
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING
Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
Published online 20 September 2013 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cnm.2593

SPECIAL ISSUE PAPER - NUMERICAL METHODS AND APPLICATIONS OF
MULTI-PHYSICS IN BIOMECHANICAL MODELING

Toward GPGPU accelerated human electromechanical
cardiac simulations

Guillermo Vigueras, Ishani Roy, Andrew Cookson, Jack Lee, Nicolas Smith and
David Nordsletten*,†

Department of Biomedical Engineering, King’s College London, UK

SUMMARY

In this paper, we look at the acceleration of weakly coupled electromechanics using the graphics process-
ing unit (GPU). Specifically, we port to the GPU a number of components of CHeart—a CPU-based finite
element code developed for simulating multi-physics problems. On the basis of a criterion of computational
cost, we implemented on the GPU the ODE and PDE solution steps for the electrophysiology problem and
the Jacobian and residual evaluation for the mechanics problem. Performance of the GPU implementation
is then compared with single core CPU (SC) execution as well as multi-core CPU (MC) computations with
equivalent theoretical performance. Results show that for a human scale left ventricle mesh, GPU accelera-
tion of the electrophysiology problem provided speedups of 164� compared with SC and 5.5 times compared
with MC for the solution of the ODE model. Speedup of up to 72� compared with SC and 2.6� compared
with MC was also observed for the PDE solve. Using the same human geometry, the GPU implementa-
tion of mechanics residual/Jacobian computation provided speedups of up to 44� compared with SC and
2.0� compared with MC. © 2013 The Authors. International Journal for Numerical Methods in Biomedical
Engineering published by John Wiley & Sons, Ltd.

Received 21 December 2012; Revised 17 July 2013; Accepted 1 August 2013

KEY WORDS: GPU; cardiac electrophysiology; tissue mechanics; electromechanics

1. INTRODUCTION

The ability to predict the electromechanical behavior of the heart from imaging and other physi-
ological data is one of the compelling, yet still only partially fulfilled, goals of the personalized
healthcare [1–3]. The challenge that is central to bringing electromechanical modeling into the clinic
is the process of patient-specific tailoring of the model as well as in silico treatment evaluation, both
of which are processes requiring many electromechanical simulations. Patient-specific tailoring of
models requires coupling patient data and model parameters using parameter estimation algorithms,
which require the iterative solution of the model for a varied range of parameters [4, 5]. With a
parameterized model, numerous simulations may be run to examine different potential treatment
strategies. Although a number of authors have developed effective models and tools for simulating
electromechanics, their use in diagnosis or treatment planning requires model analysis to conclude
in clinically relevant time-scales, mandating continued improvement of simulation technologies.

The GPU architecture is a highly promising hardware with significant potential to accelerate car-
diac electromechanics simulations. Toward this goal, a number of previous studies have already
investigated the acceleration of the electrophysiology problem through GPUs [6–10]. Building on

*Correspondence to: David Nordsletten, Department of Biomedical Engineering, Kings College London, UK.
†E-mail: david.nordsletten@gmail.com
This is an open access article under the terms of the Creative Commons Attribution License, which permits use,
distribution and reproduction in any medium, provided the original work is properly cited.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.



118 G. VIGUERAS ET AL.

this work, in this paper, we propose the acceleration of the human scale electrical activation sim-
ulation and a novel GPU-based implementation of cardiac mechanics, which constitutes the first
implementation of weakly coupled electromechanics on this platform. We analyze these paral-
lel implementations by quantifying the computational gain of function, show the potential of this
technology, to broaden the application of these types of Virtual Physiological Human (VPH) models.

The rest of the paper is organized as follows. In Section 2, previous studies of electrophysiology
and electromechanics problems are reviewed. In order to understand architectural and programma-
bility aspects of the GPU, Section 3 analyzes the main features of this parallel platform. Section 4
describes electrophysiology and mechanics models and numerical methods used in our CPU and
GPU implementations. Section 5 presents CPU and GPU implementations for accelerating cardiac
electromechanics simulations. A performance comparison between CPU and GPU versions is shown
in Section 6, and their results are discussed in the conclusion (Section 7).

2. RELATED WORK

In order to tackle the computational barrier to the clinical translation of cardiac human models,
some approaches have already been proposed that exploit parallel clusters facilities for simulating
electrical activity [11, 12]. Although these works propose efficient High Performance Computing
(HPC) implementations, the use of such large-scale computational facilities results in high cost in
terms of price and power consumption and is less accessible in most clinical environments.

As the GPU has emerged as an efficient platform providing a good power/performance ratio, a
number of groups have investigated the use of GPUs for accelerating cardiac electrophysiology sim-
ulations. Bartocci et al. [6] have proposed the implementation of the ODE solver on the GPU and
evaluated the approach using 2D tissues. Another approach introduced by Vigmond et al. [7] has
aimed at facilitating the acceleration of the ODE solver through the application of GPUs, demon-
strating its efficacy in small mammalian hearts. A further extension has been recently proposed by
Rocha et al. [8], who used the single-precision GPU to solve the system of PDEs and ODEs present
in the Monodomain model to solve 2D tissue simulations. Plank et al. [9] recently developed a
solution proposing a multi-GPU implementation for performing cardiac simulations using a rabbit
model, showing significant speedups with respect to their parallel CPU code CARP.

Building on these efforts, in this paper, we look to simulate both electrophysiology and mechanics
on the GPU. Although some recent works have simulated mechanics using low-order refined meshes
[13,14], most mechanical models of the heart use incompressible quasi-static finite elasticity solved
on high-order curvilinear hexahedral elements [15–18]. Beyond the change in interpolation scheme,
the inherent nonlinearity of cardiac mechanics and structure of the linearized system poses signif-
icantly different challenges to those faced with parallelization of electrophysiology. In this paper,
we focus on the initial acceleration of mechanics computations by porting algorithms for Jaco-
bian matrix and residual evaluations. In this context, we show the benefits provided by GPUs for
simulating both the electrical activity and mechanical deformation in the human heart.

3. GPU ARCHITECTURE DESCRIPTION

The appearance of Compute Unified Device Architecture (CUDA) [19] has enabled the use of GPUs
as powerful computing platforms and enabled their recent extension to general-purpose computing.
The CUDA model is a hardware and software architecture to perform computations on the GPU as
a data-parallel computing device, without the need of using a graphics API [19].

Figure 1 illustrates the hardware interface of CUDA for the Nvidia GPU G80. This parallel single
instruction multiple data (SIMD) architecture is endowed with up to 128 cores, where thousands of
threads run in parallel. These cores are organized into 16 multiprocessors (SMs), each one having
a set of 32-bit registers, constants and texture caches, and 16 KB of on-chip shared memory as
fast as local registers (one cycle latency). At any given cycle, each core executes the same instruc-
tion on different data (SIMD), and communication between multiprocessors is performed through
global memory.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 119

Figure 1. (a) Compute Unified Device Architecture (CUDA) hardware interface for the Nvidia GPU G80
(b) CUDA programming model [19].

Figure 1 outlines the CUDA programming model. CUDA consists of a set of C language library
functions, which the programmer uses to specify the structure of a CUDA program. A CUDA pro-
gram consists of two subprograms as follows: the CPU part (host subprogram) and the GPU part
(device subprogram). The host subprogram prepares the GPU execution, moving data from CPU
main memory to the GPU memory. Also, the host subprogram is in charge of setting up all the
parameters involved in the execution and launching the device subprogram. In its turn, the device
code is organized in functions or kernels. Each kernel is executed in parallel by each GPU thread.

