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Abstract

Purpose of Review—Update on the clinical trials using antigen specific therapies in

autoimmune diabetes.

Recent Findings—Type 1 diabetes is now a predictable disease with the measurement of islet

autoantibodies, and the incidence is increasing dramatically. Safe and effective interventions are

needed to stop the underlying autoimmune destruction of insulin producing beta cells. Beta cell

antigens, insulin and glutamic acid decarboxylase, are being used to preserve endogenous insulin

production in individuals with new onset diabetes and to prevent diabetes. The results of antigen

specific immune intervention trials are reviewed and consideration is given to future directions for

inducing tolerance in type 1 diabetes.

Summary—Antigen specific immune therapies act by enhancing regulatory T cell function, in

animal models often locally and selectively in islets or pancreatic lymph nodes, while inhibiting

effector T cells. This therapeutic pathway provides a safe treatment to preserve beta cell function

in new onset diabetic individuals with the GAD-Alum vaccine being the most extensively studied

therapy. Insulin is being used in many forms to prevent diabetes and stop the underlying

autoimmune process. For the future, combination immune therapies targeting different pathways

in the immune system will be needed to effectively induce sustained tolerance in type 1 diabetes.
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Introduction

Type 1A diabetes (T1D), the immune mediated form of diabetes, is a chronic autoimmune

disease in which there is specific immune destruction of the insulin producing pancreatic β-

cells. T cells as well as other mononuclear cells cause insulitis ultimately resulting in β-cell

death, decreased insulin production, and a lifelong requirement for insulin therapy (1).
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Despite treatment with insulin therapy long-term complications, including nephropathy,

retinopathy, neuropathy, and cardiovascular disease, can result (2; 3). Over the last two

decades, the incidence of T1D has doubled especially in children less than five years of age

(4; 5). The Diabetes Control and Complications Trial (DCCT) found that 20% of patients

studied, who were within 5 years of diagnosis, had remaining insulin production (0.2–0.5

pmol/ml) (6); at this time immunologic intervention can potentially save beta cell function

and reduce reliance on insulin administration. Even partial beta cell function is beneficial as

patients that maintain endogenous insulin production have better metabolic control than

those who rely solely on exogenous insulin (7), and improved metabolic control reduces the

long-term complications from diabetes (8). Therapies that halt beta cell destruction can

result in continued endogenous insulin production, greatly improving metabolic control,

reducing hypoglycemia, and decreasing the prevalence of complications in T1D. Therapies

aimed at altering the underlying autoimmune process in T1D are actively being investigated

with monoclonal antibodies to anti-CD3 (9–12) and anti-CD20 (13) showing preservation of

beta cell function after a year. Treatment with a single course of an anti-CD3 monoclonal

antibody can result in endogenous insulin production five years later (14). However these

therapies are not without side effects and concerns regarding immune suppression. Antigen

specific therapies offer an excellent safety profile while still having efficacy, because they

can either selectively eliminate islet-reactive T cells, or, alternatively or in addition, induce

islet-specific regulatory T cells that can act locally within pancreatic lymph nodes or islets

without affecting general immune competence. This review focuses on the mechanism of

action of antigen specific therapies and those agents currently being studied in T1D.

Mechanism of Action

Antigen specific therapy involves the administration of islet proteins peptides during various

stages of the disease pathogenesis. The currently recognized antigens in human T1D include

insulin, proinsulin, B-chain of insulin, glutamic acid decarboxylase, and zinc transporter 8

(ZnT8) proteins (15). Autoantibodies directed towards these peptides can be used to assess

disease risk (16; 17). The amount, route of administration, timing of therapy in the disease

process, and combination with an adjuvant all contribute to the effectiveness of a given

antigen therapy. Most of our understanding regarding the effects of antigen therapy on the

immune system comes from studies in the non obese diabetic (NOD) mouse, a spontaneous

model of autoimmune diabetes as well as antigen-induced selective transgenic models (18;

19). From these studies we presume that T1D is a T cell mediated disease, at least in its

effector phase, in which T cells that produce inflammatory cytokines such as IFN-γ and

