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1. INTRODUCTION

The newly introduced treatment of electronic polarization by an internal continuum (EPIC)

was shown accurate in reproducing experimental and DFT molecular polarizability tensors

with a remarkably small number of adjustable parameters{151}. Moreover, the accuracy

found when computing intermolecular interaction energies, in which the appropriate

treatment of electronic polarization is crucial, opens up the possibility of using EPIC to

include polarizability in force fields{218}. This led us to propose the use of EPIC to embed

polarizability in all-atom-explicit-solvent calculations. EPIC uses the continuum dielectric

electrostatic theory to account for the way electronic density polarizes under the presence of

an external electric field that can either come from other molecules, in explicit condensed

phase calculations, or the reaction field in an implicit solvent calculation. In comparison

with the point inducible dipoles{74, 88, 49} or the Drude’s oscillator models{12, 78} that

use the atomic nuclear positions as polarizable centers, EPIC uses the notion of a

polarizability density that induces a dipole density, normally referred as polarization,

through the molecule volume as a response to the local electric field. In a recent study,

Schropp and Tavan{194} proposed that the use of single centers in point inducible dipole

polarizable calculations was responsible for the large difference between the best condensed

phase atomic polarizability and the best vacuum phase atomic polarizabilities previously

noticed{11, 8}. Other studies, based on QM assessment, suggest that the polarizability in

condensed phase should only be slightly reduced{202}. The idea of using a continuum

dielectric to account for electronic polarization was first formulated by Sharp et al.{27}, but
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was not further pursued until Tan and Luo{43} optimized the internal dielectric of solutes to

produce the electrostatic potential in the context of Poisson-Boltzmann calculations with

different implicit solvents. One of the difficulties with Tan and Luo approach is that the

solute and the solvent polarization are treated as if it is a single phenomenon when they are

actually distinct. They mainly focused on the dipole moments of the few molecules they

studied, letting the atomic partial charges vary where the vacuum phase atomic partial

charges should be used because the solute polarization should be sufficient to account for

the change in solvent polarity. For this reason, we choose to separate the charge fitting from

the polarizability fitting by optimizing separately an electronic volume on quantum

mechanics (QM) polarizability tensors for a molecule in vacuum{151}, as was done

originally with other polarizable models{75, 49, 74}. We found that in order to reproduce

quite accurately the polarizability tensors of challenging molecules, the atomic radii needed

to be much smaller than the van der Waals (vdW) contact radii usually used in implicit

solvent calculations (like Bondi{108}). Furthermore, the internal dielectric needed to be

surprisingly high and this was necessary to reproduce the anisotropy of the polarizabilities.

On the one hand, that work allowed for a systematic way of adjusting a dielectric function to

account for electronic polarization but, the abnormally high internal dielectric of 14 seems

questionable and makes implicit solvent calculations impractical. Regarding the first issue, it

is clear that the dielectric inside the molecule is closely related to the refractive index

squared (ε∞=n2) of the pure liquid and that its value should fall between 1.7 and 2.9, far

below our large values. Regarding the second issue, with such small atomic radii defining

the molecular cavity in solvent, the free energy of charging becomes unrealistically negative

in Poisson-Boltzmann (PB) calculations. In this work, we specifically address both issues

and show the physical soundness of the approach. An important change from our previous

work is the use of a smooth dielectric boundary to represent both the solute and the solvent

polarization. We present a newly design dielectric functional form that defines a 3-zone

dielectric continuum that permits the use of EPIC for implicit solvent calculations. We think

that this sort of description of the dielectric function is a better physical picture of reality

than the usual 2-zone dielectric (inside and outside the cavity).

Another question that we examine is the ability to optimize the EPIC parameters in a general

and robust way with few parameters on a larger variety of chemical functionality than in

earlier work. For this purpose, we have formed a large database of QM molecular

polarizability tensors containing 707 entries (or a total of 4242 polarizabilities) along with

their optimized molecular geometries (c.f. Supporting Information). As will be outlined

below, this dataset contains a large variety of chemical functional groups representing a

significant component of bioorganic chemistry. The validity of not only the internal

dielectric function but also of the 3-zone dielectric function is assessed with the independent

fit of the solvent cavity atomic radii which define the third zone of the function on 485

experimental free energies of hydration.

In the remainder of this article, section 2 presents the theoretical basis and methods

employed. More precisely, we present the 3-zone dielectric function for implicit solvent

calculations and we review the polarizability tensor calculation. This is followed by the

theoretical background for the calculation of the refractive indices. A theoretical layout for
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free energy of hydration calculations and computational details related to quantum

calculations close this section. The section 3 describes the chemical datasets used in section

4 where the results and their analysis are presented. First the polarizable EPIC model

parameterization is enlarged which allows for the calculation of refractive indices. Section 4

is terminated with a 3rd zone dielectric optimization on experimental hydration free energies.

Before the ending conclusion, section 5 gives a more general discussion that makes the link

between the different sections.

2. THEORY AND METHODS

2.1 3-Zone dielectric in implicit solvents

The dielectric function in continuum approaches is fundamental as it is modulating all

sources of polarization. In this work, we move away from our previous use of vdW envelop

surface{159} surface toward a smooth functional form based on a sum of atomic Gaussian

which has been previously proven successful{36, 117} in PB applications. Although useful,

the hard dielectric boundary often leads to numerical problems: iterative convergence

failure, slower convergence, strong dependency on orientation and translation, and unstable

force evaluations{36, 125}. The use of smooth solute/solvent dielectric boundary was

shown to improve over the hard boundary on all these aspects. More specifically, the

molecular dielectric function used in the present work is given by

1

where εin is the dielectric constant inside the molecular volume and εext the dielectric value

outside. It is to be mentioned that the dielectric here is expressed as a permittivity relative to

the vacuum permittivity. The exponential behaves as a switching function that is turned on

or off depending on the value of a molecular ‘density’ function fin (r⃑). The A parameter

modulates the steepness of the switching function. The details of the dielectric are then

incorporated into the ‘density’ function

2

The summation runs over all atoms and 3-dimensional Gaussian defines the radial extent of

the atomic volume. More precisely, σi are atomic radii and ri their positions. The σi will be

the subject of an extensive parameterization in the next sections. The constant k is set to

2.3442 and p to 2.7 following Grant et al. recommendation{36}. These were fitted to obtain

accurate molecular volumes under the constraint p(π/k)3/2=4π/3 to ensure that the atomic

radii (σ) have the meaning of a sphere radius. One can conceptually understands eq. 1 in

terms of electronic density that would have a constant susceptibility (polarizability density)

inside and drops rapidly as the density vanishes as shown in Figure 1a.

