
Sequence analysis by iteratedmaps,
a review
Jonas S. Almeida
Submitted: 12th July 2013; Received (in revised form): 18th September 2013

Abstract
Among alignment-free methods, Iterated Maps (IMs) are on a particular extreme: they are also scale free (order
free). The use of IMs for sequence analysis is also distinct from other alignment-free methodologies in being rooted
in statistical mechanics instead of computational linguistics. Both of these roots go back over two decades to the
use of fractal geometry in the characterization of phase-space representations. The time series analysis origin of
the field is betrayed by the title of the manuscript that started this alignment-free subdomain in 1990, ‘Chaos
Game Representation’. The clash between the analysis of sequences as continuous series and the better established
use of Markovian approaches to discrete series was almost immediate, with a defining critique published in same
journal 2 years later. The rest of that decade would go by before the scale-free nature of the IM space was un-
covered. The ensuing decade saw this scalability generalized for non-genomic alphabets as well as an interest in its
use for graphic representation of biological sequences. Finally, in the past couple of years, in step with the emergence
of BigData and MapReduce as a new computational paradigm, there is a surprising third act in the IM story.
Multiple reports have described gains in computational efficiency of multiple orders of magnitude over more conven-
tional sequence analysis methodologies. The stage appears to be now set for a recasting of IMs with a central role
in processing nextgen sequencing results.
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JEFFREY1990
Over two decades ago, during a period of great ex-

citement over the use of statistical mechanics

approaches to the nascent field of Biocomplexity

and Systems Biology, it was proposed in [1] ‘Chaos

game representation of gene structure’ to apply iter-

ated function systems (IFS) to the investigation of

DNA sequences. There, HJ Jeffrey, a computer sci-

entist with a formal background in Mathematics,

borrows from work done in the preceding 15 years

in non-linear dynamics studies of fractal geometries.

The approach followed by that line of research was

directed to the identification of IFS that produced

fractal figures with desirable properties. That func-

tion is designated as a ‘mapping function’, or simply,

as a ‘map’, therefore the modern ‘iterated maps’

(IMs) designation. Jeffrey’s Chaos Game Representa-

tion, CGR, proposes an IM for genomic sequences

that places each nucleotide at the edges of a unit

square, and then moves a pointer half the distance

to the corresponding edge [Equation (1)]. The CGR

article was part of a larger movement towards under-

standing ‘the fractal geometry of nature’ [2] that had

been gaining momentum since the mid 60s [3]. This

was the period when the concept of self-similar

Markov processes driving the identification of iter-

ated mapping functions took shape. One might

therefore interpret the CGR approach to the analysis

of nucleotide sequences as part of a broader move-

ment towards the identification of organizing math-

ematical principles leading to ‘self-organized

criticality’ [4], a concept generalized and popularized
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in [5] as a ‘order at the edge of chaos’. Coinciden-

tally, that expression borrowed from the description,

published the same year as CGR’s, of cellular auto-

mata results as ‘computation at the edge of chaos’ [6].

The Sierpinski’s triangle (Figure 1) is the paradig-

matic example of a self-similar set with a fractal

geometry. As described in the original article, the

generation of this figure from a random set was the

immediate inspiration for the CGR IM [1]. Specifi-

cally, if, in an equilateral triangle, one moves a poin-

ter half the distance to each of the edges [the CGR

game, Equation (1)] in a random order, a Sierpinski’s

triangle is obtained. Using the same rule for a unit

square will generate a uniformly covered distribution

of points. As illustrated in Figure 1, the Sierpinski

triangle and CGR share the same IM [Equation

(1)], even if that may not be immediately apparent

in the original IFS formalism. Although not ap-

proached in the CGR article, it is also worth

noting that if the CGR game is played with only

two points, using a uniformly binary sequence, a

uniformly random distribution of points in a line

will be generated. As discussed in the CGR report,

the original motivation for these games was to assess

the quality of a pseudorandom generator functions in

a computer [8], a significant issue in those days. As

found many years later [9], the equivalent solution

for polygons with more than four edges (say, protein

sequences would require a polygon with 20 edges)

will in fact need to use increments bigger than half to

preserve essential properties of the IM representation.

