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Abstract

APOBEC1 is a cytidine deaminase that edits messenger RNAs and was the first enzyme in the

APOBEC family to be functionally characterized. Under appropriate conditions APOBEC1 also

deaminates deoxycytidine in single-stranded DNA (ssDNA). The other ten members of the

APOBEC family have not been fully characterized however several have deoxycytidine

deaminase activity on ssDNAs. Despite the nucleic acid substrate preferences of different

APOBEC proteins, a common feature appears to be their intrinsic ability to bind to RNA as well

as to ssDNA. RNA binding to APOBEC proteins together with protein-protein interactions, post-

translation modifications and subcellular localization serve as biological modulators controlling

the DNA mutagenic activity of these potentially genotoxic proteins.
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1. Introduction

The purpose of this review is to familiarize the reader with the proteins in the APOBEC

family in order to better appreciate differences in their functional roles as well as to describe

cellular and viral control mechanisms that determine APOBEC activities. The review begins

with Apolipoprotein B Editing Catalytic subunit 1 (APOBEC1 or A1) because it is the

founding member of the family [1]. All family members have in common a zinc-dependent
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cytidine deaminase domain (ZDD) that is identifiable through its primary amino acid motif

and a conserved super-secondary structure.

1.1. Overview of the requirements for apolipoprotein B mRNA editing

Apolipoprotein B (apoB) mRNA (C to U editing) and the glutamate receptor mRNA (A to I

editing) were the first mRNAs discovered to be edited in mammalian cells circa the late

1980s [2]. Human liver and intestine produced a long and short form of the apolipoprotein B

(ApoB) protein and the discovery of apoB mRNA editing resulted from research to

determine the molecular basis for this polymorphism. Sequencing revealed a single

nucleotide difference between mRNA and the genomically encoded sequence which was

attributed to post-transcriptional RNA editing [3, 4]. The cis-acting sequences required for

editing site recognition flanking the cytidine to be edited, in particular the 11 nt ‘mooring

sequence’ (Figure 1A), had already been completely defined [2] before A1 was discovered

[5]. However A1 is a low-affinity RNA-binding protein [6–8] and its ability to edit mRNA

could only be realized in cells or cell extracts if they contained the RNA-binding protein

APOBEC1 Complementation Factor (ACF) [9–11]. A1 dimers [7, 12] and RNA-bridged

dimers of ACF [13] make up the minimal composition of the 27S editosome [14, 15] (Figure

1A).

1.2. Site-specific editing

The primary editing site at nt 6666 in apoB mRNA is a CAA glutamine codon that is

deaminated to a UAA premature stop codon. Unedited and edited mRNAs coexist at varying

ratios in editing-competent cells because tissue-specific and metabolically regulated

differences in editing efficiency and because edited apoB mRNA is stabilized through the

ability of ACF to blunt nonsense codon mediated mRNA degradation [16]. The specificity

of this editing event is apparent in that apoB mRNA contains 3,315 cytidines of which 375

are in the correct reading frame and 100 are CAA. The mooring sequence is necessary and

sufficient in determining whether a 5’ located cytidine is a candidate for editing [17–21].

However, editing activity itself is determined by the expression and nuclear retention of A1

and ACF [14, 22, 23] (see Sections 3.1 and 4) and has a temporal and spatial ‘window of

opportunity’ for editosome assembly and function that occurs subsequent to pre-mRNA

splicing but prior to mRNA nuclear export [20, 24].

1.2.1. RNA substrates—An open question in A1 research has been how much of the

transcriptome is edited? Within apoB mRNA the cytidine at nt 6802 also is edited

(converting an ACA threonine codon to an AUA isoleucine codon) [17]. Editing at C6802 is

associated with editing at C6666 and therefore is unlikely to impact the biology of ApoB

protein. The other example is the mRNA encoding the tumor suppressor neurofibromin

which was evaluated for mooring sequences that might support editing because of the

occurrence of truncated proteins in NF1 tumor tissues. NF1 mRNA contained three mooring

sequence-like motifs of which one supported mooring sequence dependent C to U editing at

nt 2914 [19, 25]. Editing of cytidines at C6666 and C6802 of apoB mRNA and C2914 in

NF1 mRNA were mooring sequence-dependent; suggesting that the mooring sequence itself

might be predictive of other mRNAs that could support C to U editing and therefore may be

of utility in computational analyses of the transcriptome. Computational modeling using a
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weighted matrix which considered the editing efficiencies of all natural and experimental

editing sites predicted that mooring sequences existed in multiple mRNAs although no new

editing events were identified [26]. Transcriptome-wide, comparative RNA sequencing

revealed mooring sequence-dependent editing of cytidines to uridines within the 3’ UTRs of

32 mRNAs [21]. Further deep sequencing studies and the application of advanced

computational prediction of editing sites [27, 28] are likely to reveal abundant and

biologically significant C to U post-transcriptional editing events as have been revealed for

A to I pre-mRNA editing [29].

