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Abstract

Purpose of review—Intrahepatic cholangiocarcinoma (ICC) is a treatment-refractory disease

with a dismal outcome. Limited success in the clinical management and a persistent increase in the

incidence world-wide have made ICC one of the most lethal and fastest growing malignancies.

However, recent advancements in genome-wide technologies combined with the application of

integrative multidimensional analytical approaches have begun to provide both detailed insight

into the underlying biological traits of ICC and identified new therapeutic opportunities.

Recent findings—In comparison with other cancers genomic studies of ICC have been limited.

We and others have recently procured large cohorts of ICC patients intended for genome-wide

analyses. In our study samples from ICC patients were obtained from three cancer centers and

subjected to integrated genetic and genomic analyses. We provided new insights into both

pathogenesis and optimal treatment options demonstrating the presence of unique subclasses of

patients, based partly on KRAS mutations and increased levels of receptor tyrosine kinase

signaling. The group of patients with the worst prognosis was characterized by transcriptional

enrichment of genes regulating inflammation and proteasome activities, suggesting a combination

of tyrosine kinase inhibitors and anti-inflammatory drugs as a new therapeutic option for these

patients.

Summary—We have critically examined the progress in genome-wide studies of ICC including

genetic profiling, transcriptomics and epigenomics. Current limitations in applying these

technologies to archival samples and the insufficient access to fresh-frozen material are partly the

cause of the delayed implementation of the omics-based investigations of ICC compared to other

hepatobiliary diseases. Thus, selected candidate single gene studies will also be discussed.
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INTRODUCTION

Cholangiocarcinoma (CCA) is a heterogeneous malignancy which arises in the epithelia of

the intra- and extrahepatic biliary ducts. ICC is classified as a peripheral tumor of

interlobular bile ducts whereas tumors designated hilar are generally considered extrahepatic

and originate from the main hepatic ducts or at the bifurcation of the common hepatic duct.

The main difference between peripheral and hilar tumors is in the clinical presentation and

gross appearance which is likely a result of late diagnosis. Recent genomic data suggests

that these tumor subtypes are less distinct than the underlying biological variances which

classify patients according to overall survival and early tumor recurrence [1**]. Although

recent molecular insight into ICC has improved, the understanding of genetic mechanisms

involved in the development of ICC is still insufficient.

GENETIC ALTERATIONS IN INTRAHEPATIC CHOLANGIOCARCINOMA

Genetic analyses of ICC are still few and often limited to select genes. A number of studies

analyzing combined hepatocellular-cholangiocarcinoma have attempted to assess the

provocative hypothesis that ICC is, similar to hepatocellular carcinoma (HCC), derived from

a common precursor cell [2–5]. Comparison of chromosomal imbalance, i.e. copy number

gains and losses, suggests that ICC and HCC are closely related and that they share major

genomic aberrations and abnormalities in molecular pathways involved in neoplastic

transformation.

1. Chromosomal instability – Copy number variations

Few comparative genomics hybridization (CGH) studies on ICC were performed during the

past decade [6–10*]. Unfortunately, in several studies where the authors have investigated

copy number variations (CNVs) in biliary tract cancers, the analyses were merged between

subtypes such as intrahepatic and extrahepatic tumors [11] or even including gallbladders

[12*–14], making an accurate interpretation difficult. We have reviewed 5 studies where

data for 98 typical ICCs were investigated separately [6–10*]. In our meta-analysis of ICC,

CGH revealed frequent copy number losses on chromosomal arm 1p, 4q, 8p, 9p, 17p and

18q while copy number gains were found on chromosome 1q, 5p, 7p, 8q, 17q and 20q in at

least 3 studies with greater than 20% overall change (Table 1). Although we did identify

common CNVs, the complexity of the karyotype revealed by the degree of genomic

imbalance differed substantially among the 5 studies. Whereas the rigid parameters of our

meta-analysis clearly do limit the data, the common CNVs identified for ICC may be of

significance. It is also noteworthy to indicate that recent advancements in genomics, the

limited number of cases analyzed in each study and the ethnic diversity (3 studies were

performed in Korea [7–9*], one in Hong Kong [10*] and one in Germany [6*]) do warrant a

more detailed analysis. In contrast, a meta-analysis of 31 CGH studies performed in 2005

examined a total of 785 cases of HCC [15]. Interestingly, 7 of 9 loci identified with

significant CNV in HCC showed similar gains on 1q, 8q and 17q and losses on 4q, 8p, 13q

and 17p common with ICC. These results suggest that HCC and ICC are genomically

closely related.
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2. Prevalent mutations identified in single gene studies