A kernel execution is decomposed into blocks that run logically in parallel (physically if there are
resources available on the GPU). Assembled by the developer, a block consists of a group of threads
that is mapped to a single multiprocessor, where threads can share up to 16 KB of memory and also
synchronize through barrier primitives. However, communication among threads of different blocks
is only achieved through global memory, and they are synchronized by ending a kernel.

All the threads within a block are grouped into warps. A warp is a collection of threads that
can actually run concurrently (with no time-sharing) on a given multiprocessor. The developer can
decide the number of threads to be executed (up to a limit intrinsic to CUDA), but if there are more
threads than the warp size, they are executed with time-sharing on the available hardware resources.

In the CUDA model, threads can access the whole GPU global memory, but there is a perfor-
mance boost when threads access data stored in shared memory, which is explicitly managed. In
order to make the most efficient usage of the GPU’s computational resources, large data structures
are stored in global memory, and the shared memory should be prioritized for storing strategic,
often-used data structures. These hardware characteristics can have a big impact for accelerating
cardiac electromechanical simulations through GPUs.

4. MODEL DESCRIPTIONS AND NUMERICAL METHODS

In this section, we introduce the electrophysiology and mechanical models used for modeling
weakly coupled electromechanics. In the case of electrophysiology, we introduce the monodomain
model and its solution using second-order Strang splitting (see section 4.1). This description is fol-
lowed by an outline of the quasi-static finite elasticity equations applied to cardiac mechanics and
its solution using finite elements (see section 4.2).

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



120 G. VIGUERAS ET AL.

4.1. Electrophysiology problem

Modeling electrophysiology in the heart is typically accomplished using the monodomain [20,21] or
bidomain [22–26] equations, which simulate the spread of membrane potential or intra/extracellular
potential, respectively. In this paper, we focus on modeling the electrophysiology in the heart,
denoted by the domain � � R3 (with boundary •�, using the monodomain model). Here, we
seek a membrane potential u W � � I ! R and the m�cell model variables v W � � I ! Rm over
some time interval I D Œ0,T � satisfying [27],

Cm
@u

@t
�r � .Dru/� Iion.u, v/� Iext D 0, on �� I , (1)

dv

dt
� f .t ,u, v/ D 0, on �� I , (2)

.Dru/ � n D 0, on •�� I , (3)

uD u0, v D v0, on �� Œ0� (4)

where D W � ! R3�3 is the diffusion tensor related to the gap junctions between cells and mem-
brane capacitance. Iion.u, v/ is the total ionic current (which is a function of the voltage u, the
gating variables and ion concentrations), Iext W �� I ! R is the stimulus current, f is a function
governing rate-of-change in the m�cell model variables, and n is the normal to the surface of the
boundary •�. The diffusion tensor D is of the form �

�Cm
, where � is the conductivity, Cm is the

membrane capacitance, and � is the cell surface to volume ratio. In this paper, we have defined
� using � D �i�e.�e C s�i /

�1, where the intra-longitudinal, intra-transversal, extra-longitudinal,
and extra-transversal conductivity values are 0.17, 0.019, 0.62, and 0.24 S/m, respectively. In our
simulations, the value for membrane capacitance Cm was 0.185 �F and � was 140 mm�1. In this
model, an external stimulus current Iextof 35 mV/ms is applied at a time between 0 and 2 ms.

A wide variety of mathematical methods have been applied to solve the monodomain equations,
including finite difference methods [28], FEMs [29–31], and finite volume methods [32]. Here, we
solve the monodomain equations using the FEM, seeking solutions u 2 U and v 2 sV ,

U D
˚
y 2 L1ŒI I L2.�/�\L2ŒI I H 1.�/�

ˇ̌
y D u0, on �� Œ0�

�
,

V D fy 2 L1.I I L1.�// j y D v0, on �� Œ0�g ,

which satisfy the weak formulation of Equations (1)–(4) derived by the standard Galerkin procedure
[33], that is,Z

�

Cm
@u

@t
� y C

Z
�

.Dru/ � ry �
Z
�

.Iion.u, v/C Iext / � y D 0, 8y 2 U (5)

dv

dt
� f .t ,u, v/ D 0, (6)

4.1.1. Discrete electrophysiology problem and solution. In this paper, we focus on the solution of
the monodomain problem on tetrahedral and hexahedral grids. Here, an approximation �h of �
is constructed by merging finitely many, non-overlapping elements, � , which assemble to form the
mesh, Th.�/ (see Figure 2), that is,

�h D
[

�2Th.�h/

� , Th.�/D f�1, : : : �N g , h D max
� 2Th.�/

diam.�/.

The time domain, I , is first divided into NI non-overlapping intervals .tn�1, tn/, tn�1 < tn,
t0 D 0 and tN D T , which denote the time stepping sequence for the PDE (Equation (5)). However,

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 121

Figure 2. (a) Benchmark problem mesh. For this mesh, we have used the following resolutions: 0.2 mm
(�58 K DOFs), 0.1 mm (�443 K DOFs), and 0.05 mm (�3.5 M DOFs); (b) LV mesh. For this mesh, we
have used the following resolutions: 0.5 mm (�2.5 M DOFs) and the second mesh a resolution of 0.2 mm
(�19 M DOFs); (c) mechanics mesh—with 352 quadratic hexahedral elements and 555 nodes (3605 DOFs).

as the kinetics of the cell model have characteristic behavior that vary in space and time, the step-
ping sequence may be further subdivided into r substeps, which are applied adaptively in the ODE
[34], that is,

.tn, tnC1�D
r[
kD1

.tnC.k�1/=r , tnCk=r �.

Over each time interval or subinterval, the membrane potential and cell model variables are taken
as constants in time, respectively. As a result, the solution to the PDE system at each time step is
approximated in

U h WD
˚
yh 2 C. N�h/ j yhj� 2 P

1, � 2 Th.�/
�

Letting f�1, : : : �Kug D � denote the basis of U h (where Ku D span U h), each PDE solution step
may be expressed as the weighted sum uh D U � �. In general, the approximation of cell model
variables, vh, in the discrete setting may be handled a number of ways. In some cases, cell variables
have been approximated at all quadrature points in �h, whereas others approximate cell variables
at mesh vertices (see [30] for more details). In either case, the solution at each substep of the ODE
system is solved at distinct points P D fpkg, that is,

V h WD
˚
yh 2 V j yhjp 2R

m, for some p 2P
�

.