In the absence of A1, apoB mRNA is not edited and therefore A1 is the sole family member

capable of recognizing and using apoB mRNA as a substrate [30, 31]. In tissues where A1 is

expressed, deaminase activity on RNA is highly regulated through A1’s: (i) interactions with

ACF, (ii) shuttling between its storage form in the cytoplasm and the assembly of

editosomes in the nucleus (Sections 3.1 and 4) and (iii) regulation of A1 protein expression

and abundance [1]. Experimental overexpression of A1 in rat hepatoma cells resulted in

promiscuous editing of cytidines in apoB mRNA as far as 50 nt 5’ of the mooring sequence

[20] and hyperediting activity on mRNAs that otherwise were not edited [32, 33].

Overexpression of A1 was associated with oncogenesis [34], which has been inferred to be

due to its RNA editing capability. Recently, A1 was shown to edit ssDNA when

overexpressed in an E. coli mutator assay [35, 36]. This raises the question of whether

deregulation of A1 expression in mammalian cells could also lead to genomic DNA

mutation and cancer.

1.2.2. ssDNA substrates—A1 has no known mammalian DNA substrate but it has DNA

deaminase activity sufficient to induce reversion mutations when overexpressed in E. coli

that have been placed under selection pressure [35, 36]. In addition, A1 expressed in neurons

may have a protective function against herpes simplex virus that involves ssDNA

deamination of the viral genome [37]. The sequence requirements for A1 deamination were

lax but deamination occurred within transcribed or otherwise single-stranded regions of

DNA and the dC that was deaminated had a nearest neighbor preference of a 5’ T [35].

Unlike RNA editing, ssDNA editing did not require a cofactor and this appears to be true for

the other APOBEC family members (Section 2). Many in the field have asked whether A1

RNA editing is a curious exception or will RNA substrates be identified for the other

APOBEC family members? This question is made all the more interesting by the fact that

many of the APOBEC family members bind RNA as well as ssDNA and in the RNA-bound

state, were not active as ssDNA deaminases (discussed below). In this regard, A1 from

various species differed in their capacity for site-specific RNA editing [38, 39]. Reptilian

A1, that lacks a C-terminal dimerization and regulatory domain only deaminated ssDNA

[40]. In contrast, the yeast APOBEC homolog known as CDD1 site-selectively edited apoB

mRNA when this mRNA was expressed in yeast [41, 42]. CDD1 is a 15.5 kDa protein

representing little more than the deaminase catalytic domain and yet it had deaminase

activity on RNA, ssDNA and free cytosine [43]. It is therefore unclear what structural

features of the APOBEC proteins determine their range of substrates.
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2. The Eleven proteins in the APOBEC family

The APOBEC family of proteins are readily identifiable in amino acid similarity searches

through the occurrence of the zinc-dependent cytidine or deoxycytidine deaminase domain

(ZDD) (H/C)-x-E-x25–30P-C-x-x-C (Figure 2A). Zinc is coordinated through the underlined

H or C residues in the context of a super secondary structure consisting of five antiparallel

beta strands forming a beta sheet that is supported through two alpha helices. Deaminase

activity of this ZDD involves hydrolytic removal of the exocyclic amine from cytidine (C)

or deoxycytidine (dC) to form uridine (U) or deoxyuridine (dU) [44].

2.1. Activation Induced Deaminase, AID

Upon encountering a foreign antigen, immunoglobulin genes within germinal center B cells

undergo several rounds of modifications allowing antibodies to be expressed with strong

antigen-binding affinity and different effector functions [45, 46]. Activation induced

cytidine deaminase (AID) was discovered more than a decade ago using subtractive

hybridization by comparing the transcripts from resting and activated murine B cells that

underwent immunoglobulin gene diversification [47]. AID’s deaminase activity [35] is

responsible for dU mutations that are converted through low fidelity excision repair to a

variety of point mutations or cause DNA strand breaks. This mutagenic activity leads to

Somatic Hypermutation (SHM) and immunoglobulin gene recombination events known as

Class Switch Recombination (CSR) and Gene Conversion (GC) [48–52].