The main methodological novelty proposed in this work is the 3-zone dielectric for the

coupling of EPIC with implicit solvation. When atomic radii are optimized on QM-based
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molecular polarizability tensors, their optimal small size prevents their use to define the

cavity formed by the solute in implicit solvent calculations. Indeed, it is wrong to suppose

that the solvent polarization would happen with a dielectric constant of 80 at distances such

as 1.3Å {151} or 0.9Å (this work) from the center of an aromatic carbon atom given that the

contact distance, according to Bondi{108}, is 1.7Å. This would result in clearly too negative

free energies of charging (results not shown). Coming back to the electronic density picture,

we believe that it is more reasonable to think that the radial extent of the electronic

polarization can be different from the vdW radius, i.e. the distance at which implicit solvent

starts to have a bulk dielectric constant of 80 (for water). The idea presented here is that both

kinds of smooth surfaces could be simultaneously used: one formed with the smaller

polarization atomic radii and one defined with the solvent cavity atomic radii. This leads to a

3-zone dielectric function to which we give the form

3

where εin is the dielectric constant inside the molecular cavity, εsolv the bulk solvent

dielectric constant (80 for water), and εtrans the dielectric constant in the zone of transition

between the solute and the solvent. For the smooth inner dielectric boundary, A has the same

meaning as in eq. 1 and fin (r⃑) is given by eq. 2. The additional exponential term, for the

outer dielectric boundary (with solvent), is a switching function that turns on when a second

Gaussian sum (fsolv (r⃑)) becomes sufficiently small. The fsolv (r⃑) term is also given by eq. 2

with the difference that the atomic radii are larger as they define the solvent cavity. The B

parameter is responsible for the steepness of the cavity boundary, but with a sufficiently

large value has the effect of moving the position of the boundary as if the radii were scaled.

The radial shape of the 3-zone dielectric is illustrated in Figure 2a for a single atom and for

the 4-pyridone molecule, both with typical parameters.

2.2 Molecular polarizability tensor

In this section, we review the methodology previously developed to calculate molecular

polarizability tensor with a finite difference Poisson solver{151} and we summarize how the

involved parameters are optimized in this work.

2.2.1 Method—Our formulation of electronic polarization based on continuum

electrostatics allows the calculation of induced multipolar moments by considering the

bound charge density, which results from the polarizability density of the media (the

electrons in our case). A formula to calculate the bound charge density is{143}

4

where ρb is the bound charge density and E⃑(r⃑) the total electric field. Physically, ρb is a

consequence of the formation of dipoles at each point in space (the polarization P⃑(r⃑) or

dipole density). Eq 4 is useful since it transforms the locally induced dipoles into a scalar

value, the bound charge density, which can be used more easily as done below. Also, it is
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noteworthy to say that bound charges appear in region of spaces where ε(r⃑) varies such as

the dielectric boundary of a molecule. In other words the polarization occurs everywhere the

dielectric is larger than one, but the effects, through the bound charges, is much more

localized. In eq. 4, ε(r⃑)−1 plays the role of a local polarizability density, also called the

electric susceptibility, and P⃑(r⃑)= (ε(r⃑)− 1)E⃑(r⃑) corresponds to the induced dipole density

(polarization). The analogy with the point inducible dipole model, a different polarizable

model, is obvious since, in that case, the atomic induced dipole is given by μ ⃑ (r⃑i)= αi E⃑ (r⃑i)
where μ⃑(r⃑i), αi and E⃑(r⃑i) are the dipole induced at the atomic position r⃑i, the atomic

polarizability and the electric field at r⃑i. Here, the polarization is more smoothly distributed

over the molecular volume. Eq. 4 is intrinsic to the definition of Poisson’s equation.

A classical example, for which an analytical solution exists, is the dielectric sphere in

vacuum experiencing an external electric field. In this case the mathematics show that bound

charges appear on the surface of the sphere with opposite charge sign on both hemispheres,

resulting in an induced potential equivalent to an ideal induced dipole moment aligned with

the external field located at the center of the sphere. The induced dipole moment is

proportional to the external electric field and the sphere polarizability αsphere is given by the

Clausius-Mossoti equation

5

where Rsphere is the sphere radius. For a molecular system, the analytical solution is

unknown and we use a finite difference algorithm to solve Poisson’s equation numerically

with a uniform electric field in the form of a voltage clamp applied by means of the

boundary conditions. More precisely, a uniform electric field in the z direction can be

produced with a null potential on one side of the grid boundary and the value −Eext×Lz on

the opposite side, where Lz is the box size in the z direction and Eext the magnitude of the

applied field. On the four other sides, parallel to the field, the grid boundary potential is

simply calculated as a linear interpolation along the z direction: ϕ(z−z0) = −(z−z0)×Eext. As

with the dielectric sphere in vacuum, a molecular dielectric cavity responds linearly to the

applied field and the proportionality constant is the molecular polarizability tensor. The field

is applied in three orthogonal directions to build the polarizability tensor:

6

where μx,y is the x component of the induced dipole moment when an external electric field

of magnitude Eext is applied in the y direction. Some experimental values are available for

the eigenvalues of this tensor in vacuum (εext = 1); also, the polarizability tensor, which

depends on the orientation of the molecule, can be calculated using approaches based on

quantum mechanics (QM) methods such as density functional theory.
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The induced dipole moment is calculated analogously to the sphere dielectric system,

integrating the bound charge density over space. From eq 4 (or simply from Gauss’s law),

one can show that

7

In the present context, there is no free charge density ρf (r⃑) (from atomic partial charges, for

instance) and as such the bound charge density, induced only by the external uniform

electric field, is given by the divergence of the field. With a finite difference solver, the total

charge (bound and free charges) can be calculated by integrating over each differential

volume element (grid cube) which leads to bound charges on grid points. This can be done

simply by calculating

8

where qijk, qb
ijk and qf

ijk are the total charge, the bound charge and the free charge inside the

volume element associated with the ijk grid point, ϕijk and ϕijk−1 the electrostatic potential at

the (x,y,z) and (x,y,z−dz) grid points respectively. The grid spacing in x, y and z are given by

hx, hx and hz. The grid free charge qf
ijk are zero for this calculation and, in general, it is given

by the atomic partial charges as distributed on the grid. Finally, the total dipole moment is

given by

9

With the free charges equal to zero (no atomic partial charge), the dipole calculated is then

the induced dipole and the only contributor is the bound charge density. More generally, any

molecular electric moment can be calculated with analogs to eq. 9. The overall procedure to

calculate the polarizability tensor requires three solutions from the numerical solver. The

calculation does not involve atomic partial charges (free charges) which allow to fit them in

a second independent step.

2.2.2 Computational details—The finite difference Poisson calculations were performed

with a modified version of the OpenEye Inc. ZapTK{}. The distance between two grid

points was set to 0.35 Å and the grid boundary was at least 5 Å away from the surface

defined by the polarization radii. Atomic charges of ±0.001e were assigned randomly on the
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atoms as the grid energy was used to determine the convergence of the algorithm. Atom

typing was assigned with the OpenEye Inc. OEchem toolkit{}.