The first high-coverage genome sequencing project of ICC, e.g. whole genome or exome

analyses, has not been performed. Most of the studies investigating genetic variation in ICC

have focused on a specific gene, or at most a few genes. A project of this magnitude

promises to identify and achieve a detailed map of the common and rare genetic variants to

attain an understanding of the underlying genetic traits which result in the development of

CCA. Insight into the role of genetic variants may improve the selection of therapy and,

thus, avoid drug-resistance. A few common mutations in genes such as KRAS, BRAF,

EGFR, PIK3CA and TP53 were investigated in CCA; however, clinical outcome of the

disease has not improved.

Among the pathways involved in the pathogenesis of ICC, the ErbB-family of receptors are

perhaps affected the most [16]. The most notably are the aberrant regulation of ErbB2 and

the epidermal growth factor receptor (EGFR) signaling. Whereas no mutations have been

reported in ERBB2, increased expression and DNA amplification was reported ranging from

0 to 73% in tumors [16–18]. EGFR-targeted therapies may show promise in the treatment of

a subclass of ICCs. Mutations in EGFR are rare events and we did not detect any in our

cohort, however, in the subclass of patients with poor survival we observe a significant

overexpression of EGFR and its downstream pathways [1**]. Activating mutations in EGFR

were described in two small studies in 3/22 (13.6%) and 3/15 (20%) of cases [19–20].

Activation of EGFR triggers the activation of downstream RAS/RAF/MEK/ERK and PI3K/

PTEN/AKT, two major cell survival pathways. Hotspot activating missense mutations in

genes downstream to EGFR, such as, BRAF (0–22%) [21–22] and PIK3CA (9–32%) [23–

24] are rarely described in ICC.

Gain of function mutations in KRAS downstream of EGFR represents one of the most

frequent mutations found in ICC (8–54%) [25–28] as compared to 25% in our cohort of

peripheral and hilar-type tumors [1**]. When classified by tumor site, 17% of peripheral-

type CCAs were positive for mutations in KRAS with the most frequent alteration in

codon12. Importantly, the incidence of mutations was higher in the hilar-type tumors (53%)

[1**, 29]. It is noteworthy that KRAS mutations were detected at a higher incidence with

increasing tumor stage (stage I, 8%; stage II, 15%; stage III, 31%; stage IV, 46%) [24],

however, confirmation in an independent cohort is needed. Mutations in KRAS were

detected in 30% of bile from patients with primary sclerosing cholangitis, suggesting that it

is an early event contributing to the malignant transformation of cholangiocytes [30].

Although KRAS is established as a causative somatic mutation, we were unable to determine

KRAS as an independent prognostic factor within our cohort [1**]. Integrating the KRAS

mutational status with our prognostic gene classifier grouped all patients with mutated KRAS

amid patients with poor prognosis.

Another pathway involved in ICC carcinogenesis which is frequently inactivated and

associated with loss of heterozygosity is the central cell cycle regulator p53. More than 90

different mutations have been described in TP53 of which most are associated with exposure

to chemical carcinogens [31], such as thorotrast [32]. A review of 10 studies which included

229 cases found a total of 21% (49 patients) with mutations in TP53, ranging from 23% in
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Asia, 14% in Europe and 26% in the USA [33]. However, there is a great deal of variability

in the reported cases for most genetic alterations. TP53 is no exception with 14–77% of

cases positive reported in single studies [31, 33]. Other genes such as CTNNB1 (8%), APC

(13%), AXIN1 (41%) and CDH1 (11%) have occasionally been reported [34–35].