The human AID gene maps to chromosome 12p13 and encodes a 198 amino acid protein

containing a single ZDD [53] (Figure 2A). AID gene mutations have been identified in

patients with a rare immunodeficiency known as Hyper IgM sydrome, HIGM (characterized

by high serum levels of IgM and lack of other immunoglobulin isotypes (IgG, IgE, IgA))

[54]. This phenotype also was observed in AID knockout mice [47, 55] which demonstrated

that AID was required for immunoglobulin diversification. On the other hand AID

expression has been implicated in several pathologies including Non-Hodgkin B cell

lymphomas and solid tumors [56]. Increased expression of alternative splice variants of AID

has been reported in patients with chronic lymphocytic leukemia (CLL) [57–59].

Alternatively spliced transcripts lacking C-terminal residues or the entire exon that contains

the nuclear export signal have been observed in cancer cells. Although this suggested that

AID hyperactivity led to genomic instability, the role of AID deaminase activity remains to

be confirmed [60, 61]. The formation of lung micro-adenomas and massive T cell

lymphomas in transgenic mice ubiquitously expressing AID confirmed the hypothesis that

deregulated expression of AID can lead to malignant transformation [62]. In fact, up-

regulation of AID expression through the NFΚB signaling pathway in response to hepatitis

C infection of hepatocytes also was associated with genomic mutations, however these mice

did not develop cancers [63]. This suggested that an additional control system buffering the

effects of endogenous AID expression in B cells may exist.

In support of this possibility, constitutive expression of AID in mice that was restricted to B

cells was not associated with developmental defects, excessive DNA mutations or tumors

even though a large amount of AID protein was evident [64]. Why AID expressed in

germinal centers normally only targets variable and switch regions of immunoglobulin genes
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for mutagenesis is unknown. Part of the answer might be that B cell-specific regulation

inhibits the expression of AID through Ca2+/calmodulin mediated inhibition of the E2A

protein that is required for AID gene transcription [65, 66]. Accumulating evidence indicates

that AID selectivity for its ssDNA substrates may be regulated through AID interactions

with cis-acting elements in the Ig loci or by binding to SHM- and CSR-specific protein

cofactors [49, 67]. The data clearly show that AID and its ssDNA deaminase activity are

essential for a responsive B cell immune system but it is also clear that AID must be highly

regulated to control its oncogenic potential.

2.2. APOBEC2

APOBEC2 (A2) was discovered by a search of mouse and human EST databases for genes

homologous to A1. Human A2 is located on chromosome 6 and expressed in cardiac tissue

and skeletal muscle [35, 68]. Before any function was ascribed to A2, its crystal structure

became the first and only full length APOBEC family member to be solved to date [69].

Although this structure has been used for homology modeling of other family members, A2

seems to be functionally quite different. While the other APOBECs are clearly capable of

deaminase activity on ssDNA in the absence of cofactors, A2 was non-mutagenic in yeast or

bacteria based mutator assays [35, 70]. However, a recent paper suggested that A2 DNA

mutagenic activity targeted specific tumor suppressor genes and that A2 overexpression in

mice resulted in liver and lung tumors [68]. The potential of A2 activity on DNA is of

interest considering that A2 is essential for muscle development [71]. A2 may have a

specific and unique function in muscle and heart tissue. Whether A2 acts alone or has a

cofactor is not known. The data suggest that A2 may be far less prone to off target activity

given its weak interaction with RNAs and lack of autonomous deaminase activity in

bacterial or yeast based systems [70, 71].

2.3. APOBEC3

The main function of APOBEC3 (A3) proteins (clustered on human chromosome 22) is as

sentinels in innate immunity to mobile genetic elements (i.e. endogenous retroelements and

exogenous viruses) (Figure 2B). Many forms of A3 genes are found in mammals (Figure

2A): a single A3 gene in rodents, cats, pigs, and sheep, two in cows, three in dogs and

horses, and seven in primates [72]. A3B, A3DE, A3F, and A3G differ from A1, AID, A3A,

A3C and A3H in that they contain two deaminase domains instead of one within a single

polypeptide (Figure 2A) [44, 73]. Deaminase activity on particular mobile genetic elements

varies greatly between these homologs (Figure 2B). The goal of this section is evaluate these

differences.

The most studied A3 family member is A3G. The function of A3G as an antiviral host factor

was discovered in 2002 through cDNA transfer experiments designed to identify a host cell

suppressor of the HIV-1 accessory protein known as the viral infectivity factor (Vif) [74].