2.2.3 Optimization of the polarizabilities—The atomic radii are optimized in order to

minimize a chi-square function using a Levenberg-Marquardt algorithm as implemented in

scipy{234}, a scientific Python library. The error is defined as the difference between the 6

components of the polarizability tensor obtained with B3LYP and EPIC

10

where αxy,i is one of the six-independent polarizability tensor elements of molecule i either

under optimization (EPIC) or from the QM target values. By using the six independent

tensor elements, we include both the magnitude and the direction of the polarizability in a

natural way{Darden}. We optimized the cube of the polarization radii as their contribution

to the polarizability grows with the atomic volume (c.f. eq. 5). For analysis purposes, we

also define the average polarizability (eq. 11) and the anisotropy of the polarizability tensor

(eq. 12) below

11

12

where α1 ≤ α2 ≤ α3 are the eigenvalues of the polarizability tensor. The polarizability

anisotropy is significantly harder to obtain than the average polarizability. We define the

error in the average polarizability (eq. 13) and anisotropy (eq. 14) for a set of molecules as

13

14

where N is the total number of molecules considered and QM corresponds to the target

value. Finally, the relative root-mean-square deviation (RRMS) of the tensor is defined as
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15

and constitutes a single metric for the over-all fitness of the optimized polarizability tensors.

If the RRMS is calculated for a single molecule, the summations on the molecules in the

numerator and the denominator are simply omitted.

2.3 Refractive index calculations

2.3.1 Theory—The dielectric constant of a material at the high frequency limit (ε∞) is

related to the material refractive index{223} n by

16

where n is usually measured with the D line of the sodium spectrum at 589 nm (nD). The ε∞
corresponds to the material dielectric constant solely due to the electronic polarization since

the frequency of the visible light is too high for nuclei relaxation to contribute. Typically, a

pure liquid of an organic compound will have a refractive index comprised between 1.3 and

1.7 leading to a ε∞ between 1.7 and 2.9. Since the work of Debye and Onsager{232,27}, it

is a dogma that the interior dielectric (εin) of a solute cavity in implicit solvent models

should be given by the experimental ε∞ in order to capture the dipole moment change due

to the cooperative solute-solvent polarization. It is when we seek for accuracy in solute

polarization that we found the generally accepted relation ε∞ = εin to badly fail{151}. A

way to reconcile this puzzling finding is by computing a macroscopic refractive index

instead of an internal refractive index (quoted from Onsager{232}). The Clausius-Mossoti

equation relates the polarizability of a sphere to its interior dielectric. Since ε∞ and n are

macroscopic intensive quantities, their measurement should not depend on the size of the

studied sample, given that it is large enough to exhibit a macroscopic behavior, the worst

case being the use of a single molecule. It is not to say that Onsager uses of the Clausius-

Mossoti equation with the radius of a single molecule was not justified. In fact, he was

primarily interested in the molecular polarizability (αmol)and used the formula

17

where v is the volume of the liquid sphere considered and n the number of molecules it

contains. In eq. 17, the rightmost factor corresponds to the cube of an effective single

molecule radius. It is however understood that the same molecular polarizability is obtained

as long as the v/n factor is preserved and is therefore size independent with the assumption
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that ε∞ is filling the space uniformly or that it is a spatially averaged value. In order to

calculate the refractive indices for the general case where the internal dielectric is not

uniformly distributed in the liquid, we generate pure liquid configurations from molecular

dynamics (MD) simulations at room temperature and cut out spherical clusters (or droplets)

from individual snapshots. We maintain the v/n ratio by fixing the density to experiment and

calculate the droplet effective εin with the formula

18

where Rdroplet and αdroplet are the droplet radius and polarizability. We assign the dielectric

function on all molecules and apply the procedure outlined above to calculate the droplet

polarizability and thereby access the droplet refractive index.

2.3.2 Computational details—To obtain the liquid phase droplets, molecular dynamic

simulations, using the AMBER 8.0 package, were performed on 3375 molecules

(15×15×15) in a cubic box. The NVT ensemble and periodic boundary conditions allowed

density to be fixed to the experimental value and the temperature was set to 20°C to match

the experimental conditions used to report refractive indices. The temperature was

maintained constant with the weak coupling algorithm{} with the kinetic energy adjusted

every 1 ps. The non-bonded interaction cutoff was set to 8.0 Å and long range interactions

computed with particle mesh Ewald{} using the default Amber 8.0 setup. The molecules

were charged with AM1-BCC{29, 30} and the Generalized Amber Force Field (GAFF)

{228} was used. The SHAKE procedure{} was used to fix all bond lengths to hydrogen.

The initial liquid box was generated by positioning the molecules on a cubic lattice,

randomly oriented with the Marsaglia{235} quaternions method. The system was first

minimized until the root-mean-square (RMS) of the gradient is less than 0.1 kcal/mol/Å.

This was followed by a 8 ps annealing phase integrated by steps of 1 fs, during which the

non-bonding interactions were gradually turned on and the temperature increased from 0K

to 40K and decreased to 0K. The system was then heated over 20 ps up to 293.15K with a 2

fs integration time step. Following a 1 ns equilibration, 50 snapshots were written over a 2

ns production run. Each of the liquid boxes for a given molecule was then wrapped in the

primary cell. A sphere with a diameter set to 85% of the box length formed a liquid droplet

when picking all molecules with an atom lying inside the sphere. The droplet radius was

then determined by considering the position of the outermost non-hydrogen atoms. The

precise definition of the radius is not unique and we have verified, for example, that using

the experimental density to calculate the radius of the corresponding ideal sphere gives

refractive indices within ±0.01 of those obtained by the chosen algorithm. Also, this model

assumes a perfectly spherical object, ignoring the dimples formed because of the finite size

of the spheres. The relatively large size of the droplet and the averaging over 50 independent

configurations reduced the effect of this approximation.

The solution to Poisson’s equation in the presence of the voltage clamp boundary conditions

was obtained on a rectangular grid sized to encompass the full droplet plus half its radius on

Truchon et al. Page 9

J Chem Theory Comput. Author manuscript; available in PMC 2014 May 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



each side of the droplet. The target grid spacing was set to be 0.5Å. The smooth dielectric

functions (eq. 1), fitted on the molecular polarizability tensors only, were assigned together

with the matching internal dielectric εin and A parameter. The external dielectric was always

set to the vacuum value εext = 1. The convergence criteria for the ZapTk solver was based

on the grid energy and set to 0.0001 kT. This convergence criteria required the assignement

of atomic charges that we choose to be ±0.001e on half the atoms, keeping an overall neutral

system. Given the strength of the external field applied, this was not perceptibly affecting

the answer.

2.4 Free energy of hydration

2.4.1 Theory—Implicit solvent models are commonly used to incorporate the effects of

solvation in molecular models as a mean field {Roux, Luo, Mobley}. These models

considerably reduce the computational burden needed to sample the solvent configurational

space when each atom of the solvent are explicitly simulated. An important validation for

solvation models comes from experimental free energy of hydration (ΔGhyd) that consists in

the chemical potential difference for the transfer of a solute from vacuum to the solvent

bulk. The computational evaluation of ΔGhyd is separated into two processes. Firstly, the

non-polar free energy of hydration (ΔGnp) comes from the formation of an empty cavity in

the bulk solvent that causes a reorganization of the solvent molecules. Secondly, the

electrostatic free energy of hydration (ΔGelec) results from the work necessary to place of

the solute atomic partial charges in the cavity that switched on the electrostatic interactions

between the solvent and the solvated solute. This results in the equation

19

The longstanding use of implicit solvent to evaluate ΔGelec is based on a high continuum

dielectric solvent region that gets polarized by the solute static electric field. Traditionally,

the solute cavity is formed with a molecular surface with a discrete transition of the

dielectric function at the solute-solvent boundary. As explained above, we choose a smooth

boundary transition. The solute cavity volume and shape is determined by atomic radii. It is

important that the solute cavity and atomic charges are appropriately balanced. For a given

set of charges, too small atomic radii exaggerate the affinity of the solute for water and too

large radii will have the opposite effect. The calculation of ΔGelec is normally done with a

non-polarizable solute or, if the cavity is assigned a εin > 1, the atomic partial charges are

screened and require a special treatment that was not done until recently{208}. Because the

solute is non-polarizable and water increases the dipole moment of solvated molecules, the

atomic charges should not be fit on a gas phase QM ESP. For this reason, the charges are

often generated from RESP{} or AM1-BCC{} that are known to be balanced for

calculations in water.

