However, estimating the precise boundaries of these blocks is

constrained by the resolution of the array.

3 RESULTS

3.1 Preprocessing/normalization

To compare preprocessing algorithms, we hybridized the same

liver DNA and the same placenta DNA to 58 plates, giving us

124 technical replicates (69 liver and 55 placenta, GEO

GSE52731). We then preprocessed these data with Illumina’s

default method, SWAN (Maksimovic et al., 2012), BMIQ

(Teschendorff et al., 2013), wateRmelon DASEN (Pidsley

et al., 2013) and our implementation of stratified quantile nor-

malization (preprocessQuantile) after dropping one low-quality

liver sample. To assess precision, we computed the standard de-

viation across the technical replicates for each probe. Because of

the known mean–variance relationship with these measurements,

we also computed the average methylation across probes.

We then computed a smoothed curve to summarize the scat-

terplot of standard deviations versus means for all probes

(Fig. 3A and Supplementary Fig. S1) and for probes stratified

by region type (Supplementary Fig. S2). Most methods perform

similarly, although our preprocessQuantile procedure and

DASEN generally outperform other methods in terms of redu-

cing variability among technical replicates. We also performed

the analysis on the M-scale to confirm that results were similar

(Supplementary Figs. S3 and S4). To confirm that these gains in

precision were not due to reduced sensitivity, we compared the

across-replicate average difference between liver and placenta

(Fig. 3B–E). We also observed that our procedure makes type

I and type II loci comparable (Supplementary Fig. S5).

3.2 Quality assessment

We read and processed the raw data from 100 randomly selected

individuals from a DNAm study of aging (Hannum et al., 2012)

such that men, women, Caucasians and Hispanics were equally

represented. We processed these data with the Illumina default

procedure. Principal component analysis and multidimensional

scaling plots are useful for exploring distances between samples

(Leek et al., 2010). A multidimensional scaling plot of the methy-

lation values reveals (not surprisingly) that sex is the biggest

source of variability (Fig. 4A). Note that our getSex function

automatically classifies the samples into two groups. We com-

pute the median for both Meth and Unmeth signals for each

array and display these in a scatterplot (Fig. 4B). This quality

control measure clearly identifies two samples as outliers. Notice

that 495% of the samples have median log (base 2) intensity

values above 11.5. DNAm density plots (Fig. 4C) show that

Fig. 2. Illustration of locus-collapsing procedure for block finding. Loci

in CpG islands, shores, shelves and open sea regions are represented by

green, orange, purple and pink, respectively. (A) The boxes represent

locus groups, each of which is collapsed to a single mean methylation

value. We group loci within the same CGI, the same CGI shore or the

same CGI shelf, as well as adjacent open sea probes that are within

500bp of each other. (B) The first row of points shows the midpoints

of collapsed open sea clusters. These are grouped into long-range clusters

and used for block finding. The second row of points shows all collapsed

clusters across all region types with color representing region type

Fig. 3. Accuracy and precision assessment of preprocessing algorithms.

(A) For each locus, we compute the average and standard deviation

across liver technical samples. The resulting loess curve fitted to the

standard deviation versus average scatterplot for each method is

shown. (B) Using the same samples, we compute the average difference

between liver and placenta (effect size) for each locus. We then plot the

resulting effect sizes for each preprocessing method against effect sizes

from the default Illumina procedure
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the outlier samples also have a distribution of DNAm values on

the beta scale that is different from other samples.

3.3 SNPs influence probe behavior in small samples

For the blood data described above, we selected eight 68-year-old

individuals. Four of these were Caucasian and four Hispanic. We

computed the difference in average methylation between the two

ethnicities. Probes with SNPs showed larger differences

(Supplementary Fig. S6A). We then found the closest probe to

each of these SNP-affected probes and removed any pair sepa-

rated by4500bp or where both probes were SNP affected. We
observed much larger differences at the SNP-affected probes

than at the neighboring probes (Supplementary Fig. S6B).