Vif binds to A3G and induces its destruction via the ubiquitination and proteasome

degradation pathway [75]. Viruses deficient in Vif had low infectivity if they were produced

in cell lines known as ‘nonpermissive’ (express A3G) but otherwise exhibited near wild type

infectivity levels when produced in ‘permissive’ cell lines [75]. Transfection of permissive

cells with A3G was necessary and sufficient for conversion to the nonpermissive phenotype
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for Vif-deficient HIV-1 infectivity [74]. From these findings it became clear that wild type

HIV-1 expressed Vif to overcome the A3G innate immune system.

The primary antiviral mechanism of A3G required that it be encapsidated into HIV viral

particles [75]. During reverse transcription A3G hypermutated minus-strand HIV DNA with

mutations becoming fixed as G to A mutations upon plus-strand synthesis [76, 77]. A3G

also acted on a wide variety of distantly related retroviruses that package genomic RNA.

The retroviruses A3G has been reported to affect SIV [78], equine infectious anemia virus

(EIAV) [79], murine leukemia virus (MLV) [80], and foamy virus (FV) [81] (Figure 2B).

The interspecies transmission of SIV was likely prevented by A3G’s insensitivity to SIV

Vif, while MLV and EIAV virions do not have a Vif equivalent to protect the viruses against

A3G.

A3F was capable of anti-HIV, SIV, EIAV and FV activity nearly equivalent to that of A3G

[78, 79, 81]. However, A3F preferred a dTC sequence context for deaminase targeting

opposed to the dCC preference for A3G. This enabled A3F to target DNA sequences for

hypermutation other than those mutated by A3G [82]. A3DE also had antiviral effects on

HIV infectivity in a Vif-sensitive manner although to a lesser degree than A3G or A3F [80].

A specific haplotype II (in Africans) of A3H had activity similar to A3G while the haplotype

I, III and IV were not antiviral [83]. A recent report examined antiviral activities of all

human and rhesus macaque A3s stably expressed in a Sup T1 cell line and found that A3DE,

A3F, A3G, and A3H (haplotype II) from both species had similar expression patterns in T

cells and activity against HIV and SIV [78]. In this study A3A, A3B and A3C were inactive

against HIV (Figure 2B) [78]. In a different study, A3A had anti-HIV activity that was

linked to a specific A3A protein variant. Deaminase activity in INF-α treated monocytes

and monocyte derived macrophages correlated specifically to a variant that was expressed

equal to wild type A3A but whose translation initiated with methionine at residue 13 instead

of residue 1 [83]. It is unclear whether this variant was the key difference between the

studies or if a cofactor specifically expressed in monocytes activated A3A against HIV.

A3A was also a potent inhibitor of a parvovirus, AAV-2 (Figure 2B), and its activity on

these viruses correlated with protein structural divergence from A3G [84].

A3G, A3F and A3B inhibited hepatitis B virus (HBV) infection (Figure 2B) [85]. HBV is

considered a pararetrovirus because it reverse transcribes “pre-genomic” RNA like

retroviruses, but unlike retroviruses reverse transcription occurs before viral release and

therefore a DNA genome is packaged. Liver cells are the target of HBV and A3G, A3F and

A3B expression in human liver was up-regulated by INF-α [85]. However, the low and

variable levels of A3s in the liver may have caused low levels of mutations that imparted

HBV with some selective advantages. Specifically this mutagenic activity produced a

truncation mutation in the HBx gene that was linked to hepatocellular carcinoma [86].

The original A3 targets may have been endogenous retroelements [87, 88]. Endogenous

retroelements’ ability to copy themselves into random locations in the genome leads to

genomic instability and disease [88]. There are three major classes of retroelements: (i) long

terminal repeat (LTR) based endogenous retroviruses, and non-LTR based (ii) autonomous

long interspersed nuclear elements (LINEs) and (iii) non-autonomous short interspersed
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nuclear elements (SINEs). LINEs are autonomous because within their code is everything

needed to reverse transcribe and re-insert their sequence into another location within the

cell’s genome. Conversely, SINEs are non-autonomous because they must use the

machinery encoded in LINEs in trans for reverse transcription and genomic re-insertion

[88].

Various retroelement reporter assays revealed that A3G and A3F inhibited LTR-based

endogenous retroviruses (i.e. IAP, Mus-D and Ty1) [89, 90]. Hypermutations were detected

in these sequences [89, 90] as well as a reduced number of reverse transcripts [89] consistent

with the known A3G mechanism on exogenous retroviruses. In contrast, A3G inhibited

SINE retrotransposition (i.e. Alu and hY) by sequestering these RNAs as ribonucleoprotein

complexes (Section 4) [87, 91]. This mechanism was deaminase-independent consistent

with A3G being enzymatically inactivated by cellular RNAs in HMM (Section 3.3 and 4)

[75, 87, 91].