In the 3-zone dielectric model that we propose in this article (c.f. eq. 3), the first zone should

accurately account for the solute polarizability, which allows for the use of vacuum phase

atomic charges obtained independently of the internal dielectric function. The second zone

located between the internal dielectric and the solvent is set to vacuum and the transition to

the third zone needs to be parameterized in order to have a full implicit solvent model.
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Following Grant et al. suggestion{} for their non-polarizable 2-zone dielectric function, we

fix the B parameter in eq. 3 to 11.8, which leaves the solvent cavity atomic radii to be fitted

on the experimental free energy of hydration. However, in order to compare the calculated

ΔGhyd to experiment, we need to evaluate ΔGnp that is done without innovation here.

Fortunately, converged Alchemia{} calculations based on free energy perturbation (FEP)

are available for each compound from our hydration free energy dataset{}. Since this is the

best achievable theoretical estimation of ΔGnp, this is our preferred estimation in current

study. However, since this is not very useful for prospective evaluations of ΔGhyd, we also

fitted a surface area based model that calculates ΔGnp as

20

where γ is a surface tension and S the surface area of the molecule as defined by a Richard

molecular surface{} created with a 1.4Å rolling probe and the Bondi radii{}. This crude

approximation has been proven useful and it can be improved by atom typing the γ{217} or

by using some treatment of the dispersion energy{219, 220, 221, 222} instead.

2.4.2 Computational details—The atomic partial charges responsible for the permanent

electrostatic potential (ESP) were minimized by a least-square-fit on the QM ESP calculated

on a face-centered-cubic grid of points. Following Jakalian et al{}, the grid spacing was set

to 0.5Å and the grid points were positioned around the molecule in a volume formed by two

vdW surfaces, each built with Bondi radii scaled by a factor of 1.4 and 2.0. The dielectric

has the effect of scaling down by a factor of 1/εin the charges, which effect is partly

compensated by the bound charges appearing from the internal polarization. Hence, the

least-square-fit requires a Poisson solver in order to capture the total effect, which depends

on the shape of the dielectric boundary. It is noteworthy to mention that the charge fitting

process is independent of the EPIC polarizability model and, as such, can be fit after the

solute dielectric parameters are optimized. The details of the procedure, called DRESP, can

be found elsewhere{218}. The AM1-BCC atomic partial charges were generated with the

OpenEye Inc. Quacpak toolkit and the topologically equivalent atoms had their charges

averaged.

A finite difference Poisson solver was written to allow the implementation of the 3-zone

dielectric model. Here is a brief description of the algorithms implemented. We use

successive over-relaxation (SOR) and a Gauss-Seidel iterative scheme{40,Varga}. The free

charges of the system were assigned on the grid with a quadratic inverse interpolation

scheme{36} that has the advantage of conserving the dipole moment, has a continuous first

derivative and is more robust to the effects of rotation and translation. The same

interpolation rule is used to calculate the potential in between grid points. In our

calculations, we use a convergence criteria base on grid energy defined as the sum of the

electrostatic potential times the distributed free charges on the grid. This convenient

criterion is directly related to the energy in an absolute way and thus ensures that relative

energies are also converged. The boundary conditions, in energy calculations, were

determined with a Coulomb potential.
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The ΔGelec was computed by taking the grid charge energy difference between a solution

obtained in vacuum (εext = 1) and another solution in water (εext = 80) from the resulting

Poisson’s equation and calculated with

21

where qi is the atomic partial charge of atom i, ϕ(r⃑i)vaccum is the interpolated electrostatic

potential at atom i position r⃑i. The grid spacing for the solver was set to 0.35 Å and the

minimum distance between the solute internal radii and the grid boundary to 7 Å. In the

cases where the solute was non-polarizable, εin was set to one. Finally, the parameters

(solvent cavity atomic radii and tension surface) were adjusted with the same Levenberg-

Marquardt algorithm used for the fit to the polarizability tensor. All parameters were

simultaneously optimized.

2.5 Quantum calculations

The B3LYP exchange-correlation functional{} is used for all DFT quantum calculations of

this work within the Gaussian 03 software{135}. All molecular structures of this work were

initially relaxed with B3LYP and the 6-31G(d,p) basis set{137, 138, 139}. Property

calculations required larger basis sets for accuracy. The electrostatic potential values were

obtained with B3LYP and the 6-311++G(3df,3pd) extended triple zeta basis set{137, 138,

139}. Secondly, the molecular polarizability tensor computations used the aug-cc-pVTZ

basis set{136}, as it was shown to lead to accurate results{105}. The implemented method

in Gaussian 03 to calculate the molecular polarizability tensor is the Coupled Perturbed

Hartree Fock (CPHF) method{}. The Hartree-Fock calculations performed to fit water

adapted atomic partial charges were also performed with the Gaussian 03 software with the

6-31G(d,p) basis set.

3. DATASETS

In this work, we make extensive use of three kinds of data: B3LYP/aug-cc-pVTZ

polarizability tensors, free energies of hydration and refractive indices. A total of five

datasets are then created.

3.1 Polarizability training dataset (PTD)

A training dataset is used to optimize the internal radius in order to match B3LYP

polarizability tensors. To this end, we make use of the previously published training

datasets{151} in addition to new molecules for a total of 265 polarizability tensors. In this

dataset, many neutral functional groups are represented: alkanes, alkenes, alkynes, halogens

(bromo, fluoro, chloro), alcohols, thiols, amines, ethers, thioether, nitriles, aldehydes,

ketones, esters, thioesthers, amides, acids, ureas, imines, amidines, sulfones, sulfoxides,

sulfonamides, heteroaromatics, hydrazines, hydroxamic acids, N-oxides, pyridones and

peptides. In addition, charged functional groups were also included with the sole purpose of

covering charged side chains in amino acids. They are: carboxylates, guanidiniums,

imidazoliums and ammoniums. The strength of the PTD is the wide coverage of functional
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groups, but its clear weakness is the lack of cross-functionalized molecules. To get to this

level of coverage would require calculations on many thousands of larger molecules, and

consequently an enormous amount of computational power. The intention in this paper is to

provide a reasonably general first set of parameters to adequately treat many bioorganic

molecules in addition to most biomolecules.