In this case, the ODE model system is then solved independently at each discrete point (letting V
denote the total vector of ODE state variables), and its values interpolated between points (if nec-
essary). Finally, using a backward Euler discretization of the time derivatives in Equation (5) and
adaptive forward Euler in Equation (6), we may pose the discrete finite element weak form system as

MU nC1 C ıKU nC1 DMU n C ıR.U � ,V � / (7)

V nC1 D V nC ı

r�1X
kD0

F.tnCk=r ,U � ,V nCk=r/ (8)

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



122 G. VIGUERAS ET AL.

where

.M /ij WD

Z
�h

Cm�j � �i ,

.K /ij WD

Z
�h

.Dr�j / � r�i ,

.R.U � ,V � //i WD
Z
�h

.Iion.u
�
h, v�h/C Iext / � �i ,

and 	 2 Œn,nC1�. Note that 	 D n corresponds to a semi-implicit scheme, whereas 	 D nC1 repre-
sents a fully implicit scheme. The vector function F denotes the application of f for each discrete
pointP , detailing the dynamics of the cell. These cellular dynamics may be described using models
such as the Luo Rudy [35] or ten Tusscher and Panfilov 2006 [36]. In this paper, the simulations
were performed with the cell model described by the commonly used ten Tusscher and Panfilov
2006 model, resulting in a system of 19 variables at each p 2 P . We note that in Equation (8), r is
selected adaptively both in space (that is, for each p 2 P) and time based on the rate of change of
membrane potential @u

@t
[34]. This allows the numerical solver to take a small time during the fast

upstroke of the cardiac action potential and bigger time steps at other times.
An alternative approach—which is followed in this paper—providing improved computational

efficiency is so-called Strang splitting for the monodomain problem [37]. The crux of this approach
is splitting the discrete operator into linear PDE and nonlinear ODE parts [38] as shown in
Equations (9)–(12).

QU nC1=2 D

�
M C

ı

2
K

��1
MU n (9)

V nC1 D V nC ı

r�1X
kD0

F.tnCk=r , QU nC1=2,V nCk=r/ (10)

QU nC1 D QU nC1=2C ıM�1R. QU nC1=2,V nC1/ (11)

U nC1 D

�
M C

ı

2
K

��1
M QU nC1 (12)

Note that by choosing the points P to correspond to nodes of Th.�/ and approximating Iion and
Iext linearly over each element, the matrix solve in Equation (11) may be eliminated. This has been
shown to improve efficiency while preserving the accuracy of the method subject to reasonable
limits on time step [30, 34, 39–41].

4.2. Cardiac mechanics problem

The cardiac myocardium is typically modeled as a hyperelastic material and solved using quasi-
static finite elasticity theory [2, 15]. The aim of simulating cardiac tissue mechanics is to find a
displacement field u W�� I !R3 giving the deformed position,

x.t/D u.t/CX ,

for every point in X 2� and time t 2 I . In the case of incompressible mixed formulation, we also
solve for the hydrostatic pressure p W �� I ! R, providing the force to constrain volume change.
The displacement and pressure are then found by considering the saddle point of the quasi-static
Helmholtz potential, … W U �W � I !R at each t 2 I , that is,

….u,p, t / WD inf fsupf….y , q, t /, q 2W g, y 2 U g ….y , t / WD
Z
�

‰.y , q, t /�
Z
•�

t.t/ � y .

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 123

Here, … represents the balance of internal strain energy (given by ‰) and the applied external
energy. The solution is sought in .u,p/ 2 L1.I IU /�L1.I ,W / with

U WD fy 2 ŒC 1.�/�3j detry C I D 1g, W WD L2.�/,

ensuring that deformed body �.t/D fx 2R3j x D u.t/CX , for some X 2�g is a well-posed.
The resultant saddle point at each point in time is then sought by finding the zeros of

Du….u,p, t /.y/ and Dp….u,p, t /.q/. That is, by finding the point in U � W for which the
derivative in the direction of any function in the space U or W is zero [42], that is,

Du….u,p, t /.y/D lim
�!0

….uC 
y ,p, t /�….u,p, t /



D 0, 8y 2 U , (13)

Dp….u,p, t /.q/D lim
�!0

….u,pC 
q, t /�….u,p, t /



D 0, 8q 2W . (14)

The internal strain energy, ‰ W U �W � I ! R, in cardiac mechanics is typically defined in terms
of the deformation gradient F D ruC I , right Cauchy Green tensor C D F TF or Green strain
E D 1

2
.F TF � I/ [42–44]. Thus, to apply the directional derivative in Equation (13), we must

apply the chain rule. Considering the case where ‰ is a function of the Green strain, the weak form
equation may be stated as follows: find .u,p/.t/ 2 U �W such thatZ

�

@‰.E ,p, t /

@E
W F Try C

Z
�

@‰.E ,p, t /

@p
q �

Z
•�

t.t/ � y D 0, 8.y , q/ 2 U �W. (15)

4.2.1. Cardiac constitutive law and boundary conditions. In this paper, we modeled the
myocardium using the anisotropic Costa law [45] combined with the active contraction law in
[46, 47]. Anisotropy was modeled using three vectors fq1, q2q3g denoting the fiber, sheet, and sheet
normal directions, respectively. Defined on ˝, these vectors are mutually orthogonal and of unit
length at all points in space, thus forming a basis oriented in the local microstructural directions
[48].

‰.E ,p, t /D
C

2
.eQ � 1/C p.J � 1/C .E W q1˝ q1/Ta. (16)

The first term in Equation (16) details the passive components, where Q is defined to be

QD .˛ ıEF / WEF D .˛/ij .EF /
2
ij , .EF /ij DE W qi ˝ qj , (17)

and ˛ is symmetric tensor of coefficients, which scale strain with respect to local microstructural
directions. The resistance to volume change is provided by the second term of Equation (16), which
adds internal energy if J � 1¤ 0. Last, the active contraction in the tissue was generated using the
Niederer contraction model [47]. This six-parameter model captures the length dependent rates of
tension development, along with peak tension.‡ In the model, active tension, Ta, was defined as

Ta D

(
T0 � tanh

�
t
tr

�2
tanh

�
tmax�t
td

�2
0 < t � tact < tmax

0 else
, (18)

� D tanh

�
a1

�q
2EF11C 1� a2

��
, tr D tr0C a3.1� �/, (19)

where a1 corresponds to the degree of length dependence, a2 is the length at which no tension
is generated, a3 is a scalar of length dependent activation, tact is the time of cellular activation
computed from the electrophysiology model, tr0 is the baseline activation time constant, td is the
relaxation time constant, tmax is the duration of tension generation, and T0 is the peak isometric

‡Note that following [46, 47] the length dependence of Ta is not considered when taking @=@E .

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



124 G. VIGUERAS ET AL.

tension. The function tr regulates the rise time of the tension transient, whereas � is a nonlinear
length dependent function.

Simulating the heart cycle, the heart model was coupled to the Shi Windkessel model [49, 50],
representing the dynamic load imposed by the systemic and pulmonary vascular compartments.
Coupling was enforced using an additional Lagrange multiplier (scalar multiplied by the unit nor-
mal) applied on the endocardial boundary, which was used to impose endocardial volume change.
The computed multiplier, denoting pressure, was then passed to the Windkessel model, which was
used to compute the associated volume change (within a fixed point iteration).