The expansion of A3s in primates correlates well with the decreased presence of active

retroelements in humans [88]. There are seven A3s in humans and the only currently active

retroelements in humans are non-LTR based retroelements (i.e. LINEs and SINEs).

Conversely, mice have only one APOBEC3 protein and their genomes contain active LTR-

based and non-LTR based retroelements [88, 89]. Moreover, mice carry 50–60 times more

active LINE-1 retroelements in their genomes than humans and the proportion of LINE-1

causing disease is 35% greater in mice compared to humans [88]. In this regard all human

A3s inhibit LINE-1 and/or Alu retrotransposition, with the one exception that A3G does not

inhibit LINE-1 (Figure 2B) [92–97]. A3DE, A3F and A3H were localized to the cytoplasm

and were able to block either LTR-based or non-LTR based retroelements in manners

similar to A3G [89, 94, 95, 97, 98]. In contrast, A3A, A3B and A3C were capable of nuclear

localization and may be able to directly inhibit nuclear reverse transcription of retroelements

[92–96]. Overall these multiple fronts of defense highlight the diversity within human A3

genes as a key determinant in combating the genotoxic threat posed by endogenous

retroelements. However, as with A1, A2 and AID, up-regulation of nuclear A3A and A3B

deaminases may become genotoxic and pose a risk of inducing cancer [85, 99]. This threat

along with the variable activities and expression levels on different mobile genetic elements

underscores the need to further understand cell type-specific regulation of A3 proteins.

2.4. APOBEC4

APOBEC4 (A4) has no ascribed function and was discovered by a computational homology

search that revealed its location on human chromosome 1 and inspection of the ESTs

suggested that it is expressed in testes [100]. The A4 sequence is distinctly divergent from

other APOBEC genes and contains a significant alteration in the presumptive deaminase

domain compared to the consensus ZDD motif (PCx6C instead of PCxxC) [100] (Figure

2A). A recent report showed that A4 was non mutagenic when expressed in yeast and

bacteria [70]. As suggested for A2, A4 might require a specific cofactor for mutagenic

activity or it may have a deaminase-independent function.
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3. Subcellular compartmentalization of APOBEC proteins regulates their

activity

3.1. A1 in 27S editosome and 60S pre-editosomal complexes

A1 distribution in both the nucleus and cytoplasm is determined in part by an N-terminal

nuclear localization signal and a C-terminal cytoplasmic retention signal (Figure 3A) [101,

102]. Although RNA editing can occur in the cytoplasm when A1 is overexpressed [103],

cytoplasmic A1 editing activity is normally suppressed and RNA editing is restricted to the

cell nucleus within a temporal and spatial window that occurs subsequent to pre-mRNA

splicing and prior to mRNA nuclear export [24, 104].

Glycerol gradient velocity sedimentation of nuclear extracts revealed A1 and ACF co-

sedimenting with editing activity as 27S complexes [14, 105]. A1 and ACF in cytoplasmic

extracts co-sedimented as 60S complexes whose RNA editing activity could be activated in

vitro and converted to 27S complexes by incubating 60S complexes at 30 °C [105] or by

treating them with elevated monovalent salt concentrations [15, 106]. Other than A1, ACF

and RNA, the molecular composition of 27S and 60S complexes is unknown. It is also not

known whether the interaction of A1 with ACF in inactive 60S complexes is different than

that in 27S complexes which are editing competent.

The proportion of apoB mRNA edited in tissues is determined by shuttling of A1 and ACF

from cytoplasmic 60S complexes into the nucleus where they are recovered as 27S

complexes [14, 16, 101, 107]. This process is regulated tissuespecifically, during

development and in response to metabolic regulation (reviewed in [108]). Though different

from A1, ACF contains nuclear localization and nuclear export signals [16, 107] and

therefore it is possible that A1 and ACF may shuttle independently. ACF shuttling occurred

in the absence of A1 but the converse situation is not known. Nuclear retention of A1 and

ACF was strongly influenced by ACF phosphorylation that in turn was regulated by insulin

and ethanol through protein kinase C [14, 22, 109, 110]. The distribution of A1 and ACF in

cytoplasmic 60S or nuclear 27S complexes was regulated through the abundance of ACF

and determined in part by leptin inhibition of ACF gene transcription [109] and through the

expression of ACF variants (due to alternative pre-mRNA splicing) that have different

affinities for A1 and different levels of nuclear retention [43, 111, 112]. These findings

underscore the importance of subcellular localization of A1 and its organization as low or

high molecular mass complexes as key regulatory determinants for A1 mRNA editing

activity.

