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Class I to III Histone Deacetylases
Differentially Regulate Inflammation-
Induced Matrix Metalloproteinase 9
Expression in Primary Amnion Cells

Marin Poljak1,2, Ratana Lim, PhD1,2, Gillian Barker1,2, and Martha Lappas, PhD1,2

Abstract
Matrix metalloproteinase (MMP) 9 plays an important role in the degradation of the extracellular matrix in fetal membranes, and
pathological activation of MMP-9 can lead to preterm birth. In nongestational tissues, modulation of histone deacetylases
(HDACs) regulates MMP-9 expression. The aim of this study was to determine whether class I to III HDACs regulate MMP-9
expression and activity in primary amnion cells. Class I and II HDAC regulation of MMP-9 was assessed using the general class
I and II HDAC inhibitors (HDACi) trichostatin A (TSA) and suberoylanilide hydroxamic acid (SAHA), the class I HDACi
MS-275, and the class II HDACi MC1568. Class III HDAC regulation of MMP-9 was assessed using the SIRT1 activators resver-
atrol and SRT1720 as well as SIRT1 small interfering RNA (siRNA). Primary amnion epithelial cells were incubated with 1 ng/mL
interleukin (IL) 1b in the absence or presence of 0.3 mmol/L TSA, 5 mmol/L SAHA, 2.5 mmol/L MS-275, 2.5 mmol/L MC1568, 50
mmol/L resveratrol, or 10 mmol/L SRT1720 for 20 hours. We found that the class I and II HDACi TSA and SAHA and the class II
HDACi MC1568 significantly decreased IL-b-induced MMP-9 gene and pro-MMP-9 expression in primary amnion cells. There
was, however, no effect of the class I HDACi MS-275 on IL-b-induced MMP-9 expression. On the other hand, inhibition of class
III HDAC SIRT1 using siRNA significantly augmented IL-1b-induced MMP-9, and SIRT1 activation using resveratrol and SRT1720
inhibited IL-1b-induced MMP-9 expression. In summary, class I to III HDACs differentially regulate inflammation-induced MMP-9
expression in primary amnion cells.
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Introduction

Preterm birth is one of the most significant health care issues

globally; 9.6% of all births in 2005 were preterm.1 Being born

early is the leading direct cause of early neonatal death, respon-

sible for approximately 1 million annual neonatal deaths.2

Survivors of preterm birth have greatly increased rates of

long-term disabilities including cerebral palsy, intellectual han-

dicap, and chronic lung disease requiring oxygen.3 Not only do

these chronic diseases cause enormous financial and emotional

burden on the family they also present a challenge to finite

health care resources.4

Of clinical significance, in 20% to 25% of preterm birth is a

result of prelabor rupture of membranes (PROMs).5 What

causes the membranes to weaken and thus rupture is not

known; however, an area of altered morphology has been

observed in fetal membranes obtained from the along the tear

line after term labor.6 Similarly, less extensive changes have

also been observed in fetal membranes lying over the cervix

at term in the absence of labor7-11 and after preterm birth.12

In addition to changes in morphology and structure, these fetal

membranes also exhibit increased apoptosis and collagen-

degrading enzymes including matrix metalloproteinase

(MMP)-9.13 The MMP-9 has an ascribed role in mediating

degradation of the extracellular matrix (ECM) in both normal

and pathologic conditions, such as PROM.14,15 Given the

important role for MMP-9 in the rupture of fetal membranes

and thus preterm birth, it is essential to fully understand the

mechanisms surrounding MMPs in order to develop effective

therapeutic strategies.
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Histone acetylation and deacetylation play important roles

in gene expression. Acetylation of core histones by histone

acetyltransferases leads to unwinding of DNA, which subse-

quently allows transcription factors and RNA polymerase II

to switch on gene transcription. Conversely, deacetylation of

core histones is generally associated with transcriptional

repression. There are 18 human histone deacetylases (HDACs)

and they are grouped into 4 classes and 2 families: the ‘‘classi-

cal’’ and the silent information regulator 2-related protein (sir-

tuin; SIRT) families. The classical HDACs consist of the

following groups: class I (1-3, 8), class II (4-7, 9, 10), and class

IV (11). Class III HDACs belongs to the SIRT family, which

contains 7 members (SIRT1-7). They have no sequence resem-

blance to members of the classical family; they are NADþ-

dependent protein deacetylases.