4.2.2. Discrete mechanics problem and solution. As in Section 4.1, the solution to Equation (15)
is approximated using the FEM. Constructing the solid mechanical mesh Sh.�/ (see Figure 2) and
approximation spaces,

U h WD
˚
yh 2 ŒC. N�h/�

3 j yhj� 2 P2, � 2 Sh.�/
�

,

W h WD
˚
qh 2 C. N�h/ j qhj� 2 P

1, � 2 Sh.�/
�

Similarly, the time domain, I , is first divided into NI non-overlapping intervals .tn�1, tn/, tn�1 <
tn, t0 D 0, and tN D T . Letting fˆ1, : : : ˆKug D ˆ and f'1,'1, : : : 'Kpg D ' denote the basis of
U h andW h, respectively, (whereKu D span U h andKp D span W h), then the solution at the nth

time step may be written as un
h
D Un �˚ and pn

h
D P n � '. The resulting weak form may then be

written as

Rn
h D 0, (20)

where

.Rn
h/k WD

8<
:
R
�h

@‰.Enh,ph,tn/
@E

W .F nh/
Trˆk �

R
•�h

t.tn/ �ˆk, 16 k 6KuR
�h

@‰.Enh,pn
h

,tn/
@p

'k , KuC 16 k 6KuCKp
(21)

represents the residual function. The nonlinear mechanics system is subsequently solved using
the Newton–Raphson scheme with line search and Jacobian reuse outlined in [51].

5. PARALLEL IMPLEMENTATIONS

This section describes both the GPU implementation and the CPU multi-physics software providing
the infrastructure into which the GPU code is integrated. CPU and GPU codes have been developed
in different languages (FORTRAN2003 and CUDA). Both CPU and GPU parts have been inte-
grated, defining data structures to act as input and output interfaces. These interfaces are updated in
the following way. During each simulation cycle, the CPU code updates the input data associated to
the GPU functionality (ODE solve, PDE solve or mechanics) before running it. Once the GPU code
finishes, output data is copied back to CPU memory, and the CPU side proceeds with the simulation.
The following subsections explain different parallelization strategies of CPU and GPU parts.

5.1. CPU implementation

All CPU simulations were run in the finite element code CHeart. Developed for modeling multi-
physics fluid-structure interaction in the heart [52–56], CHeart has been further developed to incor-
porate additional physical systems and provide flexible multi-physics integration. Support for many
finite element discretization schemes, physics, and coupling along with domain partition and par-
allelization are some of the core features of CHeart. The automatic domain partition is carried out
using the widely available open source software ParMetis [57]. Partitioning is computed in parallel,
using an element-based partition, in which each subdomain is uniquely assigned to an individual
core. Subsequently, all FEM-based procedures are computed over elements on a core and requi-
site computations passed between ranks to form global residuals and matrices using MPI. In this

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 125

way, the original mesh is partitioned by minimizing communication surface between subdomains
and maximizing load balance. Parallelization is carried out at a low level, so, if properly coded,
each of the coupled problem retains a good scalability. For solving the linear systems resulting
from the different multi-physics problems, CHeart uses a number of established libraries including
PETSc [58], MUMPS [59], and SuperLU [60]. For the monodomain problem, the algebraic system
of equations is solved using Jacobi-preconditioned CG within PETSc. For the mechanics problem,
MUMPS (a direct parallel solver) was used for solving the system of PDEs. Although direct meth-
ods are known to exhibit suboptimal scalability (with system size as well as the number of cores),
they are particularly efficient for the mechanical system considered in this study.

5.2. GPU implementation

5.2.1. Cardiac electrical activation. We have implemented on the GPU the solution process to
Equations (1) and (2) of the electrical activation problem, as two different parts. The first part per-
forms the solution of the system of ODEs, and the second one performs the solution of the system
of PDEs present in the monodomain equation.

The integration of the state variables of each cell model is a trivially parallel task ideally
suited for SIMD processing. This is due to the decoupling of each ODE model in space, which
involves an update of each state variable that has no implicit dependence on membrane potential
or implicit/explicit dependence on state variables at other nodes. For this reason, each GPU thread
updates the cell model state variables in parallel and integrates the computed values. To further cap-
italize on the GPU architecture, the ODE model was coded to use fast on-chip memory, loading cell
model parameters onto the shared memory of each GPU block. In this way, threads within the same
block can share these values, reducing the memory latency.

Another factor that limits the GPU performance is the per thread register bench usage. The use of
this resource is based on the private (local) data and number of instructions in a GPU kernel (func-
tion). The number of state variables of the implemented cell model and the set of equations involved
results in high register usage values. For this reason, a number of automatic transformations are
performed within the cell model code. The initial C language code was obtained from the publicly
available repository CellML [61]. This code was then automatically transformed by reducing the
number of temporal variables required. In addition, operations in the cell model equations involving
constant values were evaluated and collapsed to a single value. These transformations allowed us to
obtain a more efficient usage of the private register bench of each GPU thread.

Performance of the ODE code was further improved by reducing the GPU thread divergence. On
the GPU, as opposed to the CPU case, threads within a block run concurrently only if they execute
the same instruction. However, threads might follow different branches in a conditional statement,
reducing the synchronization between threads and thus reducing the parallelism. To avoid this issue
with conditionals (which are often used within cell models), we instead employ Heaviside func-
tions. In this way, we can mimic the conditional as a product between a literal and the condition
of the Heaviside function. In this way, results of the function are calculated, whereas conditional
statements are avoided.

The other part of the monodomain problem ported to the GPU is the solution step for the system
of PDEs. We have implemented the Jacobi preconditioned conjugate gradient (CG) method [62].
For the PDE implementation, a hybrid approach has been adopted. In this hybrid version, the CPU
controls the code flow of the CG method (i.e., evaluates conditions such as termination criteria, etc.),
and the GPU performs in parallel vector–vector operations present in the CG method. In order to
optimize productivity while maintaining the efficiency of the GPU code, vector–vector operations
have been implemented using two CUDA libraries (CUSPARSE§ and CUBLAS¶). At each EP sim-
ulation step, the system of PDEs is solved by copying the required data from CPU memory to GPU
memory, the system is then solved using the GPU-based Jacobi–CG implementation and the result
copied back to CPU memory.

§http://developer.nvidia.com/cuda/cusparse
¶http://developer.nvidia.com/cuda/cublas

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



126 G. VIGUERAS ET AL.

5.2.2. Cardiac mechanics. To accelerate the simulation of cardiac mechanics, we examined the
first-order effects, which influence the compute time of the whole cycle. Because of the system
matrix reuse strategy which significantly improves compute times [51] by reducing the number of
matrix builds and factorizations, residual evaluations consume most of the compute time. As a result,
our initial focus was to port both residual evaluations and Jacobian computations to the GPU. The
Jacobian was computed and the residual evaluated locally for each element and later added to both
the global Jacobian and residual. These per element Jacobian and residual computations have been
parallelized on the GPU.

There are some calculations common to both the Jacobian computation and the residual eval-
uation. Specifically, these are related to the computation of the tensors and terms involved in the
mechanics equations as well as the stress computation according to the constitutive law. Because
each of these terms are evaluated at gauss points, their computation has also been parallelized on
the GPU by assigning each gauss point computations to a GPU block. In this way, tensor operations
for each gauss point are executed in parallel by threads within a GPU block.

Using the different mechanics term computations, the Jacobian of each element is calculated
by means of a central finite difference method, which perturbs the displacement solution and re-
evaluates all the mechanics terms and the residual. This perturbation method iterates for each
element over the number of nodes, n, and each dimension of the displacement variable, d . Thus, the
number of iterations is n�d . The central perturbation method has been parallelized by assigning to
each GPU block computations of each dimension at each node (i.e., the number of blocks launched
is n � d ).

After the Jacobian is computed, the residual is then evaluated at each node for both the displace-
ment and pressure variables. For this reason, this task has been parallelized by assigning to each
GPU block computations of each node (i.e., the number of blocks launched is equal to the number
of displacement nodes plus number of pressure nodes).