Interestingly, to the best of our knowledge, Jeffrey’s

milestone CGR article was his only peer-reviewed

foray into the analysis of Biological Sequences,

with the focus of the rest of his active research

record directed to other fields. This cross-disciplinary

advancement of IM applications to Biological

Sequence analysis is a pattern that recurs, repeatedly,

in the 23 years of work reviewed here.

THE IM FUNCTION
Originally, IMs (then designated as iterated function

systems, IFS) were described as a set of linear equa-

tions, one per dimension. For example, CGR x,y
coordinates would be generated by x¼ axþ byþ e
and y¼ cxþ dyþ f. However, as is immediately ap-

parent by inspecting CGR’s IFS, each coordinate can

be determined independently (b and c terms are

zero). As a consequence, a more compact notation

came into use over the years and will be adopted

here. Equation (1) uses the modern description of

the original CGR game as a procedure where an

array of map positions, y, is generated from a set of

Boolean values x.

yj
0 ¼ a; yj

i ¼ yj
i�1 þ b xj

i�1 � yj
i�1

� �
; ð1Þ

Figure 1: Sierpinski’s triangle (left) and CGR square (right), both generated by running the IM described in
Equation 1 with a set of 20 000 random sets of, respectively, three symbols and four symbols - the edges (circles)
of the corresponding figures. The square layout (on the right) is the one proposed in [1] to process genomic
sequences, with four possible nucleotides, ACGT, one per edge of the CGR square. Any deviation from the uniform
random distribution (any structure in the sequence) will produce a structure in the IM projection that is amenable
to alignment-free and scale-free analysis. See Figure 1 of [7] for a graphic illustration of the process of
generating CGR coordinates, applied to a gene sequence. The code used to generate this figure is available at
http://bit.ly/imfig1.
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In Equation (1), y contains the CGR positions,

one per element of the sequence S:

a ¼ b ¼ 1
2
, the start coordinates and the position

increment factor, respectively;

j ¼ 1,2, i.e. the two dimensions, m, of the CGR

square;

i ¼ 1, ::: , n, n is the length of the genomic se-

quence S, so for each position, i,
x0

i ¼ 0 if Si ¼ A or C, otherwise x0
i ¼ 1,

x1
i ¼ 0 if Si ¼ A or T, otherwise x1

i ¼ 1.

which defines a unit square bound by the four

nucleotides, ACGT, at positions, respectively,

(0,0)(0,1)(1,1)(1,0).

THE FIRST DECADE, 1990^2000:
FOUNDATION
The year the CGR article [1] was published, 1990,

was also the year when BLAST, the Basic Local

Alignment Search Tool [10] came out. The availabil-

ity of a convenient tool to retrieve DNA sequences

according to their similarity to a probe sequence was

a game changer in molecular biology methodology,

as reflected by close to 50 000 citations to date

(Google Scholar). At a more fundamental level, the

success of BLAST generated a significant drive in

biological sequence analysis methods development

towards exploring and advancing the probabilistic

models associated with sequence alignment. This

was also a key moment in the development of

Bioinformatics as a discipline, to the extent that

Durbin’s ‘Biological sequence analysis: probabilistic

models of proteins and nucleic acids’ [11] was for

many years the main textbook in graduate courses

on the topic. In other words, in the 1990–2000

period, the study of biological sequence analysis

was overwhelmingly the study of the Markov

Chain Models (MCM), soon extended by Hidden

Markov Models to model the succession of

Biological units in genomic and proteomic sequences

[12]. This context helps understand why the first

probabilistic study of the application of IM to biolo-

gical sequences followed a narrow Markov model

perspective [13], and remains to this day its most

severe critique. That study, published in the same

journal as the original CGR article, concluded that

the distribution of positions in the CGR space could

be described in terms of oligomer frequencies (word

statistics) and, therefore, ‘there is no justification for

ascribing their patterns to anything other than’ that

[13]. The author reached this conclusion by con-

secutively dividing the CGR plane in the middle,

and each time, observing that the position frequency

could be ascribed to a cell in a MCM transition

probability table. Intriguingly, that study ignored

the possibility of a different division rule, which

would have uncovered what is probably the most

exciting property of IMs: that it generates truly

scale-free representations of transition (with an arbi-

trary Markov order). That observation would have

to wait for the end of the decade to be reported [7],

even if by 1999 there were already signs that order-

free (scale free) MCM using IMs might be a distinct

possibility [14]. However, the work described in the

latter report was soon directed to applications to ma-

chine learning [15, 16], and the possibility of scale-

free MCM remained ignored in the field of sequence

analysis for another 2 years. In summary, a review of

the literature in this period suggests that Goldman’s

critique [13], as was its explicit intention, signifi-

cantly cooled the interest in using IMs to study bio-

logical sequences any deeper than the word statistics

that derive from its graphical representation.