TNFα in conjunction with innate immunity and other inflammatory factors (such as IL-1β)

cause beta cell death (1; 20; 21). Adaptive and natural regulatory T cells can both oppose the

actions of autoreactive effector T cells in animal models. Antigen specific therapy can

enhance adaptive regulatory T cell responses in humans as it appears that intradermal

administration of proinsulin peptide can lead to a peptide specific IL-10 response (22)

(regulatory cytokine) similar to inducing tolerance in allergy (23; 24). This IL-10 specific

response is also observed when insulin B chain is administered intramuscularly in

Incomplete Freund’s Adjuvant (IFA) (25). IL-10 has anti-inflammatory properties, down

regulating IFN-γ (26), and inducing T cells to become regulatory T cells in peripheral
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lymph nodes and lymphoid organs (27; 28). In addition, islet-antigen specific IL-10

responses were detected in healthy individuals while those who progressed to type 1

diabetes had both IFN-γ and IL-10 responses. Interestingly, the individuals with type 1

diabetes who had IL-10 responses developed disease later in life (>20 years of age),

underlining the therapeutic potential of an IL-10 response to delay or prevent disease (29).

In mice, for example after oral insulin administration, other cytokines such as IL-4 and

TGF-beta can be induced (30; 31) – at present it is not fully known, which of these could

also play a role after antigen-specific therapy in humans. The concept of preventing or

treating a more TH1 mediated disease such as type 1 diabetes by deviating the immune

system locally to TH2 still remains therefore rather attractive (32).

A potential major benefit of immunizing with antigens is the result of site-specific

immunotherapy, because, at least in animal models, regulatory T cells only act where islet

antigens are present, which limits their effect to pancreatic lymph nodes and the islets

themselves (33; 34).

Insulin

There is a significant amount of evidence in the NOD mouse model and humans that insulin

is a key target of beta-cell autoimmunity leading to T1D. A simple observation is that

insulin is specific for beta cells and no other cells are destroyed in T1D, while other

identified autoantigens such as GAD65, IA-2, and ZnT8 are not specific to beta cells (35). In

the NOD mouse model, mutating a single amino acid in a specific insulin epitope (amino

acids 9 to 23 in the B chain of insulin) recognized by T cells prevents all diabetes (36; 37).

In humans the insulin gene is the second most important genetic determinant of T1D

(polymorphisms of the MHC class II genes provide the most significant genetic risk). The

protective genetic variant of insulin results in increased insulin expression in the thymus,

likely resulting in deletion of autoreactive insulin T cells during T cell development (38–40).

Animal studies have shown that decreased insulin expression in the thymus during T cell

development leads to increased insulin specific T cells and T1D onset (41).

There have been multiple studies utilizing insulin, insulin peptides, and proinsulin peptides

to stop islet autoimmunity and prevent diabetes outlined in table 1 (22; 42–45). Twenty

years ago, the first diabetes prevention trial (DPT-1) used a low dose of daily oral insulin in

order to prevent T1D. In this NIH sponsored study (TrialNet oral insulin) oral insulin was

provided to first degree relatives of T1D patients with at least two islet autoantibodies in an

attempt to prevent diabetes onset (17; 46). However, the administration of oral insulin did

not delay progression to overt diabetes, but in post-hoc analysis individuals with high titer

insulin autoanibodies benefited from treatment. In this group of patients, it was estimated

that diabetes onset was delayed as much as five years (47). Since the analysis was a post-hoc

subgroup analysis, a repeat oral insulin trial sponsored by TrialNet in individuals with

multiple islet autoantibodies (including insulin autoantibodies) is currently underway (table

2) (42). One likely issue that negatively affected the success of the DPT-1 oral insulin trial is

that, as compared to the mouse models, a very low insulin dose was used (1mg in mice

versus 7.5 mg in humans per dose) and that the therapy was given daily, whereas less
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frequent dosing has shown to be more effective for some mucosal antigens in mouse models

(48).

In addition to insulin, immunization with the insulin B chain in IFA has been used in T1D

patients, showing induction of IL-10 producing regulatory T cells, but no effect on C-

peptide preservation (25). Peakman and coworkers are studying peptides of proinsulin,

recognized by autoreactive T cells, to induce regulatory responses and ultimately tolerance

to insulin, however no clinical benefit has been noted as of yet (22). Alternative routes of

insulin dosing include intranasal insulin administration, where two initial trials did not yield

positive results (44), likely because the nasal insulin had been administered too frequently

(48). Bayhill Therapeutics developed an intramuscular proinsulin DNA vaccine, which is

currently in a phase 2 trial to stop islet autoimmunity in new onset T1D patients with some

encouraging initial benefits on C-peptide preservation (ADA disclosure last year).

