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Abstract

Purpose of review—Loss of cell growth control does not explain why tumors form as the

immune system recognizes many malignant cells and keeps them in check. The local

inflammatory microenvironment is a pivotal factor in tumor formation as tumor associated

inflammation actively suppresses anti-tumor immunity. The purpose of this review is to evaluate

emerging evidence that amino acid catabolism is a key feature of tumor-associated inflammation

that supports tumor progression and immune resistance to therapy.

Recent findings—Enhanced amino acid catabolism in inflammatory tumor microenvironments

correlates with carcinogen resistance and immune regulation mediated by tumor-associated

immune cells that protect tumors from natural and vaccine-induced immunity. Interfering with

metabolic pathways exploited by tumors is a promising anti-tumor strategy, especially when

combined with other therapies. Moreover, molecular sensors that evolved to detect pathogens may

enhance evasion of immune surveillance to permit tumor progression.

Summary—Innate immune sensing that induces amino acid catabolism in tumor

microenvironments may be pivotal in initiating and sustaining local inflammation that promotes

immune resistance and attenuates anti-tumor immunity. Targeting molecular sensors that mediate

these metabolic changes may be an effective strategy to enhance anti-tumor immunity that

prevents tumor progression, as well as improving the efficacy of cancer therapy.
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Introduction

Malignant cells with defective growth control create tumors but the immune system impedes

tumor formation by eliminating many malignant cells (Fig. 1). Some malignant cells

progress to form tumors by evading immune checkpoints to establish local

microenvironments that protect malignant cells from immune-mediated destruction (1). Pre-

established immune privilege explains tumor resistance to vaccines, which elicit weak

clinical responses even if robust immune responses manifest. Tumor cells may suppress
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anti-tumor immunity themselves but tumor-associated inflammation, which extends to

draining lymph nodes, is a critical factor regulating anti-tumor immunity.

The focus of this review is the emerging paradigm that increased amino acid catabolism is a

frequent and important feature of inflammation that promotes tumor progression and inhibits

anti-tumor immunity (Fig. 2). Recent reviews describe immune regulatory pathways

involving dendritic cells (DCs), macrophages (MΦs), myeloid-derived suppressor cells

(MDSCs), Natural Killer (NK), mast cells, and Foxp3-lineage regulatory CD4 T cells

(Tregs) in chronic inflammatory syndromes (Table 1), including roles in tumor progression

and immunotherapy (2–6). Biologic significance is still emerging but increased amino acid

catabolism is commonly associated with inflammation that regulates rather than stimulates -

immunity.

Inflammation can stimulate or regulate immunity

The paradigm that inflammation stimulates immunity is a fundamental tenet of immunology

but inflammation may also drive immune regulation. Thus interferons (IFNs) are known as

‘pro-inflammatory’ cytokines but they also induce immune regulation; moreover which

functional response to IFNs is dominant is not always obvious (7). Local inflammation

incited by malignancies that transition into tumors regulates tumor-specific immunity;

hence, a therapeutic goal is to convert immune regulatory inflammation into stimulatory

inflammation (Fig. 2).

Increased amino acid catabolism inhibits immunity in many chronic inflammatory

syndromes (7–9). Immune tolerance to transplanted skin in mice correlated with enhanced

amino acid catabolism in graft-associated DCs (10), and mast cells expressing tryptophan

hydroxylase-1 (TPH-1) promoted tumor relapse after therapy and allograft tolerance (3).

Genetically enhanced Trp catabolism mediated by indoleamine 2,3 dioxygenase (IDO) also

suppressed rat lung allograft rejection (11, 12). Microbial infections often induce IDO (via

IFNs), which may impede host immunity to promote pathogen persistence, a situation

analogous to tumor persistence (8). Likewise, tumor tolerance is often linked to increased

amino acid catabolism, though other regulatory pathways (Table 1) may be active

simultaneously (13, 14). Thus tumors exploit natural immune regulatory pathways that

evolved to protect healthy tissues from hyper-immunity. The paradigm that tumors are

analogous to aseptic wounds that do not heal is useful since dying cells release cell contents

such as DNA that are potentially immunostimulatory but natural regulation may reinforce

‘self’ tolerance under aseptic conditions.