3.2. AID Cytoplasmic Retention

Controlling the abundance of AID in different cellular compartments is one of the major

regulatory mechanisms restricting its contact with the genomic material [113–115]. Despite

its function in the nucleus, AID is predominantly localized in the cytoplasm, even when it is

overexpressed (Figure 3B) [116]. This pattern is produced by the action of an active

transport system [117]. When the export is blocked with a CRM-1 specific inhibitor,

Leptomycin B (LMB), the nucleo-cytoplasmic shuttling feature of AID becomes more

obvious with the majority of AID sequestered in the nucleus [118, 119] (Figure 3B).
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While findings from different groups confirmed the existence of a CRM-1 dependent

nuclear export signal (NES) at the C-terminus of AID, there is no consensus about the exact

location and nature (classical bipartite or conformational NLS) of the N-terminal nuclear

localization signal (NLS) [117, 119]. AID has been shown to interact with several importin

alpha isoforms (impα1, impα3, and impα5) [117], suggesting that the generic impα/β
import pathway may be mediating AID nuclear entry. CTNNBL1 (catenin, beta-like 1), an

NLS-binding protein containing architectural homology and binding affinity to impα5 but

not to imp β, was also associated with AID when AID was overexpressed in HEK293T cells

[120]. For this reason a role for CTNNBL1 in nuclear localization of AID as either an

adapter protein mediating AID-impα5 interaction or AID association with spliceosome

components has been proposed [120].

A cytoplasmic retention signal may contribute to the steady state cytoplasmic localization of

AID [117]. Under conditions rendering both NLS and NES inactive (combination of

oxidative stress, N-terminal tagging of AID, mutagenesis or LMB treatment), AID remained

in the cytoplasm, rather than as predicted from AID’s size, passively diffusing into the

nucleus and displaying a homogenous cellular distribution [117]. Mutational analysis

revealed a retention signal overlapping with the NES but distinguishable from it with the

specific amino acid substitutions (D188A, L198S) [117].

Protein factors have been shown to stabilize or destabilize AID in various cellular fractions

[121, 122]. Heat-shock protein 90 bound to the N-terminal region of AID and stabilized

cytoplasmic AID by shielding it against E3 ubiquitin ligase mediated proteosomal

degradation [121]. Moreover, analysis of the half-life of different AID mutants demonstrated

that, compared to wild type AID, nuclear export deficient AID was 3-fold less stable

whereas nuclear import impaired AID had a 3-fold longer half-life suggesting that

cytoplasmic AID is more stable [122].

3.3. APOBEC3 cytoplasmic ribonucleoprotein complexes

A3G is strongly retained in the cytoplasm of interphase cells and remains excluded from

chromosomes during mitosis (Figure 3C and D). This localization is due to a cytoplasmic

retention signal between amino acids 113–128 [123]. Interestingly this region is also crucial

for Vif, Gag and RNA interactions, but A3G binding to RNA was not required for

cytoplasmic retention [123–125]. The N-terminal half of A3G expressed in a quail cell line

was not restricted to the cytoplasm (in contrast to what was observed in mammalian cells)

suggesting that there may be a mammalian specific factor involved in the cytoplasmic

retention of A3G [126].

A3G is present in two distinct cytoplasmic forms: low molecular mass (LMM) and RNA-

bound, high molecular mass (HMM) complexes. Cytokines IL-2, IL-15, and IL-7 stimulated

the formation of HMM [127] but poly(I:C) and TNF-α increased A3G expression as LMM

[128]; suggesting that these various forms of A3G may have functional significance. Vif

also has been suggested to facilitate HMM formation [129]. On the other hand, HMM

formation was not a common feature among all A3s. A3DE, A3F and A3H all have similar

antiviral profiles to A3G and share in the ability to form HMM complexes and/or associate

with Alu RNA [97]. On the other hand, A3A in INF-α activated PBMCs did not have to be
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treated with RNase to activate its deaminase activity, suggesting that it is not inhibited by

RNA in HMM complexes [83].

Immunocytochemistry revealed a homogeneous cytoplasmic distribution of A3G along with

concentrated foci determined to be P-bodies and stress granules (Figure 3) [87, 98, 130].