3.2 Polarizability validation dataset (PVD)

The polarization validation dataset is composed of the previously published validation

sets{151} and 401 molecules from the hydration free energy dataset (below) not included in

the polarizability training dataset. In addition, a few special molecules such as neutral and

charged peptides, melamine, sugars, etc. were added, giving a total of 442 datapoints. T

3.3 Polarizability dataset. (PD)

The polarizability dataset is composed of all polarizability tensor available, in other words,

the combination of the validation and training datasets. This work is thus making available a

total 707 B3LYP polarizability tensors together with the molecule coordinates (see

Supporting Information).

3.4 Hydration free Energy Dataset (HED)

This dataset is built from a compilation of 504 experimental free energies of hydration of

neutral molecules recently published with the corresponding ΔGnp and ΔGchg from

Molecular Dynamics based absolute free energy calculations{226}. We took the published

dataset, eliminated the iodine- and phosphorus-containing compounds and formed a dataset

of 485 molecules on which we could fit the solvent part of the dielectric function (eq. 3) and

surface tension (γ).

3.5 Refreactive Indices dataset (RID)

The refractive indices dataset contains 23 small organic molecules (c.f. Figure 5) that are

liquids at 20°C, for which the density and the refractive indices are taken from the CRC

Handbook of Chemistry and Physics{233}. They span a variety of functional groups and

most of the entire spectrum of refractive indices measured for bioorganic molecules.

4. RESULTS AND DISCUSSION

4.1 Polarizability tensor

This work follows the precedent of ref. {151} in fitting atomic polarizability radii and a

single inner dielectric constant to QM molecular polarizability tensors to produce an

accurate EPIC model of electronic polarization. In this section, we generalize the

parameterization to account for most of the biomolecules and a significantly wider spectrum

of bioorganic functional groups. In contrast to our previous work, we use a smooth dielectric

function as described vide supra and a single internal dielectric (εin) value.

4.1.1 Choice of εin and A parameters—It was previously shown that a more accurate

polarizable model was obtained when different εin were fitted for alkanes and aromatics.

However, the single-εin model performed as well as the multi-εin model and DFT against
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experimental directional polarizabilities. Furthermore, in another study{218} that examined

the local electronic polarization, the same single-εin model was only slightly worse than the

multi-εin model. In this work we pursue the single-εin model because it greatly simplified

the Poisson solver implementation and the robust parameterization for a wide spectrum of

bioorganic chemistry.

Before the global parameterization of polarizability atomic radii, a range-finding study was

performed with a smaller training set examining which combination of εin and A (c.f. eq. 1)

is best to use for extending the EPIC parameterization previously initiated{151}. We used a

set of 13 alkanes (set g in ref. {151}) including methane, propane, cyclopropane, butane

(cis, trans), hexane (cis, trans), neopentane, etc. together with a set of 10 heteroaromatic

molecules (set a in ref. {151}). We formed the 2-dimensional grid of εin and A pairs and

optimize four radii (hydrogen, alkane carbon, aromatic carbon and aromatic nitrogen) for

each point of the grid. The polarizability tensor RRMS deviation from QM for this dataset at

each (εin, A) pair is shown as an iso-contour plot in Figure 3. It is clear that in order to fit a

general dielectric function, a sufficiently large εin is needed. Also, the flatness of the error

surface allows for multiple equivalent choices, a potential advantage if other criteria become

more stringent in the development of the polarizable model. As shown by red circles in

Figure 3, four starting points were selected for further development: G1-24 (εin=24,

A=4.188), G1-12 (εin=12, A=10), G1-9 (εin=9, A=10) and G1-4 (εin=4, A=10). In the case of

G1-24 only, the A parameter was relaxed to a value of 4.18. The G1-12 seems slightly

superior to the G1-9. Finally, the G1-4 parameter set showed the worst RRMS, still a good

case for having a small value of εin, picked by Tan and Luo{} as being optimal. Each of the

G1 εin and A choices was fixed in the global parameterization of polarization atomic radii

described below. Finally, Figure 3 shows that making a poor selection of (εin, A), in

particular having εin< 4, cannot be redeemed by adjusting the radii.

4.1.2 The optimized polarization radii—The parameterization of the four G1 sets on

the 265 molecules of the polarizability training dataset proceeded as described in the Method

section. We kept the εin and A values fixed and optimized the polarization atomic radii σi on

the B3LYP polarizability tensors. The atom typing of the radii was the primary concern and

we aimed at minimizing the number of radii fitted to reduce the fitting complexity, ensure

better generalization of the chemistry. Each non-symmetric molecule produced 6 data points

from their polarizability tensor; symmetric tensors produced fewer data points due to

structural symmetry. The number of fitted parameters was kept small compared to the

number of associated data points. The determination of the atom typing was done iteratively

in a non-automated manner. First, the polarizability training dataset was designed in terms of

chemical functional-group classes. Often, the fit on an additional class lead to one or two

additional parameters, easily fitted. For example, the alkane H and C radii were the first to

be fitted. This was followed by aromatic C, H and N. It was determined early that a single

atom type for C and H aromatic and alkyl could be utilized. Then the alcohol oxygen radius,

halogen radii, alkene carbon and alkyne carbon radii were individually fitted. We also

merged atom types when the radii values were similar and the fitness metrics (χ2, δavg and

δaniso) were not significantly affected. The final stage is a global simultaneous fit of all radii
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with all the molecules of the polarizability training dataset. Water was treated separately

with its own special O and H radii.

The resulting polarization radii are given in Table 1 for the four G1 parameter sets. It is

important to note that the ordering of atom types in Table 1 is important since the atom

typing was done in the given order and a particular atom could fall in one or more categories

(H for instance). The first observation is that all polarization radii are significantly smaller

than vdW contact radii such as Bondi{108}, Pauling{237} or Parse{236} often used in

Poisson-Boltzmann approaches. Instead of being a contradiction, this finding unveils the two

different natures of the physical phenomena described. On the one hand, the polarization

radii aim at calibrating how the electrons polarize in reaction to an external field created, for

example, by an interacting molecule. On the other hand the vdW radii determine where the

repulsive molecular wall raises. It is also noteworthy that the larger is the εin, the smaller the

radii. To maintain the over-all polarization the dielectric has to go up as you decrease the

radii. This is illustrating a general feature of the model that produces larger polarizabilities

when either the ‘electronic volume’, decided by the radii, or the internal dielectric increases.

The sort of relationship involved is given above for a hard sphere (eq. 5) and elsewhere for a

diatomic{151}.

It is however more interesting to compare polarization radii between elements and between

the different chemical environments. First, it is remarkable that the carbon atom can be split

into only two atom types: sp3 and others. It has a much smaller contribution to the overall

polarizability when sp3 hybridized than when pi electrons are present, i.e. in the sp or sp2

hybridization states. This can be justified by the presence of π* molecular orbitals, the

different number of connected H atoms, and the difference in the molecule shape and the

related anisotropy.

The nitrogen atoms were subdivided into four atom types among which two encompass

almost all intances in the datasets. The first of these is a general nitrogen type assigned to

amines, nitriles, hydrazines or anilines for example. The second major nitrogen radius makes

amide, amidine or sulfonamide nitrogen less polarizable. Surprisingly, the more specific

nitro and N-oxide nitrogen radius, in the G1-4 set, has a radius of zero. The dielectric on this

nitrogen atom is only slightly smaller than εin because of the large bound oxygen radii and

the short N-O bond, typically 1.2 Å. It is also interesting to note that in the G1-24 set, there

was a gain in accuracy when the nitrile nitrogen had its own radius.