There is now increasing evidence that many prolabor

genes, such as interleukin (IL) 1b, IL-6, tumor necrosis factor

a (TNF-a), and cyclooxygenase 2 (COX-2) are regulated by

HDAC inhibitor (HDACi).16-18 In addition, our own studies

on SIRT1 and SIRT6 also reveal a functional role in regulat-

ing proinflammatory cytokines in fetal membranes.19,20 How-

ever, whether class I and class II HDACs and the class III

HDAC SIRT1 also regulate MMP-9 expression and activity

in human fetal membranes is not known. Thus, in this study,

we used human primary amnion cells stimulated with IL-1b to

determine the effect of (1) general class I and II HDACi tri-

chostatin A (TSA) and suberoylanilide hydroxamic acid

(SAHA), (2) class I-specific HDACi MS-275; (3) class II-

specific HDACi MC1568; (4) SIRT1 activators resveratrol

and SRT1702; and (5) SIRT1 small interfering RNA (siRNA)

knockdown on MMP-9 expression and activity.

Materials and Methods

Sample Collection

Fetal membranes were collected from women with uncompli-

cated pregnancies at term (gestational ages of the samples ran-

ged from 37 to 40 weeks gestation) undergoing elective

cesarean section. The Research Ethics Committee of Mercy

Health approved this study. Written informed consent was

obtained from participating women.

Primary Amnion Cells Studies

Primary amnion epithelial cultures were used to investigate the

effects of activation and inhibition of HDACs on MMP-9

expression and activity. The TSA and resveratrol were pur-

chased from Sigma-Aldrich (Saint Louis, Missouri). The

SAHA, MS-275, MC1568, and SRT1720 were purchased from

Life Research (Scoresby, Victoria, Australia). Stock solutions

of TSA, SAHA, MS-275, and MC1568 were prepared in PBS.

Stock solution of SRT1720 and resveratrol were prepared in

dimethyl sulfoxide (DMSO). Cells were prepared as we have

previously described.21 Cells plated at 1 � 106 cells/well were

incubated in a humidified atmosphere of 8% O2 and 5% CO2 at

37�C. Primary amnion cells at 80% to 90% confluence were

incubated in the absence or presence of 1 ng/mL IL-1b20,22

with and without 0.3 mmol/L TSA, 5 mmol/L SAHA, 2.5

mmol/L MS-275, 2.5 mmol/L MC1568, 10 mmol/L SRT1720,

or 50 mmol/L resveratrol (in Dulbecco’s modified eagle

medium [DMEM]/F-12 containing 2% heat-inactivated fetal

calf serum). For resveratrol and SRT1720, the basal and IL-

1b-treated cells contained DMSO at a final concentration of

0.1%. After 20 hours incubation, medium was collected, and

assessment of pro-MMP-2 and pro-MMP-9 was performed

by gelatin zymography as previously described. Cells were also

collected, and gene expression was analyzed by quantitative

reverse transcriptase polymerase chain reaction (qRT-PCR)

as detailed subsequently. Each experiment was performed on

amnion from 6 patients. For these experiments, the data are pre-

sented as fold change relative to basal.