Amino acid catabolism and tumor development

Genetic predisposition, carcinogens, radiation (UVB, ionizing) or oncogenic viruses

synergize to generate malignant dividing cells (Fig. 1). Malignant cells depend on access to

essential nutrients such as iron, and iron chelation impedes tumor growth (15). Correlations

between tumor growth and increased local amino acid catabolism (i.e. elevated nutrient

consumption) are not consistent with this paradigm. It is important to emphasize that amino

acid catabolism triggers profound changes in immune cell functions via amino acid sensors

and catabolite receptors, and it may not be necessary to actually ‘starve’ cells for immune
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regulatory effects to manifest. Merely reducing the pool of available amino acids may

suffice to induce regulatory responses; if so, inhibiting amino acid catabolism may offer

therapeutic opportunities. Trp catabolism is the most studied aspect of amino acid

catabolism in tumor microenvironments and the recent literature reflects this bias, which

was initiated by the finding that IDO activity protected fetal tissues from maternal immunity

during pregnancy in mice (16, 17). However this discovery was perhaps anticipated by

reports over 40 years ago describing increased Trp catabolism in breast and cervical cancer

patients (18, 19).

Increased IDO activity often manifests in inflammatory lesions induced by tumor promoters

such as oncogenic human papilloma (HPV) and murine leukemia virus (MuLV), phorbol

myristate acetate (PMA or TPA) and UVB radiation (20–24), suggesting that Trp catabolism

may suppress immune surveillance mechanisms. Indeed, IDO1-deficient (IDO1-KO) mice

were more resistant to papilloma formation in the DMBA/TPA model of inflammation-

driven carcinogenesis (24). IDO1-KO mice also exhibited more resistance to lung and breast

tumors (25), and IDO1 loss correlated with reduced neo-vascularization, metastasis and

functional maturation of myeloid derived suppressor cells (MDSCs) in the lung tumor

model, suggesting that IDO facilitates these tumor supportive functions. However, it is

unclear how developing tumors induce IDO. An emerging possibility is that dying tumor

cells may trigger local IFN type I (IFNaβ) production via DNA sensors such as Toll-Like

receptor-9 (TLR9) or the Stimulator of Interferon Genes (STING) adaptor, which then

induces IDO (26, 27), though excessive STING activation also promotes autoimmunity (28,

29). Trp catabolites may also promote tumorigenesis as Trp catabolites activated β-catenin

signaling to promote colon tumorigenesis via a T cell independent pathway in mice (30).

Targeting amino acid catabolism may help prevent malignancies developing into tumors,

though increased risk of autoimmunity is a potential undesirable consequence of such

interventions.

Amino acid catabolism in tumor microenvironments

Elevated Trp and arginine (Arg) catabolism have been linked to regulation of anti-tumor

immunity. Two different enzymes with oxygen binding iron-tetrapyrrole co-factors - IDO

and tryptophan 2,3 dioxygenase (TDO) - catalyze oxidative Trp catabolism to generate

kynurenine, and TPH-1 converts Trp into serotonin. IDO transcription is induced by IFNαβ
and IFNγ in a range of cell types, including selected immune cells but measuring IDO

enzyme activity is important as post-translational modifications may be required for IDO

activity. Mice and humans possess two linked genes encoding IDO enzymes (IDO1, IDO2).