6. RESULTS

This section reports on performance improvements provided by the GPU for both the electrical and
mechanical components of the cardiac simulations and the impact, in terms of execution times, that
such improvements can have within the clinical context. Regarding the electrophysiology problem,
we have run a range of different monodomain simulations with different mesh sizes. In order to
check the performance when the mesh resolution decreases, we have used a recently established
benchmark for the simulation of electrical activation [47]. To be consistent with the previous bench-
mark study, we have used a PDE time step of 0.01 ms and an ODE time step of 0.0005 ms for
different resolutions (see Figure 2(a)); field variables within all of these meshes were interpolated
using linear basis functions.

We have also obtained results using a realistic mesh of the human left ventricle (LV) at two differ-
ent resolutions (see Figure 2(b)), both meshes again used linear basis functions. We have obtained
activation time values by simulating 300 ms of electrical activity, setting the PDE time step to
0.01 ms and ODE time step to 0.005 ms. Adaptive stepping [34] allows us to use this small step
size of 0.005 ms only during upstroke and alter the ODE step to a higher step size of 1/33 ms rest
of the time. For the finest resolution meshes, these time step values were shown previously to be
sufficient for numerical convergence [47]. Electrical activation was solved on the deformed mesh
at end-diastole, reflecting the geometry at which activation typically occurs. Further, as the genera-
tion of contraction in the normal heart typically occurs on a longer time scale and the physiological
significance of deformation on electrical conductivity remains debated, the mesh was assumed static.

Figure 3(a,b) shows the propagation of the membrane potential in the benchmark mesh with res-
olution 0.2 mm at two different stages when using the GPU. Figure 3 shows the activation times
for the same resolution, represented by a color map and contour bands. Figure 4(a,b) shows the
propagation of the membrane potential in the human left ventricular mesh at different stages when
using the GPU. Figure 4 shows the activation times for the same mesh, represented by a color map
and contour bands.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 127

Figure 3. (a) and (b), Electrical activity propagation in the benchmark mesh at different simulation stages
represented by a color map from dark blue (�86) to red (35); (c) activation times represented by a color map

from dark blue (0) to red (57) and contour bands.

Figure 4. (a) and (b) Electrical activity propagation in a human left ventricular mesh at different simulation
stages represented by a color map from dark blue (�86) to red (35); (c) activation times represented by a

color map from dark blue (0) to red (75) and contour bands.

For mechanics problem, we have simulated the model described in Section 4.2, and we have used
the same LV human geometry as for the electrophysiology problem. However, in this case, it has
been discretized on the basis of a coarser mesh (see Figure 2(c)), reflecting the type of meshes often
observed in cardiac mechanics (although the results illustrated are expected to be consistent with
larger cardiac mechanics meshes). To solve the mechanics problem on this mesh, we have mapped
the activation time from the fine grid electrophysiology mesh onto the mechanics mesh. Using these
activation time values, we simulated the cardiac cycle, comparing performance over a single beat
(with a duration of 1 s and a time step of 0.001 ms). Figure 5 shows displacement values during
a cycle simulation. Figure 6 shows the principal strain vectors and fibers at end diastole and mid
systole steps.

The different implementations have been compared using GPU, SC CPU, and MC CPU platform
configurations. We enumerate the specifications of the different platforms in order to do a perfor-
mance/price/power consumption comparison. For the CPU simulations, we used a machine with
32-core AMD Opterons @ 2.0 GHz and 128 GB of RAM shared among all cores. The processor
used in the CPU tests has a power consumption range of �800/520 W and a price of �£4100. The
theoretical performance of this platform per core is 17.75 GFlops. For our GPU simulations, we
have used up to four Tesla C2070 processors, each one with 448 SPs and 6 GB of device mem-
ory. The theoretical performance of the GPU processor is 515 GFlops, with a power consumption of
238 W and a price of�£1600. Previous works comparing CPU/GPU implementations of biomedical
problems do a single core CPU/single GPU comparison without taking into account the theoretical
performance of each architecture. For this reason, we compare the performance of the GPU imple-
mentation executed on a Tesla C2070 processor with up to 32 CPU cores (with a theoretical peak
performance of 568 GFlops). In this way, we are able to analyze the performance provided by the
single core, multi-core, and GPU implementations. The accuracy of GPU implementations has been

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



128 G. VIGUERAS ET AL.

Figure 5. (a), (b), and (c) show the displacement values in the fiber direction at three time steps during dias-
tole; (d), (e), and (f) at three time steps during systole. Displacement values are represented by a color map

from dark blue (�5.0) to red (5.9) and contour bands.

Figure 6. Detail of fibers and strain tensor (a) at mid systole (b) at end of diastole. Glyphs represent principle
components of strain as follows: blue (stretch) and red (compression).

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 129

determined by comparing results provided by GPU and CPU simulations. For the monodomain
problem, we compared membrane potential values obtaining a maximum difference of 1.0E-13.
For the mechanics problem, we compared displacement, pressure, and fiber field values obtaining a
maximum difference of 1.0E-15.

Figure 7 shows the speedup obtained by the different parallel platforms when solving the ODE
problem. These results clearly demonstrate that the GPU outperforms both the sequential and paral-
lel CPU versions. They also demonstrate that the performance is further improved when the problem
size increases mainly because of the high memory bandwidth available on the GPU. On the other
hand, Figure 7 shows that the GPU version is always faster than the multi-core CPU despite the fact
that the CPU platform has a slightly higher theoretical performance. Specifically, the GPU achieves
a 5.5� speedup compared with the MC CPU for the biggest LV mesh with respect to the multi-core
CPU. This speedup allows to reduce the ODE run time from 93 h when using the MC CPU down to
17 h when using the GPU for the largest LV mesh.

Figure 8 shows the speedup obtained when comparing a single GPU version with respect to two
and four GPUs, demonstrating the scalability of the ODE problem when using several GPUs. Results
show that almost linear scalability is obtained for the ODE problem. Furthermore, when comparing
the results grouped by mesh type, it can be seen that the performance is further increased with the
problem size evidenced by the acceleration for the bigger LV mesh which is higher in compari-
son with the smaller LV mesh. These results demonstrate the potential of the GPU architecture for
accelerating the ODE component of the solution procedure, specially for large-scale geometries.

Figure 9 shows the speedup obtained by the different parallel platforms considered when solving
the PDE problem. Speedup values for the CPU versions have been obtained using the execu-
tion times provided by PETSc, which is the library used for solving the PDE. This comparison
again demonstrates that the GPU outperforms both the SC and MC CPU versions. Performance is
also further improved when the problem size increases. Unlike the ODE problem, the PDE algo-
rithm provides lower acceleration rates between the GPU and the different CPU platforms. This is
mainly because the CG algorithm requires more synchronization among GPU threads, resulting in a

Figure 7. Speedup obtained by the different parallel platforms for the ODE problem.

Figure 8. Scalability of the ODE problem when using multiple GPUs.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



130 G. VIGUERAS ET AL.

Figure 9. Speedup obtained by the different parallel platforms for the PDE problem.

performance degradation. Nevertheless, the GPU version always outperforms the MC CPU achiev-
ing up to 2.6� speedup for the largest LV mesh. This speedup allows to reduce the PDE run time
from 53 h when using the MC CPU down to 20 h when using the GPU for the largest LV mesh.