For the siRNA studies, cells at approximately 50% conflu-

ence were transfected using SilenceMag reagent according to

manufacturer’s guidelines (Oz Biosciences, Marseille, France)

and as we have previously described for amnion.20,22 Cells were

transfected with 100 nmol/L SIRT1 or NS siRNA (Ambion,

Austin, Texas) in DMEM/F-12 for 48 hours. The medium was

then replaced with DMEM/F-12 with or without 1 ng/mL IL-

1b, and the cells were incubated at 37�C for an additional 20

hours. After 20 hours incubation, medium was collected, and

assessment of MMP-9 was performed by gelatin zymography

as described subsequently. Cells were collected, and gene

expression was analyzed by qRT-PCR as detailed subsequently.

Experiments were performed from amnion obtained from 6

patients. For the siRNA experiments, the data are presented as

fold change relative to the NS siRNA-transfected cells.

Gelatin Zymography

Secreted pro-MMP-2 and pro-MMP-9 expression in condi-

tioned media was analyzed by gelatin zymography as we have

previously described20,21,23 on conditioned media collected

from primary amnion cells. Proteolytic activity was visualized

as clear zones of lysis on a blue background of undigested

gelatin. Gels were scanned using the Chemidoc XRS system

(Bio-Rad Laboratories, Hercules, California), inverted, and

densitometry performed using Quantity One image analysis

software (Bio-Rad Laboratories).

RNA Extraction and qRT-PCR Analysis

RNA extraction, complementary DNA (cDNA) synthesis, and

qRT-PCR were performed as we have previously pub-

lished.19-21 We used predesigned and validated primers for

SIRT1, MMP-2, MMP-9, and GAPDH (QuantiTect primer

assays, Qiagen, Germantown, Maryland). Average gene CT

values were normalized to the average GAPDH CT values of

the same cDNA sample. The specificity of the product was

assessed from melting curve analysis. The RNA without

reverse transcriptase during cDNA synthesis as well as PCR

reactions using water instead of template showed no
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amplification. Relative quantification was determined using

the comparative CT method.

Statistical Analysis

Statistical analyses were performed using a commercially

available statistical software package (Statgraphics Plus ver-

sion 3.1; Statistical Graphics Corp, Rockville, Maryland). Sta-

tistical analysis was performed using a 1-way analysis of

variance (using Tukey honestly significant difference correc-

tion to discriminate among the means); homogeneity of data

was assessed by Bartlett test, and when significant, data were

logarithmically transformed before further analysis. Statistical

significance was ascribed to P value <.05. Data were expressed

as mean + standard error of the mean.

Results

Effect of General Class I and Class II HDACi TSA and
SAHA on IL-1b-Induced MMP-9 Expression and Activity

Primary amnion cells were incubated in the absence or pres-

ence of 1 ng/mL IL-1b with and without 0.3 mmol/L TSA or

5 mmol/L SAHA for 20 hours. The effect of the TSA and

SAHA on the induction of MMP-9 expression and activity is

demonstrated in Figure 1. The MMP-9 gene expression was ana-

lyzed by qRT-PCR. Gelatin substrate gels were used to deter-

mine the effect of treatment on the release of pro-MMP-9

enzyme activity. The IL-1b significantly increased MMP-9

gene expression (Figure 1A) and enzyme activity (Figure

1B) and cotreatment with TSA and SAHA significantly atte-

nuated this increase. There was no effect of IL-1b or
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Figure 1. Effect of TSA and SAHA on MMP-2 and MMP-9 expression. Primary human amnion cells were incubated with 1 ng/mL IL-1b in the
absence or presence of 0.3 mmol/L TSA and 5 mmol/L SAHA for 20 hours (n ¼ 6 patients). A, The MMP-2 and MMP-9 gene expression was
normalized to GAPDH mRNA expression, and the fold change was calculated relative to basal. Each bar represents the mean + SEM. *P <
.05 versus IL-1b-treated cells (1-way ANOVA). B, The incubation medium was assayed for pro-MMP-2 and MMP-9 expression by gelatin zymo-
graphy. Pro-MMP-2 and MMP-9 levels were confirmed by densitometry, and the fold change was calculated to basal. Data are displayed as mean
+ SEM (1-way ANOVA). *P < .05 versus IL-1b-treated cells (1-way ANOVA). A representative zymography of 1 patient (performed in dupli-
cate) is also shown. ANOVA indicates analysis of variance; IL, interleukin; MMP, matrix metalloproteinase; SAHA, suberoylanilide hydroxamic
acid; SEM, standard error of the mean; TSA, trichostatin A.
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inhibitors on MMP-2 messenger RNA (mRNA) or pro-MMP-

2 expression (Figure 1A and B).