ALTERATIONS IN THE EPIGENOME IN THE PROCESS OF

CHOLANGIOCARCINOGENESIS

Recent technological advances have brought epigenetics into the omics-age by the

introduction of array-based and deep sequencing methods, highlighting the importance of

the epigenome, including DNA CpG methylation, histone modifications and non-coding

RNA species, in the process of human carcinogenesis. Only limited comprehensive

epigenomic studies have been published on ICC and data on aberrant CpG promoter

methylation in the regulation of ICC has largely been centered on individual genes

(reviewed in [36*–39*]). This review provides an overview of select key genes frequently

hypermethylated and microRNAs identified by miR-profiles in ICC.

1. Promoter hypermethylation in cholangiocarcinoma

Aberrant epigenetic regulation such as promoter hypermethylation was demonstrated in

numerous important cancer-associated genes in ICC (a comprehensive list can be found in

[36*–37*]). Studies profiling these modifications to established prognostic and predictive

gene signatures attempting to predict the therapeutic potential of agents that target the cancer

epigenome [40*] have not yet been investigated in ICC. Recently, a study in a large ICC

cohort (n=102) associated with liver fluke infection was published demonstrating promoter

hypermethylation in a handful of target genes compared to adjacent tissue [41].

Unfortunately, the authors only investigate 26 selected loci using traditional methodology

rather than applying readily available genome-wide array-based technology.

Epigenetic silencing by promoter hypermethylation is common in tumor suppressor genes:

p16INK4a/CDKN2 (17–83%) [42–45]; SOCS3 (62%) [46]; RASSF1A (31–69%) [10, 42, 45];

p15 (54%) [45]; CDH1 (17–49%) [42–43, 45]; hMLH1 (19–45%) [45]; APC (27–47%) [42–

43, 45]; p14ARF (19–30%) [42, 44–45] and GSTP1 (15–31%) [42, 45] are some of the most

frequent events reported in ICC.

ICC often arises in the background of chronic inflammation such as primary sclerosing

cholangitis (PSC) which provides survival signals to the tumor (the contribution of the

inflammatory microenvironment and epigenetics is reviewed in [47]). The cyclin-dependent

kinase inhibitor p16 is frequently silenced by epigenetic modifications and was proposed as

a prognostic marker associated with dismal outcome in patients with PSC [48]. Also,

inflammatory signals (such as AKT) can trigger cytokine pathways (i.e. JAK/STAT) which

in turn were shown to be involved in cholangiocarcinogenesis [49–50]. Indeed, a common

target in ICC is the suppressor of cytokine signaling 3 (SOCS3) which is silenced by

promoter hypermethylation [46]. Inhibition of SOCS3 results in a self-enhancing

constitutive activation of the oncogenic pathway IL6/STAT3 with a subsequent autocrine

feedback and paracrine signaling to the tumor environment [46, 49–51].
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The frequency by which these targets are methylated in ICC is variable and the ability to

utilize any or a group of silenced genes as predictors for outcome remains to be critically

investigated. Since inconsistencies can be a result of limited study size, heterogeneous

cohorts (i.e. mixed ICC and ECC cases), etiology and methodology, future studies applying

epigenome-wide technology to a standardized ICC cohort will be needed to enhance our

understanding of both the underlying biology and importance of epigenetic changes in ICC

pathogenesis.

2. Profiling of non-coding RNAs

Non-coding RNAs include both large and small RNA species. A major group and the best

characterized non-coding RNAs in ICC are microRNAs (miRs) which are involved in the

epigenetic regulation of gene expression, transcriptional stability and translation. A number

of studies have concentrated on investigating the biological significance and aberrant

expression of miRs in ICC cell lines [52*–57], demonstrating a link between tumor growth,

response to therapy and expression of inflammatory cytokines (reviewed in [38*]). Recently,

Kawahigashi, Y. and colleagues [58] performed a comprehensive study by sequencing two

ICC cell lines (HuCCT1 and MEC) and a normal intrahepatic bile duct epithelial cell line

(HIBEpiC), providing the first profile of differently expressed miRs in ICC derived cells. A

unique 27 miRs ICC signature was identified that included down-regulation of 8 miRs (i.e.