GAD-Alum

The most extensively studied antigen specific therapy to date is the GAD-Alum vaccine.

The initial study was done in individuals with latent autoimmune diabetes of adulthood

(LADA) showing preservation of c-peptide with a single dose. Dose finding studies

followed, showing that only a specific dose of 20ug was effective. Notable is the fact the

both lower and higher doses were not efficacious, again indicating the importance of dose in

antigen specific therapy (49). The underlying mechanistic reasons for this dose dependency

are unknown, which is a major obstacle in defining key biomarkers that could predict the

efficacy of therapy on an individual basis. In a double blind, randomized placebo controlled

trial, GAD-Alum injection delayed the loss of c-peptide production in new onset T1D

children and adolescents following a single course of therapy. Follow up at 30 months

showed a significant preservation of insulin secretion only in those individuals that received

the GAD-Alum vaccine within 6 months of T1D diagnosis (50). Similar to the immune

suppressive therapies anti-CD3 monoclonal antibodies and rituximab (anti-CD20

monoclonal antibody targeting B cells), one year after therapy loss of c-peptide secretion

resumed at a rate analogous to the control groups. In these trials, there was evidence of an

immunologic effect with the induction of GAD65 specific regulatory T cells and with B

lymphocytes (increased GAD autoantibodies) (51). Recently, four year data has been

reported with GAD-Alum treatment demonstrating significantly better preserved fasting c-

peptide in GAD treated subjects. The safety profile after four years is excellent revealing no

treatment related adverse events (52) and larger phase 2/3 trials are underway (table 2).

Future Directions

Antigen specific therapies have many beneficial effects with regards to safety profiles and

specificity in the mechanism of action. At the present time, more antigen specific therapies

need to be tested in a rationale way as the GAD-Alum vaccine and the post-hoc analyzed

subgroup of the oral insulin trial are the only approaches showing efficacy so far. Since the

dose and route of administration appear to be crucial parameters, smaller proof-of-concept

trials might be important to sort out such factors more rapidly and, at the same time, define

key biomarkers. One such biomarker might be the existence of autoantibodies to a given
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islet antigen: As proposed by Harrison (53) and recently validated in a wet-lab based on

valid in silico predictions by Entelos (Bresson et al. unpublished), individuals who generate

autoantibodies to an islet antigen might be more prone to also make regulatory (for example

TH2 like) responses to the same antigen. Thus, there is now technology available provided

by Entelos to use in silicocomputer aided, methods to assess dose and immune response in

animal models with the potential to expand this technology to human disease (54). It will

then also be useful to identify new epitopes of insulin and the newly discovered zinc

transporter 8 and used in individuals with those specific antibodies. Last, the use and

selection of adjuvants is also important and those adjuvants that enhance protective immune

responses need to be considered with antigen specific therapy (i.e. IFA, Alum etc).

To prevent and ultimately cure T1D, a combination therapy approach will most likely be

needed. The understanding of the immunopathogenesis in type 1 diabetes has increased

considerably over the last several years (1) but clinical immune intervention is in the initial

stages. We are now at a point in the immunotherapy field reminiscent of oncology

developing the first chemotherapeutic agents, which now provide excellent five year

survival rates for numerous malignancies. At the current time, there are no FDA approved

therapies to block the autoimmune process in type 1 diabetes. However, there are now

several single agent therapies (anti-CD3 monoclonal antibodies, rituximab, and GAD-Alum)

that can delay c-peptide loss in newly diagnosed individuals with type 1 diabetes but none

that sustain long lasting tolerance. There are currently many more single agent therapies

under investigation (55). However, it is unlikely that we will be able to administer

systemically acting immune modulators repeatedly and for a long duration of time to

consistently delete autoimmune memory as well as newly formed self-reactive effector cells,

but we are now at the point of combining successful single agents into suitable combination

therapies with islet antigens. Work in preclinical animal models has demonstrated synergy

with such combined therapies. For example, anti-CD3 monoclonal antibodies paired with

intranasal insulin were able to reverse diabetes better than either single agent alone in a

murine model of type 1 diabetes (56). Recently the Immune Tolerance Network (ITN) and