IDO1 mediates regulatory responses to many inflammatory stimuli, including tumor growth

(8). A role for IDO2 has not been defined, though recent studies on IDO2-deficient mice

showed that IDO2 and IDO1 control cytokine expression differently and IDO2 did not

phenocopy IDO1 in promoting inflammatory skin cancer (G. Prendergast, personal

communication). IDO expression occurs in some cancer cells, stromal cells and certain

immune cells such as some DCs and MΦs in tumor lesions and tumor-draining lymph nodes

(TDLNs) in mice and cancer patients. Recent reports continue this trend with studies

describing elevated IDO expression in endometrial carcinomas, brain (glioma), chronic

lymphocytic leukemias, non-small cell lung cancers and laryngeal squamous cell carcinomas
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(31–36). These studies support the paradigm that IDO regulates anti-tumor immunity and is

a potential prognostic marker for cancer, reinforcing the rationale for using IDO inhibitors to

improve cancer therapy (37). Phase II oncology trials using IDO inhibitors are ongoing and

it remains to be seen if this novel approach is effective in the clinic, though IDO was

identified recently as a immune resistance factor following immunotherapy to block

regulatory pathways involving CTLA4, PD-1/L and glucocorticoid-induced TNF receptor-

related (GITR protein signaling (38).

Unlike IDO, TDO is expressed primarily in liver and is induced in the central nervous

system (CNS) in response to stress-induced glucocorticoids. In liver, TDO regulates serum

Trp levels by catabolizing Trp from dietary intake, and TDO expression in liver may

account for the observed resistance of liver allografts to rejection (39). However, some

tumor cells express TDO and potential roles for TDO in tumors were reviewed recently

revealing striking parallels with the effects of IDO (40, 41). Thus, TDO transduced tumor

cells were resistant to anti-tumor immunity and TDO-specific inhibitors restored the ability

of mice to reject TDO-expressing tumors (42). Thus, tumors may evade innate immune

tumor surveillance and regulate tumor-specific adaptive immunity by inducing IDO or TDO.

A critical role for TPH-1 in regulating anti-tumor immunity emerged from studies with

TPH-1 deficient mice, which were more resistant to bladder carcinoma cell growth than

TPH-1-suffiicent mice (3). Immune resistance was not serotonin dependent, implicating Trp

depletion due to TPH-1 enzyme activity in mast cells in metabolic control of anti-tumor

immunity. TPH-1 activity was also shown to be important in regulating skin allograft

rejection and suppressing experimental autoimmune encephalitis (EAE). Thus, TPH-1

mediates immune regulation in several inflammatory settings of clinical significance.

Arg is catabolized by two iso-enzymes arginase (ARG) I and II. ARG-I is often co-

expressed with nitric oxide synthase (NOS), which competes for Arg as a substrate. Retinoic

acid induced ARG-I expression in DCs that promoted Treg differentiation (43), though

MDSCs were reported to inhibit Treg differentiation (44). Several studies suggest that

elevated Arg consumption regulates anti-tumor immunity. Increased ARG-I expression was

detected in MDSCs from cancer patients with squamous cell carcinoma (45) and ARG-II

expression was elevated in cancer-associated fibroblasts and correlated with worse outcomes

in pancreatic cancer (46). MDSCs facilitate tumor immune resistance, though these

enigmatic cells may use multiple immune regulatory mechanisms, including Trp (47) and

Arg catabolism (48). Moreover MDSCs developed from fibrocyte precursors in some cancer

patients and glutamine (Gln) catabolism promoted MDSC maturation (49, 50).

Mechanisms of immune regulation driven by amino acid metabolism

How does increased amino acid catabolism inhibit tumorigenesis and therapy? Though not

fully resolved, studies in mice with chronic inflammatory syndromes such as tumors have

provided some key insights. Amino acid catabolism depletes local pools and generates new

catabolites, and amino acid sensors and catabolite receptors sense these changes in immune

cells (Fig. 3).
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Amino acid levels are sensed via the mammalian target of rapamycin (mTOR) and general

control non-repressed-2 (GCN2). mTOR is a pivotal checkpoint governing cell cycle entry.