miR-22, miR-125a, miR-127, miR-199a, miR-199a*, miR-214, miR-376a and miR-424)

specific for normal bile duct epithelium. The authors suggested that these miRs may serve as

biomarkers for ICC, however the functional and clinicopathological significance of this miR

signature remains to be evaluated in clinical samples. In two recent studies miRs were

profiled in ICC [53**, 59**]. Selaru and colleagues [59**] showed that expression level of

miR-21 could distinguish ICC from normal bile ducts. Furthermore, increasing expression of

miR-21 correlated with a decreased expression of programmed cell death 4 (PDCD4) and

tissue inhibitor of metalloproteinase 3 (TIMP3), suggesting that miR-21 may act as an

oncomir in ICC. However, 9 of the 23 samples in this study were of distal extrahepatic

origin, making the interpretation of the data difficult. Another study profiling 27 ICCs

reported 38 miRs differentially expressed in the tumors compared to 10 normal

cholangiocytes [53**]. Interestingly, hierarchical clustering grouped the clinical samples

into two clusters, distinguishing the patients according to the level of CA19-9, a serum

secreted mucin-type glycoprotein which is commonly used as a biomarker for CCA and was

shown to be associated with poor prognosis after surgical resection of ICC [60]. In addition,

the status of vascular invasion was found to be significantly correlated with the two clusters.

However, the potential prognostic importance of the 38 miRs signature remains to be

evaluated in an independent cohort.

TRANSCRIPTOMIC PROFILING OF ICC

Tumor infiltrating stroma is often a prominent characteristic of ICC, indicating that to

capture the gene expression profile of the tumor epithelial, laser microdissection may be

needed. The first comprehensive transcriptomic study applied this approach to 25 ICCs and

identified a total of 473 differentially expressed genes between the tumor and non-malignant

biliary epithelial cells [61]. Even though the authors established a clean gene signature in the
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tumor epithelial compartment the stromal compartment was not investigated. Few studies

have since been published analyzing the gene expression profiles in ICCs [62–63],

associated with liver fluke infection [64–65] or anatomical site of the tumor [12]. We

recently published a genetic and genomic study in a large cohort of 104 peripheral- and

hilar-type tumors and 59 matched surrounding liver samples from Australia, Europe and

USA, accompanied by a detailed analysis of the epithelial and stromal compartments from

23 laser-capture microdissected tumors [1**]. Our study provided new insights into the ICC

pathogenesis and identified two patient categories by a 238-gene prognostic classifier which

stratified the patients according to overall survival and early recurrence. We minimized the

classifier to 36 genes which in combination with other molecular predictors (i.e. mutations,

co-activation of multiple oncogenic pathways), improved the molecular classification and

outcome prediction in the cohort. A detailed class comparison identified a total of four

patient subclasses based on dependence of receptor tyrosine kinases (EGFR, ERBB2 and

MET), activation of the mTOR pathway, increased proliferation and overrepresentation of

gene involved in proteasomal activity and inflammation. These data suggested a novel

therapeutic potential for dual-target tyrosine kinase inhibitors (e.g. lapatinib), either alone or

in combination with proteasome inhibitors to improve therapeutic response of this currently

treatment-refractory malignancy.

CONCLUSION

ICC is a rare malignancy, diagnosed at a frequency less than 1% of primary hepatic tumors.

Genome-wide technologies have provided a detailed characterization of genetic variation,

genomics, and epigenomics in ICC. This unprecedented capacity to study the underlying

traits of a human disease such as ICC at the molecular level and to integrate these data at a

multidimensional scale suggests that future advancements in clinical management may come

from systems-based translational genomics. The realization of this goal, at least for ICC,

may require extensive collaborative team efforts across institutions.
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KEY POINTS

• CCA is a rare disease with poor outcome, and increasing incidence worldwide.

A limited number of genomic studies on CCA have been published during the

past decade. Inadequate sample size and heterogeneous anatomical locations of

CCA (intrahepatic, extrahepatic (hilar) and distal extrahepatic) frequently

complicate interpretation of the data.

• Receptor tyrosine kinases have been shown to be potential drug-able targets in

CCA. Detailed translational approaches are needed to study the efficacy of

tyrosine kinase inhibitors in CCA either alone or in combination with other

chemotherapeutics. This may warrant small proof of concept clinical trials.

• Application of translational system biology approaches, and utilizing

multidimensional integrative techniques including whole genome sequencing

promises to yield both deeper insights into the mechanism of CCA pathogenesis

as well as providing novel therapeutic options for CCA patients.
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