While IMs as a sequence modeling approach were

essentially on ice during the 1990’s, there was a pro-

fusion of studies making good use of the graphic

representation it generates. The association between

oligomeric nucleotide frequencies and evolutionary

processes [17] were approached by several authors

because CGR representations, as in [18], simply

offered a convenient procedure to produce them.

That practical advantage established a bridge be-

tween IMs and what was already the foundation

[19] for what would latter be designated as align-

ment-based methods [20]. Retracing these develop-

ments, the trail of CGR-based studies of genomic

sequences starts with fundamental studies like [21],

just before [13] closes that door, and continues with

several genomic signature results such as [22] and

others, captured by the contemporary review of

novel graphical representations of DNA sequences

in [23]. This trail extends to the present day, with

an increased emphasis on scalability and computa-

tional efficiency as in [24–27]. This was a period of

growing interest in graphical bioinformatics and a

wide variety of approaches have since been pro-

posed, as illustrated by the extent of the recent

review of graphical representation of proteins [28].

Although CGR is now recognized among the mile-

stone developments in graphical bioinformatics [29],

Sequence analysis by iterated maps 371



it is interesting to note the broader context where

this early work took place. Resisting a novel numer-

ical method with fundamental significance on

the basis of lack of fundamental significance of the

method itself, was then a recurring pattern in the

development of the mathematics of fractal geometry

[30]. This early period in IM development was a

time when Experimental Mathematics had not yet

gained full recognition [31].

This first decade of using IMs to study biological

sequences saw another two important developments.

One was an interest in using it to generate entropy

profiles. This was initiated by [32] in 1993, quickly

followed by [33] the following year. The under-

standing of scalability of IM representations more

than a decade later, rekindled an interest in using it

for entropic profiling, as in [34]. This important topic

is separately reviewed in this special issue by the

author of that study. The second development was

a desire to generalize the 2D graphics of the CGR

approach beyond the genomic sequences and the

simpler domain of a four-nucleotide alphabet. A

number of variations on the IM/CGR theme, such

as [35], were pursued by different authors in this

period. The description of this challenge as one of

using IMs to efficiently inscribe non-overlapping

polygons for alphabets longer than 4 (nucleotides)

was clearly laid out by [36]. His solution, and the

challenge it created (because it did not produce

CGR as a solution for four unit alphabets), would

remain unaddressed for another 15 years.

THE SECONDDECADE, 2001^2010:
DISCOVERY
The previous decade had seen key questions, and

objections, being raised. This second decade not

only saw them answered but in the process dis-

covered IM’s distinctive features as a mathematical

tool, opening a window into a novel mathematical

representation of transition. As is often the case, the

process was largely driven by newcomers who, un-

intentionally, stumble into a new field. As many

others, the author was attracted to this field by the

intriguing visual representation of full genomes in

reports such as [22], [37] or [38]. As Figure 1 in

that report makes elegantly clear, the distribution

of positions in the CGR plane provides, in a single

representation, oligomeric frequencies (frequencies

of nucleotides, dinucleotides, trinucleotides, . . . )

with multiple lengths. For someone not aware of

the argument that that is indeed all that is there to

see [13], it suggests something more comprehensive

than the fixed order probability tables of MCM. It

actually suggests the very opposite, that those transi-

tion matrices, of all degrees, are fully accounted for

in a CGR map [14], and that, indeed, there may be a

lot more to discover in the use of IMs to represent

symbolic sequences. All it takes for that critical leap

forward is then to divide the CGR plane into a

number of quadrants, q, where log2(q) is not an inte-

ger [7]. This procedure will resolve arbitrary Markov

orders, including, unsettlingly, non-integer fractal

orders. The critical advancement, as illustrated in

the next paragraph, is that operations usually reserved

to numerical results can be applied also to symbolic

sequences.