Effect of Class I-Specific HDACi MS-275 and Class II-
Specific HDACi MC1568 on IL-1b-Induced MMP-9
Expression and Activity

The TSA and SAHA are general inhibitor of class I and class II

HDACs. Thus, in order to determine whether both class I and

class II HDACs regulate MMP-9, we used the class I-specific

HDACi MS-275 and class II-specific HDACi MC1568. For

these studies, primary amnion cells were incubated in the

absence or presence of 1 ng/mL IL-1b with and without 2.5

mmol/L MS-275 or 2.5 mmol/L MC1568 for 20 hours. As

depicted in Figure 2, treatment of primary amnion cells with

MC1568 significantly decreased IL-1b-induced MMP-9 gene

expression (Figure 2A) and pro-MMP-9 activity (Figure 2B).

On the other hand, there was no effect of the class I-specific

HDACi MS-275 on MMP-9 gene expression (Figure 2A) and

pro-MMP-9 activity (Figure 2B). Of note, there was also no

effect of higher concentrations of MS-275 (5 and 10 mmol/L)

on MMP-9 (data not shown). There was no effect of IL-1b
or inhibitors on MMP-2 mRNA and pro-MMP-2 expression

(Figure 2A and B).
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Figure 2. Effect of MS-275 and MC1568 on MMP-2 and MMP-9 expression. Primary human amnion cells were incubated with 1 ng/mL IL-1b in
the absence or presence of 2.5 mmol/L MS-275 and 2.5 mmol/L MS1568 for 20 hours (n ¼ 6 patients). A, The MMP-2 and MMP-9 gene expression
was normalized to GAPDH mRNA expression, and the fold change was calculated relative to basal. Each bar represents the mean + SEM. *P < .05
versus IL-1b-treated cells (1-way ANOVA). B, The incubation medium was assayed for pro-MMP-2 and MMP-9 expression by gelatin zymography.
Pro-MMP-2 and MMP-9 levels were confirmed by densitometry, and the fold change was calculated to basal. Data are displayed as mean +
SEM (1-way ANOVA). *P < .05 versus IL-1b-treated cells (1-way ANOVA). A representative zymography of 1 patient (performed in dupli-
cate) is also shown. ANOVA indicates analysis of variance; IL, interleukin; MMP, matrix metalloproteinase; SEM, standard error of the mean.
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Effect of Class III HDAC Activators on IL-1b-Induced
MMP-9 Expression and Activity

The next aim was to determine the effect of activators of the

class III HDAC SIRT1. For these studies, we used resveratrol

and SRT1720. We have previously demonstrated the specifi-

city of these compounds for activating SIRT1 expression in

fetal membranes and primary amnion cells.19 We found that

incubation with resveratrol or SRT1720 significantly decreased

MMP-9 mRNA expression (Figure 3A) and activity (Figure

3B) induced by IL-1b. There was no effect of IL-1b or inhibi-

tors on MMP-2 mRNA or secreted pro-MMP-2 expression

(Figure 3A and B).