Tables I and II show the performance provided by the different platforms when running a whole
cycle mechanics simulation. Table I shows the total run time (in seconds) for the GPU and CPU
versions and the percentage of the total run time that the three main tasks of the simulation take
(i.e., Jacobian computation, residual evaluation, and PDE solve). We report results for these three
tasks because for the single CPU version, they take most of the simulation run time (28146.5 s).
When the mechanics simulation is parallelized on the multi-core CPU, the total run time is signifi-
cantly reduced (1481.4 s). For the 32-core CPU version, the percentage of the total run time required
by the Jacobian computation and the residual evaluation are reduced, but for the PDE solution, the
step is increased (10%), meaning that the latter task provides a lower scalability. Looking at the
GPU results, the percentage of time required by the Jacobian and residual computations is further
decreased.

For heart problem, the MC CPU required 1585 s for 1 ms of simulated time on the largest LV
mesh, whereas the GPU required only 400 s, resulting in a significant improvement in computation
time. The performance was nearly equivalent for the solid mechanics problem, with both the MC
CPU/1 GPU requiring 1.5 s for 1 ms of simulated time. However, this is due to the non-parallelized
PDE solve, which is 3.7� faster in the MC CPU simulation (see Table II). Accounting for this time,
we see that significant improvement in the MC CPU computation time.

Table II shows the speedup of the parallel CPU and GPU versions with respect to the sequen-
tial CPU version as well as the speedup of the GPU with respect to the parallel CPU version. This
speedup evaluation between the different platforms has been performed by comparing the execution

Table I. Total run time split in mechanics cycle simulation.

Stage 1CPU 32CPU 1GPU

Jacobian 19% 15% 8%
Residual 79% 73% 43%
PDE solve 2% 10% 39%
Total time 28146.5 s 1481.4 s 1481.6 s

Table II. Speedup of the parallel CPU and GPU implementations with
respect to the sequential CPU version.

Stage 1CPU/32CPU 1CPU/1GPU 32CPU/1GPU

Jacobian 22.3� 44.5� 2.0�
Residual 20.4� 34.8� 1.7�
PDE solve 3.7� 1.0� 0.3�

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 131

time of the three tasks of the simulation: the PDE solve time and the two parts of mechanics imple-
mented on the GPU (i.e., Jacobian computation and residual evaluation). Looking at these results,
it can be seen that tasks implemented on the GPU outperform both the sequential and parallel CPU
versions of the same tasks. Comparing the sequential CPU and GPU versions, the following accel-
eration factors are obtained: 44.5� (Jacobian computation) and 34.8� (residual evaluation). When
comparing the parallel CPU and GPU versions, the following acceleration factors are obtained: 2.0�
(Jacobian computation) and 1.7� (residual evaluation). However, the PDE solve task only runs in
parallel for the 32-core version and runs sequentially for the single CPU and GPU simulations. The
acceleration factors provided by the parallel CPU and GPU versions enable the simulation of one
cycle in around 25 min. However, if we consider the same PDE solve time for the GPU simulation as
for the 32-core simulation, the GPU total run time is decreased to 15 min. It should be noticed that
the GPU can improve the computational performance of electromechanical simulations while the
price ratio MC CPU/GPU is around 2.5 (i.e., the GPU is 2.5� cheaper) and the power consumption
ratio MC CPU/GPU is 3.36–2.18 (i.e., the GPU consumes less energy).

7. CONCLUSIONS

The application of electromechanical models within time sensitive environments such as the clinic,
requires significant advancement of the computational software used to solve both cardiac electri-
cal activation and mechanics. Previous efforts have addressed this problem by efficiently exploiting
the computational capabilities of HPC based on clusters of CPU processors. Although significant
speedups were obtained, these platforms have the disadvantage of a high cost in terms of price and
power consumption. For tackling these problems, the GPU has arisen as an efficient platform pro-
viding a good power/performance ratio. Previous works have proposed the use of GPUs for solving
the cardiac electrical activation problem. Building on these works, we have shown the potential
utility of GPUs for simulating both electrical activation and mechanics within the human heart.

Specifically, we have developed a GPU-based scheme to enable the acceleration of a human scale
electrical activation problem and a novel implementation of cardiac mechanics on the GPU. To eval-
uate the effectiveness of our implementation, we have focused on performing a comparison between
a GPU and a multi-core CPU with similar theoretical performance. The GPU implementations were
developed to take advantage of the features of this parallel platform and allowed to significantly
accelerate the different problems simulated for human scale models. Concretely, for the human LV
mesh (�19 M. DOFs) speedups of 5.5� and 2.6� were achieved for the ODE solve and PDE solu-
tion steps, respectively. Regarding mechanics, for the same human geometry, speedups of 1.7� and
2.0� were obtained for the residual evaluation time and Jacobian computation time, respectively.
The fact that this performance comparison was performed using a GPU and a multi-core CPU with
similar theoretical performance provides an unbiased assessment of the capacity for the GPU plat-
form to accelerate computations focused on electromechanical coupling. In addition, the GPU is
more efficient offering a price ratio MC CPU/GPU of 2.5 (i.e., the GPU is 2.5� cheaper) and a
power consumption ratio MC CPU/GPU of 3.36–2.18 (i.e., the GPU requires less energy).

Although the results presented in this paper show the benefits that the GPU architecture can
provide to simulate VPH cardiac models, some improvements and extensions in functionality are
left as future work. In this study, the GPU electrophysiology implementation only uses one cell
model. The development of additional cell models for the GPU requires significant technical skill
in comparison with coding the same model for the CPU. In order to generalize the use of the GPU
platform to the VPH community, it would thus be desirable to develop a tool for automatically gen-
erating GPU code and add this functionality to existent cell model repositories [61]. Furthermore,
this study proposes the implementation of the PDE solution step in the electrophysiology problem
on a single GPU. Some previous studies have solved the system of PDEs using multiple GPUs [9].
In this approach, the communication between GPUs is handled by the CPU through MPI. However,
CUDA has recently released a new peer-to-peer communication method where GPUs, within the
same node, communicate directly through the Peripheral Component Interconnect (PCI) bus. In this
way, a hierarchical method could be adopted where GPUs hosted in different nodes communicate
through MPI, and GPUs within the same node communicate using the PCI bus interface.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



132 G. VIGUERAS ET AL.

Although the GPU mechanics implementation presented in this study provides a performance
improvement with respect to MC CPU, there remains significant further potential for exploiting the
GPU capabilities. In the GPU mechanics code, Jacobian and residual per element computations are
performed in parallel on the GPU. Nevertheless, the mechanics code could be further accelerated
by performing multiple elements computations in parallel. Computing multiple elements in parallel
results in a higher consumption of GPU memory. However, the acceleration obtained justifies the
higher memory required. This has been already observed in our mechanics implementation for the
Jacobian computations. The Jacobian matrix is built using a perturbation method, which iterates
over the number of DOFs of the mechanics problem. Because this loop is parallelized on the GPU,
a higher speedup factor is provided for the Jacobian computation (2.0�) with respect to the residual
evaluation (1.7�). Furthermore, because mechanics run time is dominated by residual computations
(see Table I), the reduction of residual time should result in a significant acceleration of the total
run time. As presented in the results section, the PDE solve step in the mechanics simulation was
run sequentially on the CPU. This step can be also parallelized implementing on the GPU a direct
solver or a preconditioned iterative solver. This parallelization of the PDE solve step would lead to
a reduction of the mechanics total time.

