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ABSTRACT

Summary: We present the first public release of our proteogenomic

annotation pipeline. We have previously used our original unreleased

implementation to improve the annotation of 46 diverse prokaryotic

genomes by discovering novel genes, post-translational modifications

and correcting the erroneous annotations by analyzing proteomic

mass-spectrometry data.

This public version has been redesigned to run in a wide range of

parallel Linux computing environments and provided with the auto-

mated configuration, build and testing facilities for easy deployment

and portability.

Availability and implementation: Source code is freely available from

https://bitbucket.org/andreyto/proteogenomics under GPL license. It

is implemented in Python and Cþþ. It bundles the Makeflow engine to

execute the workflows.

Contact: atovtchi@jcvi.org

Received on October 29, 2013; revised on December 30, 2013;

accepted on January 22, 2014

1 INTRODUCTION

Our pipeline is a tool for improving the existing genomic anno-

tations from available proteomics mass spectrometry data.

As most genome annotation pipelines consist of automated

gene finding, they lack experimental validation of primary struc-

ture (Aziz et al., 2008; Markowitz et al., 2008), having to rely on

DNA centric sources of data such as sequence homology, tran-

scriptome mapping, codon frequency, etc. By incorporating the

orthogonal set of data, proteogenomics is able to discover novel

genes, post-translational modifications and correct the erroneous

primary sequence annotations.
The protocol and the large-scale application of our original

pipeline to 46 taxonomically diverse genomes were reported in

Venter et al. (2011). The implementation was tightly coupled

with the internal computation services framework (VICS) at

the J. Craig Venter Institute (JCVI). VICS has never been de-

ployed outside of the JCVI, and the pipeline itself required

manual configuration and building by the developers. It could

only use Sun Grid Engine (SGE) batch queuing system config-

ured for high-throughput computing (HTC) mode in which large

numbers of serial jobs could be efficiently scheduled on a

compute cluster. For these reasons, the original pipeline has

not been made public.
To create the first open source release presented here, we have

redesigned the pipeline to run in a wide range of parallel Linux

computing environments:

� High-performance computing (HPC) clusters, which are set

up to efficiently schedule only large (100sþ of cores) parallel

Message Passing Interface (MPI) jobs under a control of

batch queuing system such as Sun Grid Engine (SGE) and

its clones, Simple Linux Utility for Resource Management

(SLURM) or Portable Batch System (PBS)/Torque. Our

primary targets for this use case were compute clusters of

XSEDE (https://www.xsede.org/), the federation of super-

computers supported by the US National Science

Foundation. XSEDE allocates its resources to outside re-

searchers through a peer-reviewed proposal system. The

biologists will be able to use our software on this major

computational resource.

� High-throughput computing (HTC) clusters widely used as

local bioinformatics computing resources. These clusters are

configured to efficiently schedule large numbers of serial

jobs under a control of batch queuing system.

� A single multi-core workstation without a batch queuing

system (including an extreme case of single-core machine).

The volume of computations in proteogenomics is relatively

high, with �100CPU hours for a typical bacterial genome.

Our pipeline performs such annotation in �3h of wall clock

time on HTC cluster.
We have now designed a fully automated installation proced-

ure preconfigured for several types of specific target systems and

easily adaptable to others through editing of a few configuration

files.
Although several other proteogenomic packages (Chapman

et al., 2013; Kumar et al., 2013; Risk et al., 2013; Sanders

et al., 2011) have been developed in recent years, they were de-

signed for execution on a single workstation. None of the other

publications matched the breadth of application reported for our

pipeline in Venter et al. (2011).
The output files from that study are available at (http://omics.

pnl.gov/pgp/overview.php). The contributed RefSeq updates can

be seen in the Genbank flat files (.gbk) of the corresponding

genomes at the NCBI wherever the proteomics data are listed*To whom correspondence should be addressed.
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as experimental evidence. One example is the Mycobacterium

tuberculosis H37Rv genome (ftp://ftp.ncbi.nih.gov/genomes/

Bacteria/Mycobacterium_tuberculosis_H37Rv_uid57777/NC_

000962.gbk) containing the CDS attributes/

experiment¼‘‘EXISTENCE: identified in proteomics study’’.

2 ARCHITECTURE AND IMPLEMENTATION

2.1 Parallelization strategy

In the present work, our main goal was to make the same pipe-

line protocol portable across different parallel execution envir-

onments that users are likely to encounter. The original

algorithm is embarrassingly parallel for the most part. It pro-

cesses each spectrum file independently throughout all computa-

tionally intensive stages of the algorithm. There is a global

synchronization point in the middle to build a histogram of all

scores for P-value computation. Thus, the pipeline corresponds

to a distributed workflow where multiple serial processes are

executed concurrently following a dependency graph defined

by required input and output files. This model is compatible

with a wide variety of execution environments such as standalone

multicore machines, HTC clusters and, with extra effort, MPI

clusters. The original unreleased implementation used HTC

model tied into VICS and SGE.
We have now achieved the portability across execution envir-

onments by generating and running the same workflow under

the Makeflow engine (http://nd.edu/*ccl/software/makeflow/)

(Thrasher et al., 2010) that provides parallel execution on mul-

tiple types of batch queuing systems as well as on standalone

multicore nodes. On MPI clusters, Makeflow uses ‘glide-in’ ap-

proach that we describe in PGP software manual. In short, the

‘glide-in’ approach emulates an HTC cluster inside a single large

MPI job.

It will be also trivial to deploy our pipeline behind any Web

services front-end such as Galaxy (Giardine et al., 2005) or

Taverna (Wolstencroft et al., 2013). Each run of the pipeline

appears to the caller as a single command-line invocation of

the entry point script that exits only once it finishes executing

its parallel workflow. Backend options (batch queue or local

multicore) are passed through the command arguments. No per-

manently running server components are used by Makeflow.

Deployment in Galaxy, for example, would be the same as de-

ployment of a simple serial tool, requiring creation of a single

XML tool description file.

2.2 Installation and execution

Newly developed installation procedure and documentation are

part of the source code repository. The step-by-step installation

and usage manual (also shown on the landing page at BitBucket)

covers the execution environments, specific examples of config-

uration files for each environment and instructions for adapting

these files to new compute clusters.
The manual also covers sample run-time parameters for dif-

ferent environments, Quick Start instructions for testing the pipe-

line on a small dataset included in the repository and example of

interpreting the pipeline’s output to discover a novel gene. The

automated configuration and build procedure is driven by

CMake (http://www.cmake.org/). Our installation procedure

builds its own local copy of the Makeflow and several prote-

omics tools from (http://proteomics.ucsd.edu).
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