Effect of SIRT1 siRNA Knockdown on IL-1b-Induced
MMP-9 Expression and Activity

We next confirmed the results obtained in Figure 3 using siRNA

against SIRT1. The efficacy of transfection was analyzed by

qRT-PCR and Western blotting and the data presented in Figure

4A and B. Compared to NS siRNA-transfected cells, transfec-

tion with SIRT1 siRNA resulted in a significant decrease in

SIRT1 mRNA (Figure 4A) and protein expression (Figure

4B). The MMP-9 mRNA expression and activity in response

to SIRT1 siRNA knockdown is also depicted in Figure 4. As

expected, in amnion cells transfected with NS siRNA, IL-1b
treatment significantly increased MMP-9 gene expression
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Figure 3. Effect of resveratrol and SRT1720 on MMP-2 and MMP-9 expression. Primary human amnion cells were incubated with 1 ng/mL
IL-1b in the absence or presence of 50 mmol/L resveratrol (Resv) and 10 mmol/L SRT1720 (SRT) for 20 hours (n ¼ 6 patients). A, The MMP-2
and MMP-9 gene expression was normalized to GAPDH mRNA expression, and the fold change was calculated relative to basal. Each bar
represents the mean + SEM. *P < .05 versus IL-1b-treated cells (1-way ANOVA). B, The incubation medium was assayed for pro-MMP-2
and MMP-9 expression by gelatin zymography. Pro-MMP-2 and MMP-9 levels were confirmed by densitometry, and the fold change was cal-
culated to basal. Data are displayed as mean + SEM (1-way ANOVA). *P < .05 versus IL-1b-treated cells (1-way ANOVA). A representative
zymography of 1 patient is also shown. ANOVA indicates analysis of variance; IL, interleukin; MMP, matrix metalloproteinase; SEM, standard
error of the mean.
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(Figure 4C) and activity (Figure 4D). However, in cells where

SIRT1 was knocked down, this increase in gene expression and

enzyme activity was significantly augmented. There was no

effect of SIRT1 knockdown or SIRT1 inhibitors on MMP-2

mRNA or secreted pro-MMP-2 expression (Figure 4C and D).

Discussion

This is the first study to report that classes I to III HDACs reg-

ulate MMP-9 expression in human fetal membranes. We found

that the addition of either of the 2 chemically distinct inhibitors

of class I and II HDAC—TSA and SAHA—to amnion primary

cell cultures blocks IL-1b-induced pro-MMP-9 expression in

the conditioned culture medium. Gene expression studies

showed that the expression of MMP-9 gene expression induced

by IL-1b was also repressed by these HDACi. The regulation of

MMP-9 expression was confirmed using the class II-specific

HDACi MC1568. Interestingly, however, we found no effect

of the class I-specific HDACi MS-275 on MMP-9 gene expres-

sion and expression of pro-MMP-9. On the other hand,
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Figure 4. Effect of SIRT1 siRNA on MMP-2 and MMP-9 expression. A and B, Primary amnion cells were transfected with 100 nmol/L SIRT1 or
NS siRNA for 96 hours (n ¼ 6 patients). C and D, Primary amnion cells were transfected with 100 nmol/L SIRT1 or NS siRNA and after 72
hours, cells were incubated in the absence or presence of 1 ng/mL IL-1b for a further 20 hours (n ¼ 6 patients). A and C, The MMP-2 and
MMP-9 gene expression was normalized to GAPDH mRNA expression, and the fold change was calculated relative to NS siRNA-
transfected cells. Each bar represents the mean + SEM. *P < .05 versus NS siRNA þ IL-1b (1-way ANOVA). B, Representative Western blot
demonstrating efficacy of transfection. D, The incubation medium was assayed for pro-MMP-2 and MMP-9 expression by gelatin zymography.
Pro-MMP-2 and MMP-9 levels were confirmed by densitometry, and the fold change was calculated to basal. Data are displayed as mean + SEM
(1-way ANOVA). *P < .05 versus NS siRNA þ IL-1b (1-way ANOVA). A representative zymography of 1 patient is also shown. ANOVA indi-
cates analysis of variance; IL, interleukin; MMP, matrix metalloproteinase; SEM, standard error of the mean; siRNA, small interfering RNA.
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knockdown of the class III HDAC SIRT1 was associated with

increased transcription and activation of IL-1b-induced MMP-

9. Conversely, the 2 activators of SIRT1, resveratrol and

SRT1720, decreased IL-1b-induced MMP-9 gene expression

and secreted pro-MMP-9 expression.