ACKNOWLEDGEMENTS

The authors would like to acknowledge funding from the EPSRC (EP/G007527/2), the King’s College
Medical Engineering Centre funded by the Wellcome Trust and EPSRC (WT088641/2/09/2), the Virtual
Physiological Rat project (NIH IPG50GM094503-01), VPH-Share funded by the European Commission
and the British Heart Foundation (NH/11/5/29058). We also acknowledge the support from the Wellcome
Trust-EPSRC Centre of Excellence in Medical Engineering (WT 088641/Z/09/Z) and the NIHR Biomedical
Research Centre at Guy’s and St.Thomas’ NHS Foundation Trust and KCL. The views expressed are those
of the authors and not necessarily those of the NHS, the NIHR, or the DoH.

REFERENCES

1. Smith N, de Vecchi A, McCormick M, Nordsletten D, Camara O, Frangi AF, Delingette H, Sermesant M, Relan J,
Ayache N, Krueger MW, Schulze WHW, Hose R, Valverde I, Beerbaum P, Staicu C, Siebes M, Spaan J, Hunter P,
Weese J, Lehmann H, Chapelle D, Rezavi R. euheart: personalized and integrated cardiac care using patient-specific
cardiovascular modelling. Interface Focus 2011; 1(3):349–364.

2. Nordsletten D, Niederer S, Nash M, Hunter P, Smith N. Coupling multi-physics models to cardiac mechanics.
Progress in Biophysics and Molecular Biology 2011; 104(1-3):77–88.

3. Niederer SA, Smith NP. At the heart of computational modelling. Journal of Physiology; 590(2012):1331–1338.
4. Xi J, Lamata P, Niederer S, Land S, Shi W, Zhuang X, Ourselin S, Duckett S, Shetty A, Rinald C, Rueckert D, Razavi

R, Smith N. The estimation of patient-specific cardiac diastolic functions from clinical measurements. Medical Image
Analysis 2013; 17:133–146.

5. Niederer SA, Plank G, Chinchapatnam P, Ginks M, Lamata P, Rhode KS, Rinaldi CA, Razavi R, Smith NP. Length-
dependent tension in the failing heart and the efficacy of cardiac resynchronization therapy. Cardiovascular Research
2011; 89:336–343.

6. Bartocci E, Cherry EM, Glimm J, Grosu R, Smolka SA, Fenton FH. Toward real-time simulation of cardiac dynam-
ics. In Proceedings of the 9th International Conference on Computational Methods in Systems Biology, CMSB ’11.
ACM: New York, NY, USA, 2011; 103–112.

7. Vigmond EJ, Boyle PM, Leon L, Plank G. Near-real-time simulations of biolelectric activity in small mammalian
hearts using graphical processing units. Conf Proc IEEE Eng Med Biol Soc 2009; 2009:3290–3.

8. Rocha BM, Campos FO, Amorim RM, Plank G, Santos RWd, Liebmann M, Haase G. Accelerating cardiac excitation
spread simulations using graphics processing units. Concurr. Comput. : Pract. Exper. 2011; 23(7):708–720.

9. Neic A, Liebmann M, Hoetzl E, Mitchell L, Vigmond E, Haase G, Plank G. Accelerating cardiac bidomain
simulations using graphics processing units. IEEE Transactions on Biomedical Engineering 2012; 59:2281–2290.

10. Sato D, Xie Y, Weiss J, Qu Z, Garfinkel A, Sanderson A. Acceleration of cardiac tissue simulation with graphic
processing units. Medical & Biological Engineering & Computing 2009; 47(9):1011–1015.

11. Niederer S, Mitchell L, Smith N, Plank G. Simulating human cardiac electrophysiology on clinical time-scales.
Frontiers in Physiology 2011; 2(14):1–7.

12. Reumann M, Fitch BG, Rayshubskiy A, Keller DUJ, Seemann G, Dossel O, Pitman MC, Rice JJ. Strong scal-
ing and speedup to 16,384 processors in cardiac electro-mechanical simulations. In Engineering in Medicine
and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009; 2795–2798, DOI:
10.1109/IEMBS.2009.5333802.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



TOWARD GPGPU ACCELERATED HUMAN ELECTROMECHANICS 133

13. Hosoi A, Washio T, Okada J, Kadooka Y, Nakajima K, Hisada T. A multi-scale heart simulation on massively paral-
lel computers. International Conference on High Performance Computing, Networking, Storage and Analysis, 2010;
1–11.

14. Lafortune P, ArÃs R, Vazquez M, Houzeaux G. Coupled electromechanical model of the heart: parallel finite
element formulation. International Journal for Numerical Methods in Biomedical Engineering 2012; 28(1):
72–86.

15. Nash M, Hunter P. Computational mechanics of the heart. Journal of Elasticity 2000; 61:113–141.
16. Sainte-Marie J, Chapelle D, Cimrman R, Sorine M. Modeling and estimation of the cardiac electromechanical

activity. Computers & Structures 2006; 84:1743–1759.
17. Stevens C, Remme E, LeGrice I, Hunter P. Ventricular mechanics in diastole: material parameter sensitivity. Journal

of Biomechanics 2003; 36(5):737–748.
18. Göktepe S, Kuhl E. Electromechanics of the heart: a unified approach to the strongly coupled excitation-contraction

problem. Computational Mechanics 2010; 45:227–243.
19. NVIDIA, 2012. NVIDIA CUDA Programming Guide 4.2.
20. Clayton RH, O OB, Cherry E, Dierckx H, Fenton F, Mirabella L, Panfilov A, Sachse F, G GS, Zhang H. Models

of cardiac tissue electrophysiology: progress, challenges and open questions. Progress in Biophysics & Molecular
Biology 2011; 104:22–48.

21. Keener J, Sneyd J. Mathematical Physiology. Springer: New York, NY, USA, 2004.
22. Henriquez C. Simulating the electrical behavior of cardiac tissue using the bidomain model. Critical Reviews in

Biomedical Engineering 1993; 21(1):1–77.
23. Muler A, Markin V. Electrical properties of anisotropic nerve-muscle syncytia-I. Distribution of the electrotonic

potential. Biofizika 1977; 2(22):307–312.
24. Muler A, Markin V. Electrical properties of anisotropic nerve-muscle syncytia-II. Spread of flat front of excitation.

Biofizika 1977; 3(22):518–522.
25. Muler A, Markin V. Electrical properties of anisotropic nerve-muscle syncytia-III. Steady form of the excitation

front. Biofizika 1977; 4(22):671–675.
26. Gulrajani R. Bioelectricity and Biomagnetism. Wiley, 1998.
27. Leon LJ, Horacek BM. Computer model of excitation and recovery in the anisotropic myocardium. I. Rectangular

and cubic arrays of excitable elements. Journal of Electrocardiology 1991; 24(1):1–15.
28. Bueno-Orovio A, Cherry EM, Fenton FH. Minimal model for human ventricular action potentials in tissue.