Tumor cells may mutate this pathway to facilitate tumor growth and mTOR inhibitors such

as everolimus may be effective therapies to control some cancers (51, 52). Amino acid

depletion also restrains anti-tumor immunity since mTOR signals promote T cell responses.

Hence local amino acid depletion and treatment with mTOR inhibitors may inhibit anti-

tumor immunity despite the potential to inhibit tumor growth. Trp depletion via IDO to

prevent mTOR activation and promote tumor autophagy has been reported (53), but effects

on T cell mediated anti-tumor immunity were not evaluated.

GCN2 is a ribosome-associated kinase that senses binding of uncharged tRNAs. Activated

GCN2 kinase incites the integrated stress response to shut down cellular protein synthesis

and induce autophagy. GCN2 activation in T cells cultured with IDO-expressing DCs from

TDLNs blocked T cell responses to antigens presented by DCs (54). GCN2 was also

required for TDLN DCs to induce Tregs to acquire regulatory phenotypes via IDO (55).

Thus GCN2 suppresses immunity and promotes immune regulation, though GCN2

activation in tumor cells may block proliferation and induce autophagy. Recent studies attest

to the diverse effects of GCN2-mediated cell stress responses on tumor growth and anti-

tumor immunity. Thus GCN2 promoted tumor angiogenesis (56), inhibited the anti-tumor

effects of IFNαβ (57), modified mitochondrial functions in colon cancer cells (58), and

supported tumor cell proliferation during restricted access to serine (59). GCN2 may also

impact cancer therapy since GCN2 induced asparagine synthetase activity (a therapy

resistance factor) in pediatric acute lymphoblastic leukemia (ALL) patients and GCN2

attenuated the efficacy of glucose competitors as anti-tumor drugs (60, 61), though GCN2

also promoted the anti-leukemic effects of pegylated ARG-I in ALL (62). Some anti-tumor

reagents mimic the effects of amino acid depletion by inhibiting tRNA charging enzymes to

activate GCN2. Thus the antibiotic borrelidin, which inhibits human threonine tRNA

synthetase, induced apoptosis of ALL cells and GCN2 activation was elevated (63).

Similarly, the anti-protozoal compound halofuginone, which inhibits prolyl-tRNA

synthetase, may also inhibit cancers (64). However like mTOR, potential diametric effects

on tumor cell growth and survival versus immune cell activation and differentiation need to

be evaluated carefully as halofuginone inhibits effector TH17 T cell responses in

autoimmune syndromes (65).

Trp catabolites also mediate potent effects on tumor and immune cells (Fig. 3). Kynurenine

(Kyn), a Trp catabolite made by cells expressing IDO or TDO, is a natural ligand for the aryl

hydrocarbon receptor (AhR), an orphan receptor expressed by many cells (66). Chemical

toxins, known as dioxins, are artificial AhR ligands that have been studied extensively by

toxicologists but relatively little is known about natural AhR ligands such as Kyn. Studies in

mice have identified requirements for AhR signaling in T cells, Tregs and DCs to regulate

immunity (7, 9). These findings provide a rationale for mechanistic links between IDO and

TDO activity and regulation of anti-tumor immunity, justifying the use of AhR antagonists

as potential therapies to block suppression of anti-tumor immunity. AhR signaling also

enhanced NK cell anti-tumor activity in mice (67), indicating that AhR signaling can

enhance or inhibit immunity, contingent on the physiologic setting (68). It is unclear how

modulation of AhR signals will impact outcomes in cancer as AhR signals may mediate
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direct effects on tumor, stromal or immune cells to impede or promote tumor progression,

survival, angiogenesis and anti-tumor immunity. Hence, the effects of ligands that modulate

AhR signaling (in either direction) in settings of tumor growth and treatment requires more

rigorous evaluation in physiologic settings of tumor growth to discern the impact of such

interventions. For example, reports that Trp catabolites made by cells expressing IDO and

TDO confer resistance to gliomas should be weighed against the known neurotoxic effects

of some Trp catabolites (69, 70).