After the leap into fractal degree is taken, as

explored in [7] for multiple genes of the threonine

operon of Escherichia coli, a succession of discoveries is

unleashed by the bijective mapping between the se-

quence’s native symbolic form and its numerical rep-

resentation by the IMs. For example, it suddenly

becomes possible to assess how much a gene is like

the genome that contains it (the similarity of thrA in

E. coli is 7.7 nucleotides), or even what is its skewness

(for the same gene, the average sequence differs from

the median sequence by 0.13 nucleotides). Those

numbers were obtained by noting the order statistics

nature of the IM representation (Figure 9 in [7]), and

taking the logarithm of its maximum coordinate dis-

tance, as described in Equation (2), where j indicates

each dimension of the map, as per the notation

defined for the previous equation.

d yA,yBð Þ ¼ �log2 max yj
A � yj

B

���
���

h i� �� �
ð2Þ

These results, at a time when sequence alignment

was the staple of bioinformatics methods, represented

what can only be described as a radically alternative

route for sequence analysis. Word counting and

alignment methods had a shared trajectory that can,

arguably, be stretched all the way to [19], the same

year CGR was proposed. The shared foundation

suggested that something important might have

been amiss in alignment-based approaches to justify

the subsequent divergence. The two approaches

diverged quickly in the ensuing decade, as reviewed

by other contributions to this issue. As a conse-

quence, a newcomer to sequence analysis in this

second decade of IM work would have a different

perspective of the methodologies at hand. One such

newcomer, starting her PhD thesis by reviewing the
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state of the art, saw ample justification to designate

them collectively as being ‘alignment-free’ [20], a

designation that is now widely used. Eventually,

that would be interpreted, even by those at the

root of alignment methods [39], as free not only

from the constraints of conventional MCM but

also free from the computational inefficiencies of

using dynamic programming to align sequences.

A number of foundational questions were ad-

dressed in this second decade. Optimal 2D packing

rules for IM that generates Sierpinski’s triangle and

the GCR cube as solutions were found [9], resolving

a challenge dating back to 1994 [36]. The scaling of

entropy measures was approached in [34]. The use of

alignment-free methods, typically associated with

word statistics methods as in [40], quickly found

application in a myriad of applications, sometimes

even as a complement to conventional alignment

methods, as in [41]. It is noteworthy that, by the

beginning of this second decade, oligomer fre-

quency-based methods (not reviewed here) had

advanced substantially and had produced a wealth

of alignment-free sequence distance metrics on

their own [42]. Similarly, their statistical foundations,

as in [43], were by then well established. As concerns

the IM space itself, this was, on the contrary, still a

decade of discovery.

The discoveries of novel properties of the IM pro-

cedure during this period have a relatively small, and

recurring, list of authors. This is intriguing since

some of those studies have nevertheless been abun-

dantly cited. For example, the discovery of scale-

independent measures in [7] was followed by its

generalization for any symbolic sequence in [44],

where both a new IM similarity metric (i.e. scale

independent, not based on oligomeric frequencies)

and a statistical framework are uncovered. However,

these new properties appear to find application not in

sequence comparison, but in sequence classification

(see for example [45]). This pull of IM applications

towards machine learning bears some similarities to

the same pattern observed in the use of scale free

MCM, as discussed previously. The fact is that a

careful analysis of IM-based applications—including

some of our own [46] or even the density kernel

described in [47]—is really that of the oligomeric

frequencies, ultimately falling prey of Goldman’s ob-

jection. The third act of IM applications to biological

sequence analysis would have to wait, as is often the

case, for a compelling and unmet need where exist-

ing solutions simply fall short.

THETHIRDDECADE, 2011:
SCALINGUP TOBIG DATA
The need for a new computational framework to

handle the flood of sequence data produced by med-

ical genomics [48, 49] was becoming clear by the end

of the previous decade [50]: the need for solutions

that rely on code distribution rather than data trans-

fer. In a broader sense, not only the abundance of

sequence data but the emergence of the Web as a

global data space [51] set the stage for this third act of

using IMs to analyze Biological sequences. Ironically,

in a reversal of previous cross-pollination between

disciplines, the generic abstraction that describes

opportunities for distributed computing, first took

root in the machine-learning community [52],

before being commoditized as a cloud computing

framework by Google [53]. Within 2 years, not

only did it underlie the most important high-

throughput sequence analysis frameworks [54, 55],

but it was herald as the generic solution for compu-

tational biology in the Big Data era [56].