JournalAnnals ofTheoretical Biology 2008; 253(3):544–560.
29. Dal H, Goktepe S, Kaliske M, Kuhl E. A fully implicit finite element method for bidomain models of car-

diac electrophysiology. Computer Methods in Biomechanics and Biomedical Engineering 2012; 15:645–656. DOI:
10.1080/10255842.2011.554410.

30. Pathmanathan P, Bernabeu MO, Bordas R, Cooper J, Garny A, Pitt-Francis JM, Whiteley JP, Gavaghan DJ. A
numerical guide to the solution of the bidomain equations of cardiac electrophysiology. Progress in Biophysics &
Molecular Biology 2010; 102:136–155.

31. Rocha B, Kickinger F, Prassl A, Haase G, Vigmond E, dos Santos R, Zaglmayr S, Plank G. A macro finite-
element formulation for cardiac electrophysiology simulations using hybrid unstructured grids. IEEE Transactions
on Biomedical Engineering 2011; 58:1055–65.

32. Trew M, Le Grice I, Smaill B, Pullan A. A finite volume method for modeling discontinuous electrical activation in
cardiac tissue. Annals of Biomedical Engineering 2005; 33:590–602.

33. Brenner S, Scott RL. The Mathematical Theory of Finite Element Methods. Springer: New York, NY, USA, 2005.
34. Land S, Niederer SA, Smith NP. Efficient computational methods for strongly coupled cardiac electromechanics.

IEEE Transactions on Biomedical Engineering 2012; 59(5):1219–1228.
35. hsing Luo C, Rudy Y. A model of the ventricular cardiac action potential - depolarisation, repolarisation and their

interaction. Circulation Research 1991; 68:1501–1526.
36. ten Tusscher KH, Panfilov AV. Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol

Heart Circ. Physiol. 2006; 291:H1088–H1100.
37. Qu Z, Garfinkel A. An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE

Transactions on Biomedical Engineering 1999; 46:1166–1168.
38. Hundsdorfer W, Verwer J. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations.

Springer: New York, NY, USA, 2010.
39. Vigmond E, Hughes M, Plank G, Leon L. Computational tools for modeling electrical activity in cardiac tissue.

Journal of Electrocardiology 2003; 36:69–74.
40. Mardal KA, Skavhaug O, Lines GT, Staff GA, Odegard A. Using python to solve partial differential equations.

Computing in Science and Engineering 2007; 9(3):48–51.
41. Heidenreich EA, Ferrero JM, Doblare M, Rodriguez JF. Adaptive macro finite elements for the numeri-

cal solution of monodomain equations in cardiac electrophysiology. Annals of Biomedical Engineering; 38(7):
2331–2345.

42. Bonet J, Wood R. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press:
Cambridge, UK, 1997.

43. Malvern L. Introduction to the Mechanics of Continuous Medium. Prentice-Hall: Upper Saddle River, NJ, USA,
1969.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm



134 G. VIGUERAS ET AL.

44. Wang C, Truesdell C. Introduction to Rational Elasticity (Mechanics of Continua). Springer: New York, NY, USA,
1973.

45. Costa K, Holmes J, McCulloch A. Modeling cardiac mechanical properties in three dimensions. Philisophical
Transactions of the Royal Society 2001; 359:1233–1250.

46. Kerckhoffs R, Bovendeerd P, Prinzen F, Smits K, Arts T. Intra-and interventricular asynchrony of electromechanics
in the ventricularly paced heart. Journal of Engineering Mathematics 2003; 47:201–16.

47. Niederer SA, Kerfoot E, Benson AP, Bernabeu MO, Bernus O, Bradley C, Cherry EM, Clayton R, Fenton FH,
Garny A, Heidenreich E, Land S, Maleckar M, Pathmanathan P, Plank G, RodrÃguez JF, Roy I, Sachse FB, See-
mann G, Skavhaug O, Smith NP. Verification of cardiac tissue electrophysiology simulators using an N-Version
benchmark. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
2011; 369(1954):4331–4351.

48. Nielson P, Grice IL, Smaill B, Hunter P. Mathematical model of geometry and fibrous structure of the heart.
American Journal of Physiology 1991; 260:H1365–H1378.

49. Shi Y, Korakianitis T. Numerical simulation of cardiovascular dynamics with left heart failure and in–series pulatile
ventricular assist device. Artificial Organs 2006; 30:929–948.

50. Korakianitis T, Shi Y. A concentrated parameter model for the human cardiovascular system including heart valve
dynamics and atrioventricular interaction. Medical Engineering and Physics 2006; 28:613–628.

51. McCormick M, Nordsletten D, Kay D, Smith N. Simulating left ventricular fluid-solid mechanics through the cardiac
cycle under lvad support. Journal of Computational Physics 2013; 244:80–96. DOI: 10.1016/j.jcp.2012.08.008.

52. Lee J, Niederer S, Nordsletten D, Grice IL, Smaill B, Kay D, Smith N. Coupling contraction, excitation, ventricular
and coronary blood flow across scale and physics in the heart. Philisophical Transactions of the Royal Society A
2009; 367:2311–2331.

53. Nordsletten D, Kay D, Smith N. A non–conforming monolithic finite element method for problems of coupled
mechanics. Journal of Computational Physics 2010; 20:7571–7593.

54. Nordsletten D, McCormick M, Kilner P, Kay D, Smith N. Fluid-solid coupling for the investigation of diastolic and
systolic human left ventricular function. International Journal for Numerical Methods in Biomedical Engineering
2011; 27:1017–39.

55. McCormick M, Nordsletten D, Kay D, Smith N. Modelling left ventricular function under assist device support.
International Journal for Numerical Methods in Biomedical Engineering 2011; 27:1073–1095.

56. de Vecchi A, Nordsletten D, Remme E, Bellsham-Revell H, Greil G, Simpson J, Razavi R, Smith N. Inflow typology
and ventricular geometry determine efficiency of filling in the hypoplastic left heart. Annals of Thoracic Surgery
2012; 94:1562–1569.

57. Schloegel K, Karypis G, Kumar V. Multilevel diffusion schemes for repartitioning of adaptive meshes. Journal of
Parallel and Distributed Computing 1997; 47:109–124.

58. Balay S, Gropp WD, McInnes LC, Smith BF. Efficient management of parallelism in object oriented numerical
software libraries. In Modern Software Tools in Scientific Computing, Arge E, Bruaset AM, Langtangen HP (eds).
Birkhäuser Press: Basel, Switzerland, 1997; 163–202.

59. Amestoy PR, Duff IS, L’Excellent JY, Koster J. A fully asynchronous multifrontal solver using distributed dynamic
scheduling. SIAM Journal on Matrix Analysis and Applications 2001; 23(1):15–41.

60. Li XS, Demmel JW. SuperLU_DIST: a scalable distributed-memory sparse direct solver for unsymmetric linear
systems. ACM Transactions on Mathematical Software 2003; 29(2):110–140.

61. Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An Overview of CellML 1.1, a
Biological Model Description Language. SIMULATION: Transactions of the Society for Modeling and Simulation
International 2003; 79(12):740–747.

62. Golub GH, Van Loan CF. Matrix Computations, 3rd Edition. The Johns Hopkins University Press: Baltimore, 1996.

© 2013 The Authors. International Journal for Numerical
Methods in Biomedical Engineering published by John Wiley
& Sons, Ltd.

Int. J. Numer. Meth. Biomed. Engng. 2014; 30:117–134
DOI: 10.1002/cnm