These cytoplasmic aggregates are composed of various cellular RNAs and their associated

proteins and function as RNA and ribonucleoprotein degradation or recycling centers. A3G

promoted dissociation of miRNA-targeted mRNA from P bodies, thus allowing for

translation of these mRNAs [131] and the interaction of A3G with Ago1 and Ago2 (proteins

associated with the RNA interference pathway) [132] adds credence to the idea that A3G

may function as an RNAi regulator in P bodies. Collectively, these data support a model

whereby the oligomeric state and/or localization of A3 proteins is influenced by both

cellular and viral factors which, in turn, may be a manifestation of how cells regulate the

functionality of these proteins.

4. RNA binding to APOBEC as a cellular regulator of ssDNA deaminase

activity

Although there may be several different HMM complexes with which A3G associates, they

all share a common characteristic that RNA binding to A3G inhibits ssDNA deaminase

activity [75, 133]. Both A1 and A3G were retained as large cytoplasmic complexes that

were catalytically inactive. The catalytic activity of A3G that was sequestered in

ribonucleoprotein complexes could be restored in vitro by RNase digestion of HMM [134].

Most of the interactions of A3G with other proteins within these complexes were through

RNA bridging as RNase digestion reduced megaDalton size A3G ribonucleoprotein

complexes to dimers and mononers. Interestingly, A3G-RNA complexes in viral particles

were inactive until RNaseH activity of reverse transcriptase degraded the RNA of the DNA-

RNA hybrid [135]. Although A3G has the ability to bind RNAs nonselectively, several

studies have shown that A3G (and A3F) can select for cellular and viral RNAs that become

incorporated with it into viral particles [136–140]. A3G:7SL and A3G:viral RNA

interactions may facilitate the association of A3G and the nucleocapsid (NC) region of

HIV-1 Gag; a requirement for A3G viral packaging [141–143]. RNAs of diverse sequence

and propensity for secondary structure, and as short as 25 nt bound A3G in vitro and

prevented the formation of A3G:ssDNA complexes necessary for catalytic activity [144].

A3C also was incorporated into HIV particles and although it did not associate with 7SL

RNA or HIV NC, it did interact with the matrix (MA) region of HIV Gag in what may be a

5.8S ribosomal RNA-dependent manner [145, 146]. Furthermore, AID is bound to mRNA in

the cytoplasm of cells [147] and in vitro studies have shown AID to have very little catalytic

activity unless pre-treated with RNase [148].

RNA binding is emerging as a general means of inactivating ssDNA deaminase activity in

the APOBEC family; however the mechanism whereby RNA inhibits deaminase activity is

unknown. For A3G, deaminase activity resides in the C-terminal ZDD while RNA binding

has been suggested to occur through an interaction with the N-terminal ZDD [149, 150].

RNA binding may regulate deaminase activity allosterically by binding to the N-terminus of

A3G and inducing a conformational change in A3G so it can no longer bind ssDNA, or
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competitively by directly displacing ssDNA from the C-terminal catalytic domain (Figure

1B) [144]. This model is not directly applicable to enzymes with a single ZDD although

RNA inhibition of the deaminase activity of these APOBEC proteins also may be because

RNA and ssDNA interactions with the enzyme are mutually exclusive.

5. Concluding Remarks

Other than A2 and A4, binding to an appropriate nucleic acid by APOBEC proteins results

in deamination. When limited in frequency and targeted to specific genes, this mutagenic

activity can be beneficial to organisms as well as to viral pathogens. There are however clear

indications that APOBEC mutagenic activities and nucleic acid binding capabilities can be

genotoxic for retroviruses and are used as such in host cell defense. Excessive APOBEC

activity and/or off-target mutations within the cellular genome can be genotoxic and

oncogenic. Thus cells have multiple mechanisms that regulate the expression of APOBEC

proteins, control their enzymatic activity and restrict their access to DNA or RNA substrates.

Use of RNA as a substrate is considered unique to A1. Even though RNA is not commonly

used as a substrate, the majority of APOBEC family members bind to both RNA and

ssDNA. An emerging theme is that RNA binding to APOBEC enzymes and the resultant

homo-multimerization of these enzymes inhibits their ssDNA binding and deaminase

activities. Typically RNA binding sequesters APOBEC as large ribonucleoprotein

aggregates that are compartmentalized within the cell cytoplasm or within viral particles.