In summary, the downstream consequences of increased amino acid catabolism in tumor

microenvironments are profound but complex, diametric and poorly defined. More studies to

evaluate the role of specific pathways in physiologic settings of tumor development and

therapy will be necessary to further elucidate specific contributions to tumor growth,

survival and anti-tumor immunity.

Concluding remarks

Immune tolerance created by tumors is a major barrier to effective chemotherapy,

radiotherapy and immunotherapy, and subsequent tumor relapse is associated with renewal

of local tolerance. Increased amino acid catabolism may occur from the earliest stages of

tumorigenesis due to inflammation associated with the formation malignant lesions that

protects malignant cells from immune surveillance. Oncogenic viral infections, chemicals

and radiation that promote carcinogenesis also stimulate increased amino acid catabolism

that contributes to the local inflammatory responses to these insults and promotes resistance

to natural and therapy-induced anti-tumor immunity.
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Key Points

1. Amino acid catabolism regulates immunity in settings of chronic inflammation,

including cancer

2. Amino acid catabolism is enhanced prior to clinical presentation and may

facilitate tumor progression

3. Amino acid depletion and production of catabolites both regulate immunity

4. Interventions targeting amino acid catabolism may be effective adjunct cancer

therapies

5. Altered amino acid metabolism may yield useful prognostic markers as well as

therapeutic targets.
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Figure 1. Stages in tumor formation and therapy
Once initiated, malignant lesions promote local inflammation that inhibits immune

surveillance to facilitate tumor progression. Eventually, local lymph node involvement

suppresses anti-tumor immunity. Tumor tolerance established prior to clinical presentation is

a barrier to successful therapy and creates niches for metastasis and relapse.

Huang and Mellor Page 12

Curr Opin Oncol. Author manuscript; available in PMC 2014 May 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. Amino acid catabolism during tumor progression, regression and relapse
Amino acid catabolism increases during tumor formation, and correlates with increased

local inflammation and cancer-associated morbidities. Therapeutic interventions modify

local inflammation to break tumor tolerance and reduce amino acid catabolism and co-

morbidities, while relapse correlates with the return of processes linked to cancer.
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Figure 3. Downstream effects of amino acid catabolism on tumor and immune cells
Amino acid depletion and catabolite production have profound downstream effects on tumor

and immune cells by triggering pathways that impact cell growth, proliferation, survival and

cellular stress responses. Trp catabolites activate the AhR pathway but metabolites produced

by other enzymes depicted may mediate critical effects via other pathways
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Table 1

Immune regulatory pathways linked to tumor tolerance

Pathway Description

cell types:

 MDSCs tumor infiltrating & circulating monocytic regulatory cells

 DCs specialized subsets suppress effector T cells & activate Tregs

 MΦs Specialized subsets are tumor infiltrating regulatory cells

 Tregs potent regulatory CD4 T cells (auto/tumor antigen-specific)

 NK cells non-antigen specific regulatory lymphocytes

 Mast cells innate immune cells active in wound healing, host defense & allergy

molecules:

 CTLA4 induces T cell anergy & induces IDO in DCs (blocked by Ipilimumab)

 PD-1(PD-L) inhibitory co-stimulator pathway in T cells & Tregs

 GITR mediates immune regulation to steroids

 TGFβ, IL-10 regulatory cytokines

metabolic pathways:

 IFNs (I, II) immune activating cytokines that can stimulate or suppress immunity

 IDO1 (IDO2?) catabolizes Trp to suppress effector T cells & activate Tregs

 TDO as for IDO

 TPH-1 consumes Trp to promote tolerance

 ARG (I, II) catabolizes Arg to suppress effector T cells and induce Tregs

 mTOR senses amino acid availability (nutrient check point control)

 GCN2 kinase amino acid depletion sensor (via tRNA); induces cell stress responses

 AhR senses Kyn (and other Trp catabolites) to regulate immunity
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