Matrix metalloproteinase 9is important for the processes

that result in successful labor and delivery; however, aberrant

and uncontrolled MMP-9 activity has been implicated in the

degradation of matrix components of the amnion and chorion

leading to preterm birth.24-31 The MMP-9 attacks the collagen

fibers in the fetal membranes, thereby dissociating the layers

that make up the fetal membranes and thickening the spongy

layer that separates the amnion from the chorion.32 Altogether

these structural changes lead to a significantly thinner and

weaker region in the fetal membranes. There is also ample evi-

dence demonstrating a role for infection or inflammation role

in fetal membrane production of MMP-9.33,34 For example,

MMP-9 levels are increased by in vitro exposure of fetal mem-

branes to bacterial products35 and in the amniotic fluid of

women with intrauterine infections.27,35 Thus, understanding

MMP-9 regulation is crucial to define strategies to prevent

pathological rupture of fetal membranes, particularly in the

context of preterm birth.

Our current data show for the first time that a specific inhi-

bitor of class II HDAC can also function as potent repressors of

inflammation-induced MMP-9 gene expression and secretion

of pro-MMP-9, a key MMP involved in the degradation of col-

lagen in the fetal membranes. However, interestingly, although

the 2 general inhibitors of class I and II HDACs, TSA and

SAHA, decreased MMP-9 gene expression and secretion of

pro-MMP-9, there was no effect of the class I-specific inhibitor

MS-275 on MMP-9 expression. We thus hypothesize that the

actions of TSA and SAHA may be attributed to their inhibitory

actions on class II HDAC. There are a few studies on gesta-

tional tissues, which show a major effect of TSA and SAHA

in repressing the production of proinflammatory cytokines,16,36

COX-2, and resultant prostaglandin production.16,18 There

have been no studies that have specifically assessed the anti-

inflammatory effects of specific class I or II inhibitors of

HDAC in human fetal membranes or myometrium. However,

the class I-specific HDACi suberic bishydroxamate has been

shown to exert potent inhibitory effects on human uterine con-

tractions; similar results were obtained using TSA and

SAHA.37 Taken together, these data indicate that class II

HDACi exert anti-inflammatory effects in human fetal mem-

branes and myometrium and may thus be useful in achieving

a gene expression profile that favors the maintenance of

pregnancy.

We have previously reported that activators of the class III

HDAC SIRT1 can block infection-induced prolabor mediators

in human gestational tissues.19 Specifically, the SIRT1 activa-

tors resveratrol and SRT1720 significantly decreased LPS-

induced cytokine gene expression and release, COX-2 expres-

sion, and prostaglandin release from fetal membranes. Further-

more, knockdown of SIRT1 by RNA interference in primary

amnion cells diminished the anti-inflammatory effects of

resveratrol. In this study, we report that resveratrol and

SRT1720 inhibit MMP-9 gene expression and activation

induced by IL-1b. Further to this, siRNA knockdown of SIRT1

augments IL-1b-induced MMP-9 expression and activity.

These data are also keeping in with our recent studies on

SIRT6, another class III HDAC.20 In these studies, we reported

that siRNA knockdown of SIRT6 in primary amnion cells was

associated with an augmentation of IL-1b-induced prolabor

mediators. Collectively, these studies demonstrate that, in con-

trast to class I and II HDACs, class III HDACs are anti-

inflammatory in human gestational tissues.