Ever since [46] and [24], there had been multiple

reports highlighting the computational efficiency asso-

ciated with the use of IMs in sequence analysis. These

gains had become particularly impressive in applica-

tions where the use of alignment methods is notori-

ously problematic, such as in metagenomics [27]. The

explanation for this computational advantage is now

much better understood, as illustrated by the use of

CGR as hash function within the Rabin-Karp algo-

rithm [25]. Finally, the CGR iterated mapping pro-

cedure, as well of its generalization for any symbolic

sequence, was found to be amenable to (distributable)

Map Reduce decomposition [26]. The extent to

which this result is ahead of the (in memory) dynamic

programming of alignment methods, and the extent

to which the field has advanced beyond the original

CGR procedure, can be appreciated in the measure of

sequence similarity in Equation (3). Its inspection will

reveal that the length, L, of the shared sub-segment

between two sequences can now be calculated dir-

ectly, and solely, from the corresponding pair of IM

coordinates. This is the antithesis of alignment as a

computational application and is achieved entirely

outside the MCM paradigm that entails it.

L yA,yBð Þ¼L yA
!,yB
!� �
þL yA
 ,yB
 � �
�1

L yA,yBð Þ¼

k¼0

while
�
round

�
yA :2k

�
¼¼roundðyB :2kÞ

�
k¼kþ1f g

returnk

������
ð3Þ
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In this equation, A and B indicate the two sequence

positions being compared (in the same sequence or in

distinct sequences) and the arrows indicate the direc-

tion of the iteration in the calculation of y in Equation

(1). The value of L, the length of the longest shared

segment, can then be determined solely from the co-

ordinates of positions A and B, yA and yB, by incre-

menting an integer variable k until the rounding

condition is no longer satisfied. The computational

notation used in this equation is the same adopted

in the original report [26]. It can be graphically

described as a box counting procedure [13] in reverse:

instead of halving the size of the box and counting the

coordinates that fall within, the coordinates, yA and

yB, are doubled until the resulting positions being

compared fall outside a shared unit box. For a live

resolution of this equation with arbitrary sequences

see http://usm.github.io. The use of box counting

procedures with IM coordinates is also a reminder

of the deeper statistical mechanics roots of this pro-

cedure. The resulting sequence representation is

amenable to methods that are more commonly asso-

ciated with the extraction of fractal dimensions from

phase-space representations [38, 57].

CONCLUSIONS
The use of IMs in sequence analysis has been object

of intense study and application for the past 23 years.

This field was initially driven, and objected, by the

appeal of a single representation of multiple oligo-

meric frequencies. As the computational limitations

of alignment-based methods mounted, IMs gained

popularity as a convenient procedure to pre-

compute those frequencies. However, during this

process, the startling discovery was made that the

IM representation is also a scale-free representation

of transition. The Big Data era, and the commodit-

ization of distributed computing via Map Reduce

schemes, therefore opens a third act in the evolution

of IM applications to sequence analysis. The proced-

ure was found to be naturally decomposable into

Map Reduce components, with IM-based measures

of sequence similarity benefiting from the same im-

plementation efficiencies as Big Data word counting

workflows. Each of the three acts in the develop-

ment of IM methods, and its applications to

Biological Sequence analysis, has been defined by

surprising advancements in bridging between sym-

bolic and numeric data types. In conclusion, even if

the fractal figures it produces are what attract most

researchers to IM methods, there is clearly a lot more

in this field than what meets the eye.

Key Points

� Iterated Maps are procedures rooted in non-linear dynamics
that represent strings as fractal phase-space diagrams.

� They are unique among alignment-free methods for also being
scale free, i.e. the representation can be resolved for arbitrary
Markov orders including, which is nothing short of unsettling,
non-integer orders.

� They are currently the most efficient procedure to determine
oligomeric frequencies.

� Its scale-free representation of transition is inherently distribut-
able and appears to be a natural fit to Big Data sequence pro-
cessing operations.
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