The oxygen atom behavior can mainly be accounted for by two adjustable radii types, which

was a significant advantage in the fitting process – the N-oxide and nitro functional groups

still being an exception. Another interesting result is the large radius of the sulfur atom that

is comparable to the bromine radius. However, it is not to say that the polarizability

contribution of sulfur is equivalent. In fact, the bromine bonds are longer and hence offer a

larger polarizable volume. This argument is also useful to explain why the fluorine radius is

smaller than the hydrogen radius. For example, the model predicts a polarizability for

tetrafluoromethane of 18 a.u. compared to 17 a.u. for methane, and a polarizability of 76 a.u.

for hexafluorobenzene compared to 70 for benzene, all in close agreement with B3LYP.

Because of water’s special importance, both the oxygen radius and the hydrogen radius were
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optimized to exactly match the B3LYP polarizability tensor. Finally, the charged species

posed a special challenge that we decided to address specifically for charged side chains in

proteins: Arg, Lys, Asp, Glu and His. Further generalization of the radii for charged species

would require a more extensive parameterization. One reason for this is the expected effects

on the neighbor atoms of polarizability reduction through the strong induction caused by the

charged site. Generalizing it would require a more extensive parameterization.

4.1.3 Polarizability tensors—The G1 parameterizations clearly showed the capacity of

EPIC to produce accurate polarizabilities with a minimum of atom types. The choice of εin

and A combinations made based on the very small range-finding subset, showed the same

behavior in the polarizability training dataset, the polarizability validation dataset and their

combination (polarizability dataset), made of 265, 442 and 707 molecules respectively.

Table 2, which summarizes the errors, shows the accuracy of the obtained models. The

G1-24 dataset has an unsigned average error of 2% on the average polarizability (eq. 13) and

a 5% error on the anisotropy of the tensor (eq. 14). With other polarizable models, such a

low level of error was obtained only when anisotropic atomic polarizabilities were

fitted{Applequist(N-aryls), Birge, Miller, Roux(NMA)}, making their generalization very

challenging. The other G1 models are worse, and as predicted from the range-finding study

results shown in Figure 3, the G1-4 set is inadequate to reproduce the directional difference

in the polarizability (the large δaniso values in Table 2). The error obtained on both the PTD

and the PVD being similar is an indication that our radii are not overfit. Finally, the three

directional polarizabilities (eigenvalues of the tensor) obtained for the 707 molecules (2121

data points) are compared to the corresponding B3LYP values in Figure 4 for 3

representative G1 sets. The excellent correlation is obvious for the G1-24 and G1-12, and

deteriorates in the G1-4 EPIC model. An apparent outlier is the α3 (longitudinal

polarizability) of (3E)-hexa-1,3,5-triene for which B3LYP gives a value of 176 a.u.

compared to the EPIC value of 125 a.u. For this specific molecule, Sekino et al.{107}

showed that B3LYP greatly overestimates the α3 value of acetylene chains. Their better

estimate, based on very accurate CCSD and MP2 QM results, predicts a value of ~135 a.u.

Another remarkable discrepancy between EPIC and B3LYP is observed in Figure 4 for the

α3 of 1,4-dioxidopyrazine (doubly oxidized nitrogen on pyrazine) that is predicted to be 103

a.u. by the G1-12 model versus 129 a.u. by B3LYP. A similar observation can be made for

4-nitroaniline. Although we have not found better estimates for these molecules, they most

certainly constitute a challenge both for classical and ab initio polarizability calculations.

4.2 Refractive indices

In the previous subsection, we have developed dielectric functions that predict remarkably

well, relative to QM, the polarizabilities of a single molecule in the gas phase. In this section

we present the macroscopic refractive index calculations and the corresponding effective

high frequency limit dielectric (ε∞). In a previous publication{151}, we proposed that the

vacuum of the intermolecular spacing may be sufficient to reduce the effective ε∞ resulting

from the high εin obtained in the optimization to polarizability tensors. Here we use a

theoretical approach to verify this hypothesis. Another important point addressed by the

refractive index calculation is the transferability of the dielectric function from the gas phase

to the condensed phase.
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As explained in further details in the Theory and Method sections, we form liquid droplets

containing thousands of molecules from snapshots obtained by MD simulations and

calculate the effective ε∞ by the use of the Clausius-Mossoti equation. The small range

spanned by experimental refractive indices makes this test somewhat stringent. Figure 5

shows the correlation between the results obtained with three representative EPIC

parameterizations and experiment. The first observation is the close agreement between the

magnitudes of the numbers that clearly demonstrate that the effective ε∞ of the liquid

droplets have the appropriate value in spite of the high εin, confirming our previous

assertion. Also noticeable is that the correlation with experiment follows the previous

assessment of the models based on molecular polarizabilities: the G1-24 parameterization

(Figure 5a), has a R2 of 0.899, slightly better than the G1-12 (Figure 5b) with R2=0.877,

which is in turn significantly better than the G1-4 correlation with R2=0.734 (Figure 5c).

However, Figure 5 shows a 0.05 systematic overestimation of the refractive indices which

could correspond to a small overpolarization. The source for this deviation is not exactly

clear to us, but we have few hypotheses. Firstly, the Clausius-Mossoti equation is valid for a

perfect sphere whereas we are dealing with an imperfect surface created by nanoscopic

droplets. Secondly, we have verified that an underestimation of the droplet radius by 3–4%

(1Å in a range of 25–35Å) could systematically shift the calculated refractive indices by

0.05. Thirdly, it is also possible that the liquid phase polarizability may be truly smaller than

the predicted gas phase polarizability since a drop of 11% of the polarizability could explain

the 0.05 shift. This would be in agreement with other studies that found similar

phenomena{202,194,17} and based their reasoning on the increased Pauli exchange

repulsion from the closer contact of the molecules in condensed phase. The magnitude of

this effect however differs considerably from study to study.

Figure 6 provides a visual explanation for the apparent mismatch between the small

effective ε∞ compared to the productives εin. This figure shows the molecular dielectric

inside a CCl4 droplet when it is sliced through its center. The G1-24, G1-12 and G1-4

models have a quite variable intermolecular space. The coloring scheme of the dielectric

function (eq. 1) is such that red is assigned when ε(r) = εin and dark blue when ε(r) = 1. The

intermolecular space increases with εin as the atomic radii decrease. It is striking that these

three parameterizations produce the same refractive index, the same molecular polarizability

and this in spite of the very different εin. Of course, if εin is further reduced, the whole

droplet will be filled with a uniform dielectric (as the atomic radii increase and start to

overlap) and the simultaneous prediction of the molecular polarizability and the refractive

index gets compromised.

4.3 Hydration free energies

The hydration free energies are calculated with several solute models as can be found in

Table 3. Each of the solute model is used to optimize the parameters in the second Gaussian

summation in eq. 3 (noted G2), mainly the solvent cavity atomic radii (referred as cavity

radii in what follows). We decided to set B = 11.8 in all calculations, following the Grant et

al.{} suggestion as it was found to make the Bondi radii{} optimally reproducing the hard

dielectric boundary results with the same smooth boundary as used in this work. The results

reported in Table 3 are split into two main categories based on the method used to
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approximate ΔGnp. The surface area (SA) based method follows eq. 20 and required the

optimization of the surface tension parameter (γ). The main effort here is however

concentrated on the evaluation of ΔGnp by the Alchemical method{}, which is based on a

more physical free energy perturbation (FEP) technique. This is the first category of results

that we examine below.