Histone deacetylation is associated with transcriptional

repression38; thus, the inhibition of HDAC activities might be

expected to result in increases in gene expression. However, the

paradoxical inhibitory effects of HDACi on gene expression

observed in this study and others16,18,36,39-42 suggest that other

components of the transcriptional response, in addition to his-

tones, are regulated by acetylation. In support, a number of

nonhistone proteins have been identified as targets for HDACi

including nuclear factor kB (NF-kB).43 There is now compel-

ling evidence implicating the NF-kB signaling pathway in the

processes involved in human labor and delivery, both at term

and preterm. We, and others, have demonstrated that inhibition

of NF-kB activity in ex situ human gestational tissues sup-

presses the formation of labor-mediating effectors.23,44-46 Like-

wise, our previous studies have shown the importance of the

NF-kB pathway in the regulation of inflammation-induced

MMP-9 in human fetal membranes.23 Indeed, there is also now

much evidence to show that class I and II HDAC inhibitors

(HDACi) inhibit inflammation via acetylation of nonhistone

proteins like transcription factors.47 For example, the class I

and II HDACi TSA and vorinostat (SAHA) inhibit infection-

induced MMP-9 via decreasing NF-kB activity.41 The class III

HDACs, especially SIRT1, have also been shown to regulate

inflammation through NF-kB.48-51 The SIRT1 physically inter-

acts with the RelA/p65 subunit of NF-kB and inhibits transcrip-

tion by deacetylating RelA/p65 at lysine 310. Knockout or

knockdown of SIRT1 gene leads to increases in inflammation,

whereas SIRT1 activation inhibits inflammation.19,49,52-54

Both MMP-2 and MMP-9 (known as gelatinase A and B,

respectively) can degrade collagen type IV, elastin, and fibro-

nectin; however, MMP-9 is induced by infection, active labor,

and PROM, while MMP-2 protein and activity appear to be

constitutively expressed during gestation.24 Our findings that

MMP-2 is unchanged with inflammation is consistent with

other studies reporting unchanged MMP-2 tissue protein or

activity levels in combined fetal membranes with the onset of

labor at term and preterm.26 That MMP-2 expression was

unchanged in human primary amnion cells with HDACis may

indicate a role that is tissue specific; in cancer research, TSA

inhibited MMP-2 expression in 3T3 fibroblast cells55 but not

in SW620 colon carcinoma cells.56

Some limitations of this study include looking at MMP-9

activation; active MMP-9 was unable to be detected in our sam-

ples by gelatin zymography, and the effect of our agents on

MMP-9 activity was unable to be performed. Secreted pro-
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MMPs remain inactive due to the interaction of the unpaired

cysteine sulfhydryl group; removal of the propeptide contain-

ing the cysteine group by enzyme cleavage; or disruption of the

zinc–cysteine interaction can result in activation of the latent

enzyme. Additionally, for these studies, it is not possible to

determine whether the treatments cause their effects through

HDAC inhibition or some other mechanisms. Future experi-

ments examining changes in histone acetylation patterns, spe-

cifically histone modification associated with the MMP-9

promoter would answer this. Moreover, as only mRNA and

protein expression were measured, it is not known of the

HDACi affects MMP-9 transcription directly or through an

indirect mechanism (such as alterations in the expression of

transcription factor including NF-kB).

The regulation of MMPs is important in understanding

the mechanisms of membrane rupture and thus developing

potential therapeutics to stop PPROM. This study explores

the role of HDACi in MMP-9 gene expression and secretion

of pro-MMP-9. In conclusion, our data support a role for

class I-III HDACs in the regulation of MMP-9 by IL-1b
in human primary amnion cells. Based on the data presented

in this study, inhibition of class II HDACs is associated with

repression of MMP-9 expression. On the other hand, activa-

tion of the class III HDAC SIRT1 is also associated with

repression of MMP-9 expression. Aberrant ECM degrada-

tion by MMPs in the fetal membranes is a critical event

in preterm birth.24-27,33,34 It is, thus, possible that HDACs

may be a possible therapeutic target to reduce ECM degra-

dation and risk of preterm birth. Indeed, administration of

TSA to pregnant mice late in gestation increased histone

acetylation and delayed the initiation of parturition by 24

to 48 hours, suggesting the functional importance of the

decline in histone acetylation in the initiation of labor.57
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