Juvenile Diabetes Research Foundation (JDRF) partnered to make recommendations for

developing combination immunotherapies in type 1 diabetes. In all, over 40 possible

combinations of therapies could be considered (57). Combined therapies provide the

benefits of synergy with the potential to lower efficacious doses which will lessen the side

effects from long-term immune suppression. We favor providing an antigen specific therapy

under the umbrella of an immune suppressive therapy such as anti-CD3 or an anti-

inflammatory agent (IL-1 monoclonal antibody or receptor antagonist) currently under

investigation (58; 59).

Conclusions

The field of immune intervention in type 1 diabetes is at an exciting time with the potential

to prevent and induce tolerance in diabetes. Antigen specific therapies act by inducing

adaptive regulatory T cells that then act locally at the site of insulitis in the pancreas or the

pancreatic lymph nodes. Clinically, the GAD-Alum vaccine has shown efficacy in delaying

the loss of endogenous insulin production and oral insulin in an antibody positive subset of

patients as well as a pro-insulin expressing DNA vaccine in a small number of individuals
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have provided encouraging data while all having an excellent safety profile. In the future,

antigen-specific therapies have the potential to become alone-standing therapies when given

early enough to prevent T1D in those at risk. In addition, combination therapies with

systemically acting immune modulators (either anti-inflammatory or anti-T cell) targeting

different pathways in the disease pathogenesis, raise the level of optimism over the next

decade.
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Key points

• Antigen specific therapies selectively eliminate islet-reactive T cells and induce

regulatory T cells that can act locally within pancreatic lymph nodes or islets

without affecting general immune competence.

• Oral insulin may delay the onset of type 1 diabetes up to seven years in first

degree relatives of type 1 diabetic individuals with high titer insulin

autoantibodies.

• Immunization with GAD-Alum preserves insulin secretion (measured by c-

peptide) after 30 months in individuals that received the vaccine within 6

months of type 1 diabetes diagnosis.

• In the future, antigen specific therapies have the potential to become stand alone

therapies when given early enough to prevent type 1 diabetes in those at risk.
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Table 1

Completed antigen specific trials in type 1 diabetes

Stage of disease Study Title Agent Comment

Prevention TrialNet oral insulin Oral insulin Delay of overt diabetes onset in 1st

degree relatives of T1D patients with
high titer insulin autoantibodies

Prevention Intranasal insulin Nasal insulin No effect on delay/prevention of type 1
diabetes when given daily; ongoing trials
are using less frequent administration of
intranasal insulin

New onset intervention GAD vaccine GAD-alum Delay in loss of c-peptide in those with
T1D < 6mo from baseline

New onset intervention HSP60 DiaPep277 Heat shock protein administered in
several trials with limited efficacy; likely
blocking innate immune system
inflammation

Recent onset intervention Immunization with insulin B chain Insulin B chain + IFA Increased IL-10 producing T cells but no
effect on c-peptide in a small pilot study

Intervention Proinsulin peptide immuno-therapy Intradermal proinsulin peptide Increased IL-10 production from peptide-
specific T cells after 3 months of
treatment
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Table 2

Ongoing antigen therapy trials in type 1 diabetes

Study Title Agent Phase Patient Population Clinicaltrials.gov

*TrialNet Oral Insulin Oral Insulin 3 ≥2 islet autoantibodies (including
insulin) for T1D prevention

NCT00419562

*Intranasal insulin for the prevention of
T1D

Intranasal Insulin 2 Prevention for at risk individuals NCT00223613
NCT00336674

TrialNet GAD GAD-alum 2 New onset T1D NCT00529399

Diamyd GAD GAD-alum 3 New onset T1D NCT00723411

Study of BHT-3021 in T1D subjects Proinsulin DNA Vaccine 1/2 New onset T1D NCT00453375

*DiaPep277 in New Onset Adults DiaPep277 3 New onset T1D NCT01103284

*
indicates trials currently enrolling at the time of publication
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