Ribonucleoprotein complexes form rapidly after APOBEC translation and are typically not

RNA sequence-specific. Thus the availability of free and active APOBEC deaminases is

anticipated to be limited under most circumstances. While this may diminish deaminase-

dependent antiviral activity, APOBEC binding to retroviral RNAs may impair their ability to

reverse transcribe or translate and thereby provide deaminase-independent antiviral activity

for the host cell. Inhibition of deaminase activity is reversible and involves release of

APOBEC from its interaction with RNA. The mechanism whereby some cell types maintain

APOBEC in an RNA-depleted and active state is not known.

The identification of RNA editing substrates has largely depended on prior knowledge of

protein isoforms. Proof that an APOBEC family member can edit these RNAs has relied on

the identification of a cell type or cell extract that expressed an appropriate complementation

factor. Although RNA editing by AID has been suggested since the discovery of the

enzyme’s role in SHM and CSR, no edited transcript has been found and the AID RNA

editing hypothesis has fallen out of favor. Future discoveries may reveal a broader RNA

editing phenotype for this family but current research is focused on APOBEC ssDNA

deaminase activities where RNA plays a role as a regulatory cofactor.
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Figure 1. Models for A1 and A3G complexes with nucleic acids
A. The tripartite apoB mRNA editing motif consisting of the mooring sequence, and spacer

3’ of the C to be edited and the enhancer element 5’ of the edited C is shown with a cartoon

of an editosome assembled upon it. An A1 C-terminal dimer is positioned for site-selective

C to U editing by virtue of its association with ACF dimers that are shown bound to the

mooring sequence. For the purposes of presentation only one A1 dimer is shown bound to

one ACF through C-terminal to N-terminal (respectively) interactions (although the precise

stoichiometry is unknown). Most of the three RNA recognition motifs comprising greater
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than the N-terminal half of ACF are required for optimal A1 binding. ACF dimerization

requires only the N-terminal half of ACF.

B. a. An A3G monomer is shown containing an N- and C-terminal ZDD (label as ‘N’ and

‘C’). Nucleic acid deficient A3G forms a heterogeneous mixture of oligomers consisting

mostly of dimers in solution and an A3G concentration-dependent small population of

monomers and tetramers. b. A3G dimers to bind ssDNA substrates (black line with the CCA

editing site) and must form at minimum a tetramer for enzymatic activity. c. RNA (red line)

competes for ssDNA binding by displacing ssDNA and binding at the same site or d. RNA

competes for ssDNA binding by binding at a distal site and causing an allosteric change in

A3G conformation, preventing ssDNA binding.
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Figure 2. APOBEC family localization and activity
A. Bar diagrams of human APOBEC proteins and their relative alignments according to

exon junctions. The ZDD motifs (black) and number of amino acids for each protein are

indicated. The (*) next to the ZDD for APOBEC4 indicates that it is divergent from the

consensus ZDD. The relative subcellular distribution is on the left with N for nuclear and C

for cytoplasmic, and ‘?’ if localization is unknown. The size of N or C indicates relative

distribution. The deaminase activity is indicated by a + or − and the +/− for APOBEC2

indicates mixed results depending on the system (see text). B. A chart of A3 proteins’

activity on different mobile genetic elements, with + for active and − for inactive and ND
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when activity has been not determined. The (monocytes) under the A3A HIV activity

indicates that it has only been shown to be active in monocyte derived cells. The information

in A and B was compiled from references within the text.
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Figure 3. Localization of the APOBEC proteins by in situ fluorescence
A. APOBEC-1 (A1) with a C-terminal HA tag was expressed by transfection in McArdle rat

hepatoma cells. Immunocytochemical localization of the HA tag in fixed cells shows that

A1 is distributed throughout the cytoplasm and nucleus (DAPI) but is not localized in the

nucleolus. A1 shuttles between the cytoplasm and nucleus. B. Activation Induced

Deaminase (AID) as a C-terminal GFP chimeric protein was expressed in transfected human

embryonic kidney cells 293T and visualized in live cells. AID appears predominantly in the

cytoplasm (left panel, four transfected cells shown) but its rapid shuttling activity can be

demonstrated by inhibiting its CRM1-dependent nuclear export with Leptomycin B (LMB)

(right panel, two transfected cells shown). C. A3G as an N-terminal mCherry chimeric

protein was expressed in transfected HEK293T cells and visualized in live cells. A3G is

restricted to the cytoplasm because it has no nuclear localization signal but does have a

cytoplasmic retention signal. D. Natively expressed A3G in synchronized H9 cells after

fixing and staining with anti-A3G polyclonal antibody. DAPI stained mitotic chromosomes
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(left top, anaphase; left bottom, telophase) are segregated in the mitotic cells from

cytoplasmic A3G. Original magnification was 40X.
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