3.4 Bump hunting differentially methylated regions are

more likely to be near a differentially expressed gene

than CpGs identified by single probe analysis

We downloaded and preprocessed raw data from 17 normal

colon and 19 normal lung TCGA samples. We used
preprocessQuantile and normalized all samples together. Note

that in this case, batch is confounded with tissue type. We iden-

tified differentially methylated loci using single probe analysis to

identify differentially methylated positions (DMPs) (Fig. 5B) and

bump hunting to identify differentially methylated regions

(DMRs) (Fig. 5A). To assess the biological relevance of the

two sets of loci, we used the assumption that a subset of differ-

entially expressed genes (DEGs) are epigenetically regulated and

associated with changes in DNAm. Therefore, a candidate dif-

ferentially methylated locus is more likely to be a functionally
relevant true positive if it is in proximity to a DEG. We note that

this evaluation only considers in cis; it does not assess changes in

trans such as methylation changes over distant regulatory

regions. In the absence of a dataset where the truth is known,

this evaluation provides an objective measure for which we have

an a priori expectation.
We downloaded gene expression data from normal lung

[n¼ 20, Gene Expression Omnibus GSE31210 (Okayama et al.,

2012)] and colon samples [n¼ 54, GEO GSE20916 and

GSE41328 (Lin et al., 2006; Skrzypczak et al., 2010)] and pre-

processed these with frozen robust multiarray analysis (McCall

et al., 2010). We associated genes with methylation loci located

within 2 kb of the transcriptional start site. We found that genes

located in proximity to hypermethylated DMRs had a larger

decrease in expression level than genes located near loci identified

through single probe analysis (Fig. 5C). Further, using proximity

to a DEG as one metric of functional relevance, we also assessed

the fraction of differentially methylated loci located within 2kb

of a DEG transcriptional start site. We used a t-test to test for

differential expression between the tissue types and classified

probes with a nominal P50.05 and a fold-change41.5 as dif-

ferentially expressed. We found that regardless of the significance

threshold used to identify differentially methylated loci, DEGs

were consistently more likely to be located near DMRs than

DMPs (Fig. 5D).

3.5 Block finding with 450k can identify

hypomethylation blocks

To assess the effectiveness of the block finding method in

minfi, we compared blocks identified in colon cancer on the

TCGA data (including the cancer samples that go with the

normal samples described above) with those reported in

(Hansen et al., 2011). Using default parameters (see Section 3

above), we identified 1540 hypomethylation blocks in colon

cancer containing five or more collapsed CpG clusters

(P50.01). Although the regions identified using minfi are

based on completely independent colon normal and tumor sam-

ples, we found high agreement with methylation blocks identified

Fig. 5. DMRs associate more strongly with gene expression than methy-

lation differences at single CpGs, as observed in a dataset of normal lung

and colon samples. (A) An example of a tissue-DMR, identified by

bumphunter. The 15 CpGs in the region show concordant methylation

differences. (B) An example of a significant tissue-DMP, identified by a

locus-level limma model. Note that the CpG probes adjacent to the DMP

do not show a methylation difference. (C) Between-tissue differential ex-

pression is greater for genes with a DMR located within 2kb of the

transcriptional start site (left) than for genes with a DMP located

within 2kb of the transcriptional start site (right). (D) A greater fraction

of DMRs is located close to DEG promoters than are DMPs

Fig. 4. Quality assessment plots based on the blood sample dataset.

(A) A multidimensional scaling plot. Color represents reported ethnicity.

(B) Scatterplot of median Unmeth signal versus median Meth signal

value for each sample. Points outside the dashed lines represent cases

were the differences are 40.5. (C) Beta density plots for all samples

with black curves representing samples where the average of the

median Unmeth and Meth is511.5
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in Hansen et al. (2011) (Fig. 6A). Specifically, 99.8% of the top
500 regions identified in the TCGA samples using minfi, sorted

by area, overlap a block identified in Hansen et al. (2011) by at
least 1000 bp (Fig. 6B). Note that Figure 6 shows a gap in the
inferred blocks caused by the lack of probes on the array.

4 DISCUSSION

We have demonstrated several downstream advantages of using

the minfi package. Several preprocessing algorithms are available
and the infrastructure provides a convenient way for developers

to easily implement their techniques as Bioconductor tools. In
our experience, 5–10% of samples are of unusable quality, and
visualization utilities provided by minfi permit users to identify

these samples at the earliest stage of the analysis. By making SNP
annotation available, users can choose to be cautious about

probes that may behave unexpectedly due to the inclusion of a
SNP in the probe sequence. We have demonstrated that DEGs

are more likely to be located near DMRs than CpGs identified
by single probe analysis. Existing methods for identifying DMRs

typically use fixed-size or dynamic windows to group individu-
ally significant DMPs into regions (http://www2.cancer.ucl.ac.

uk/medicalgenomics/champ/). Our software is unique in that it
provides both bump hunting and block finding capabilities, and
the assessment of statistical significance for the identified regions.

Finally, because the package is implemented in Bioconductor, it
gives users access to the countless analysis and visualization tools

available in R.
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