4.3.1 Results with FEP-based non-polar term—Two main classes of solute are

studied as reported in Table 3. Firstly, we set εin = εtrans = 1 in eq. 3, which effectively turns

eq. 3 into a 2-zone dielectric function with a non-polarizable solute, as defined previously by

Grant et al.{}. For the non-polarizable solute models, we use water polarized static atomic

charges as given by AM1-BCC (G2-BCC optimized cavity radii) and the HF-6-31G(d,p)

(G2-HF). These charge sets should produce the right level of static polarization of the solute

in water. We also use charges obtained by fitting the B3LYP/6-311++G(3df,3pd) ESP that

produces quite accurately the gas phase dipole moment of the molecules, being usually

between 10% and 20% smaller than what is normally expected in water{}. This G2-1 set

(the 1 indicates that the solute model is with εin=1) is a negative control as it should not be

polar enough to induce the appropriate physical response from the solvent. The same

B3LYP charge set is also used to fit the G2-n cavity radii that are now coupled with the

corresponding Table 1 G1-n polarizable solute model where n = 4, 12 and 24. With these

polarizable solutes, the gas phase derived atomic charges should produce naturally the right

cooperative polarization of the solute and the solvent when the Poisson’s equation is solved.

It is quite interesting to observe in Table 3 that the same level of error over the 485

experimental free energies of hydration is obtained for the G2-HF, G2-1, G2-4, G2-12 and

G2-24 solute models. The average unsigned error (AUE) compared to experiment is 1

kcal/mol with a standard deviation of 1 kcal/mol. The Pearson correlation coefficient (R) is

around 0.89 in all these G2 models. The relative root-mean-square deviation (RRMS)

obtained is 0.35 and the average signed error (AE) is found to be between −0.15 kcal/mol

and −0.18 kcal/mol. The G2-BCC model gives the best fit to experiment with an AUE of

0.95 kcal/mol with a standard deviation of 0.81 kcal/mol, a R = 0.93, a RRMS = 0.29 and a

RMS = 1.25 kcal/mol. It is possible that the special adjustment of oxygen and nitrogen

BCCs (bound charge corrections) in the original parameterization of AM1-BCC to

reproduce free energies of hydration be responsible for the better behavior of this charge

set{Jakalian II}. These errors can be compared to the Rizzo et al.{} results, on almost the

same dataset (460 neutral molecules included in the 485 that we use), that produce an AUE

of 1.47 kcal/mol with RESP charges and R = 0.88. It is to be noted that these reported

numbers were obtained with a SA evaluation of ΔGnp that allow them to subsequently

optimize 14 atom typed surface tensions (γ), which improved the AUE to 1 kcal/mol while

R = 0.89. For comparison, in the current study, we fit 8 atomic radii. In addition, the recent

work of Mobley et al.{} on the same dataset as us (except for 19 additional molecules they

use), obtained a root-mean-square deviation of 2.05 kcal/mol while they used the Bondi radii

and the single γ fitted by Rizzo et al. Finally, in a different article, Mobley et al.{JCTC

ASAP} obtained a RMS of 1.26 kcal/mol and R = 0.89 with explicit solvent converged

Alchemical calculations. The FEP based ΔGnp used in this work are coming from this latter

study. Our results are comparable or better to most other studies. We attribute the small
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errors to the optimization of the radii, not necessarily to the quality of the solute model. The

fact that all the G2-n models are more or less giving the same quality of fit reflects the

flexibility of implicit solvent models and the compensatory effect between solute atomic

charges magnitude and cavity size. We can however examine the fitted cavity radii with the

different solute models to understand the effects of the electrostatic model on the optimal

solute cavity size.

The level of solute polarization brought by the polarizable solute models (G2-4 to G2-24)

seems similar to what is obtained with the G2-HF solute model. This can be assessed by

comparing the atomic radii and the cross-validation error showed in Table 4 where the

G1-12 solute model is used with the different G2 radii sets. The level of error produced

when n=4, 12 and 24 or with the G2-HF cavity radii is similar, the G2-4 being the worst.

However, the level of error is significantly higher when the gas phase charges (the negative

control) are used without polarizability in the G2-1 cavity radii set. In other words, the

solute model obtained with pre-polarized atomic charges or with gas phase charges in a

polarizable solute perform similarly. To understand this result, it suffices to note the

systematically smaller cavity radii in the G2-1 column of Table 3. Indeed, the too small

solute polarity is compensated by smaller cavity radii that enlarge the solvent response by a)

exposing the solvent dielectric continuum to stronger solute field (as it is closer to the

atomic charges) and b) by reducing the solute atomic charges to solvent bound charges

distance. The cross-validation results of Table 4 also show the transferability of the third

zone dielectric parameters given that the solute has the physically appropriate electrostatic

behavior. A possible advantage of the polarizable solute model is when the solvation free

energies are computed with a solvent other than water. In this case, one may think that the

HF based charges may not be appropriate.

The fitted radii of Table 3 are significantly different from the contact Bondi radii reported in

the last column. Firstly, the H radius is a little smaller than the usual 1.1 Å contact radius in

all cases (H Bondi radius was recognized to be a little too large and was revised to be 1.1 Å

{Bondi, Roland & Taylor}). The carbon radius obtained here is much larger than the Bondi

radius and make the C-H bonds behave like a united atom model. In this perspective the

carbon radius size obtained here is similar to the Nina et al.{} carbon radius they calculated

by looking at MD water charge density in explicit solvent simulations. For the other

elements, we also find larger radii than Bondi. It is in agreement with a recent study by

Nicholls et al.{}. This result can be rationalized by considering the difference between

contact radii (Bondi) and the cavity radii needed in implicit solvent calculations. The former

defines a zone where the hard sphere atomic radii of neighbor molecules do not

interpenetrate and the latter defines where the mean solvent charge density appears. Indeed,

the implicit solvent polarization conceptually results from the response of the explicit

solvent molecules that adopt configurations with some charge excess when the thermal

fluctuations do not average them to zero. Since the charge density around an atom in a

solvent molecule is not uniformly distributed inside the contact volume, but more

concentrated closer to the nuclei, it seems reasonable that the effective cavity radii be larger

than the contact radii. This is illustrated in Figure 7, but a more quantitative assessment of

this can be found elsewhere{Nina}. Although we claim here that having cavity radii larger
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than Bondi radii may be physically motivated, it is not possible at this stage to know if this

effect should be as large as we find. In particular, the fluorine radii in Table 3 are

surprisingly large. This was also found by Nicholls et al.{} where their optimal fluorine

radius was 2.4 Å. Knowing that fluorine is particularly hydrophobic, this may be just

another peculiar behavior of this atom. It seems also here that the AM1-BCC charging

scheme gave significantly larger F radius as it may lead to more polar C-F bonds than the

other charging methods. The Cl and Br radii difference in the G2-4, G2-12 and G2-24 sets

uncover a drawback of using a small εin. Because the polarization radius of Cl and Br are

larger in the G1-4 than in the other EPIC parameterizations, the transition zone shown in

Figure 2 cannot reach ε(r) = 1 (in the case of Br, it goes down to ε(r) = 3) and the full

polarizability coming from the halogen atom is not reached as the solvent cuts the first zone

dielectric function. This prevents enough solute bound charge density to build up. Finally,

the ordering of the halogen radii obtained in the G2-BCC optimization is also counter-

intuitive. We noticed that the dipole moments of bromo-alkanes are systematically smaller

with the AM1-BCC charges than with the other charge sets. The exact nature for this trend is

not clear but must be due to the difference in the atomic partial charge generation.

4.3.2 Results with surface area-based non-polar term—Although the use of FEP

based ΔGnp may be more physically grounded, the obtained models cannot advantageously

be used in a prospective manner. For this reason, we also optimized the cavity radii and the

surface tension with the G1-12 and AM1-BCC based solute models. In these calculations the

molecular surface area is calculated with the Bondi radii and kept constant. The results are

reported in Table 3. The overall best results are obtained with the non-polarizable AM1-

BCC/SA model that gives: AUE = 0.91 kcal/mol with standard deviation of 0.74 kcal/mol,

R = 0.92, RRMS = 0.28, RMS = 1.17 kcal/mol and AE = 0.00 kcal/mol. These error levels

are better than those obtained with a full FEP calculation{Mobley}. The G2-12/SA model

gives error levels a little larger than the G2-12: AUE = 1.13 kcal/mol with a standard

deviation of 0.90 kcal/mol, R = 0.88, RRMS = 0.34, RMS = 1.45 kcal/mol and AE = 0.02

kcal/mol. It is comforting that the optimal tension surfaces of the two optimizations are close

to each other. The radii obtained for the G2-12/SA fit are similar to the G2-12 fit except for

S, F, Cl and Br. It is possible that the hydrophobicity of these atoms be overestimated by the

unique surface tension term used with the Bondi radii to determined Δ Gnp.

5. Discussion

Integrate all the results that support the initial arguments (Introduction) and give a global

picture.

• epsin=4 not a bad choice for free energy of hydration, but should not be used with

Bondi radii. Tan and Luo have compensatory effects

• anisotropy does not seem to matter for free energy of hydration, but it may for

intermolecular interaction, even when it happens in solvent

• fit of implicit solvent models only on exp. Free energy hydr. may be good for the

wrong reasons

• 3-zone reduce the reentrant (artificial cavity) problem.
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• Plug & play: optimization based on layers, each being physically grounded.

6. Conclusion

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Truchon et al. Page 21

J Chem Theory Comput. Author manuscript; available in PMC 2014 May 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
This figure shows the smooth dielectric function used in this work for a single atom with σ
= 0.95Å, εin = 12, εext = 1 and A = 10.0 (Cl of the G1-12 set). In a), starting from the center

of the atom (r = 0), the dielectric stays constant until the ‘density’, expressed with a sum of

Gaussian (pink curve), reaches a certain small value that cause the dielectric to smoothly

reach the external dielectric value. The steepness and the position of the switching region

depend on the value of the A parameter.
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Figure 2.
The 3-zone dielectric function allows an accurate description of both the solute polarization

and the solvent polarization within the EPIC approach. The radial component for a single

atom (G1-12 aromatic carbon) is shown (a) together with the polarization (σin) and the

solvent cavity (σsolv) atomic radii. Each plateau of the dielectric function defines a zone.

The resulting dielectric function is also shown in the ring plane of 4-pyridone (b) when

applying the G2-12 parameters.
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Figure 3.
The iso-contour plot of the RRMS error between B3LYP/aug-cc-pVTZ and EPIC

polarizability tensors are shown as a function of the εin and A parameters of eq. 1. This

RRMS surface was generated from a simultaneous fit of the H, alkyl C, aromatic C and

aromatic N polarization atomic radii on 11 aromatic and 14 alkane molecules against the

B3LYP polarizabilities. It shows that in order for a single dielectric model to fit well the

polarizabilities of these 2 chemical classes, the εin needs to be sufficiently large (>4).

Deviations in the anisotropy of the polarizability are the main source of error for lower

values of εin.
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Figure 4.
Correlation graph between the B3LYP/aug-cc-pVTZ directional polarizabilities (α1 black

circles, α2 red triangles, α3 green squares) for three G1 dielectric parameter sets (c.f. Table

1). Each figure shows the data for 707 molecules for a total of 2121 points. From these

figures, it is clear that a small number of parameters (optimized on 265 molecules) can

generalize well. A large εin= 24 (a) produces the best fit, a medium range εin= 12 produces

slightly larger discrepancies and a small εin= 4 produces significantly larger deviations.
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Figure 5.
The calculated refractive indices (n) of 23 organic molecules are compared to experiment.

Three dielectric parameter sets are used a) G1-24 b) G1-12 and c) G1-4 (Table 1). For each

set, the pre-optimized radii can be found in Table 1. The reported refractive indices (n) were

obtained by polarizing a liquid droplet formed by carving spheres from periodic MD liquid

simulation snapshots. The Clausius-Mossoti equation leads to n2= ε∞ close to experiment,

in spite of the large εin. The predicted values are systematically higher than experiment,

which can be explained by potential artifacts or a polarizability shift when passing from

vacuum to condensed phase (see text). As with the polarizabilities, the predictions

deteriorate with decreasing εin, in keeping with the results of the range-finding study on the

small dataset.
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Figure 6.
One of the 50 CCl4 droplets is cut in its center and three dielectric functions (eq. 1) are

plotted: a) G1-24 b) G1-12 and c) G1-4. The red color is attributed to ε(r)=εin and blue to

ε(r)=1.
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Figure 7.
The difference between the solute cavity radius and the contact radius is illustrated. The pair

distribution function gAB(r) shows the nuclei to nuclei distance distribution from the thermal

averaging. Because the solvent charge density from electronic density and atomic nuclei is

more concentrated closer to the nuclei, the solvent bound charge density in implicit solvent

should appear not closer than where the solvent charges can get. As such, the cavity radii

should have a tendency to be larger than the contact radii.
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Table 2

Error obtained with the optimized polarization radii of the G1 sets when EPIC molecular polarizability tensors

are compared to B3LYP for different molecule datasets.

Modela δavg (%) δaniso (%) RRMS (%)

Polarizability training dataset: 265 molecules

G1-4 5.0 20.9 12.7

G1-9 3.2 9.1 6.7

G1-12 2.9 5.3 5.0

G1-24 2.3 5.2 4.4

Polarizability validation dataset: 442 molecules

G1-4 4.0 18.2 12.3

G1-9 2.7 7.6 6.7

G1-12 2.6 5.1 5.3

G1-24 2.1 5.4 4.6

Polarizability dataset: 707 molecules

G1-4 4.4 19.2 12.4

G1-9 2.9 8.2 6.7

G1-12 2.7 5.2 5.2

G1-24 2.2 5.4 4.6

a
Model using the parameters given in Table 1.
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