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Summary

We review mathematical modeling and related statistical issues of HIV dynamics primarily in

response to antiretroviral drug therapy in this article. We start from a basic model of virus

infection and then review a number of more advanced models with considering, e.g.,

pharmacokinetic factors, adherence and drug resistance. Specifically, we illustrate how

mathematical models can be developed and parameterized to understand effects of long-term

treatment and different treatment strategies on disease progression. In addition, we discuss a

variety of parameter estimation methods for differential equation models that are applicable to

either within- or between-host viral dynamics.

1. The basic HIV viral dynamic models

1.1 Introduction

Human immunodeficiency virus (HIV) primarily attacks the CD4+ T helper cells via, e.g.,

gp120 binding to the CD4 and CXCR4 receptors. HIV infection typically results in a vast

replication of virus during the acute phase. The viral load then becomes much lower and

approaches a quasi-steady state, called chronic phase. A balance between high rates of virus

production and clearance [168] could explain why the viral load remains remarkably stable

on the timescale of weeks [36, 124]. After that, the viral load will increase slowly until the

onset of acquired immunodeficiency syndrome (AIDS) [112, 136], whereas the number of

CD4+ T cells declines steadily. Eventually, the viral load will increase significantly after the

development into AIDS, which is defined if the CD4+ T cell counts fall below 200 cells per

μL plasma, or specific diseases in association with HIV infection occur. The typical stages

of HIV infection can be found in references [21, 63, 106].
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Highly active antiretroviral therapies (HAART), which consist of reverse transcriptase

inhibitors and protease inhibitors, are currently the most effective treatment regime for HIV

patients in terms of rapidly suppressing HIV viral load below the limit of detection. New

and more effective antiretroviral therapies (ART) have turned out to be successful in

slowing down the progression to AIDS and improving the life quality of HIV patients.

However, ART may not work effectively for certain patients, and the suppression of viral

replication by ART is not in itself sufficient for eradicating the virus. There are evidences

showing that virus persists despite treatment, or the viral load rapidly rebounds shortly after

antiretroviral therapy interruption [58, 99]. Latently infected memory CD4+ T cells (as well

as macrophages and dendritic cells) actually become a reservoir of virus. These cells spread

out almost everywhere (e.g., blood, lymphoid organs, biotissues, and neuro systems), which

makes the eradication of HIV virus extremely challenging.

Mathematical models play a vital role in gaining a quantitative insight into HIV dynamics

and pathogenesis [104, 115, 116, 117, 168]. The majority of HIV dynamic models, either

deterministic or stochastic, describe the interaction between CD4+ T cells and virions [5, 28,

34, 62, 83, 90, 96, 97, 102, 104, 111, 117, 119, 121, 131, 153, 166, 174, 176]. In particular,

many models developed before the mid-1990s, focused on understanding of CD4+ T cell

decline [117], partially due to the lack of accurate methods that can measure the number of

virus particles in blood. With the development of rapid and sensitive polymerase chain

reaction (PCR)-based methods that can quantify genomic viral RNA copies (each virus

particle contains two RNA strands), HIV-1 viral dynamics can be understood in a more

precise manner and the host-pathogen interaction in HIV-1 patients can be studied

quantitatively using modeling. Stochastic models [90, 153] are used to describe the early

events after infection; when the numbers of infected cells and virions are small, occasional

events such as viral blips [154] or the variability among individuals are of the primary

interest. Stochastic models have been used to investigate the effects of increasing variability

among viral strains, as a way of escaping immune response, in the progression to AIDS

[105, 106, 109, 112]; however, such an approach could be problematic [171]. Stochastic

models were also employed to capture the random fluctuations as well as the mean behavior

of immune systems to gain insight into treatment-outcome variability [154], or to

characterize the dynamics of early infection when virus is released from cells either

continuously or in a burst. Deterministic models have been considered by a large number of

studies ([117] and references therein) to examine the changes in mean cell numbers and viral

loads, or to describe the late stages of infection progression. These models typically account

for the effects of drug therapy besides CD4+ T cell and HIV virus kinetics, but there are

some models that explicitly take more types of immune cells, such as macrophages and

CD8+ cells, into consideration. More complex models considered time-dependent drug

efficacy [77, 176, 133] or modeled the time between viral entry and the production and

release of new virus particles [28, 83, 166, 179]. There exists numerous work on emergence

of HIV drug resistance during antiretroviral treatment [98, 131, 133, 142, 170] and on

treatment adherence [66, 133, 146, 175]. In particular, a class of hybrid differential

equations has been proposed to model drug behavior [144, 146, 147, 148] or scheduled

treatment interruptions [4, 40, 72].
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1.2 Selected HIV infection models

Ordinary differential equations (ODEs) have been widely applied in describing the dynamics

of immune system. By considering the dynamic changes and interactions among multiple

biological components (e.g., virus, CD4+ T cells), ODE models can capture essential

behavior of dynamic systems such as nonlinearity and delay. A substantial effort has been

devoted to mathematical modeling of HIV dynamics [117], for which Nowak and May [104]

provided an excellent and comprehensive review. We start with an overview of the general

dynamical features of HIV infection [82]. The model, which is widely adopted to describe

the plasma viral load changes in HIV infected individuals, has four state variables: T, the

concentration of uninfected target T cells; L, the concentration of latently infected T cells;

T*, the concentration of productive infected T cells; and V, the concentration of free virus

particles in the blood. The model structure is

(1.1)

where k is the infection rate, η the fraction of latency, ν the transition rate at which latently

infected cells become virus-production active, dL the death rate of latently infected cells, δ
the death rate of infected cells, N (burst size) the total number of virus particles released by a

productively infected cell over its lifespan, and c the clearance rate of viral particles. Note

that the case i=1 in (1.1) accounts for the loss of a free virus particle once it enters the target

cell, but this term can be neglected due to its small magnitude in comparison with the

clearance term −cV [117, 166]. Furthermore, the function f (T) denotes the growth rate of

uninfected target T cells and can take different forms:

(1.2)

where λ denotes the rate at which new CD4+ T cells are produced and d is the per capita

death rate of uninfected cells. In the case f = f1 [117, 121], the healthy T cells are assumed to

proliferate exponentially at a rate p until reaching the carrying capacity Tmax in the absence

of virus particles or infected T cells. Perelson et al. [121] considered the case f = f2 where

the proliferation of L and T* cells were considered although their proportions are very small.

Dropping the growth term leads to the case f = f3 [104].

Perelson et al. [121] investigated Model (1.1) with i = 0 and f = f1 or f2, and their results

suggest that if the number of infectious virions produced per actively infected T cell is less

than a critical value, Ncrit, the free-of-infection state is the only steady state in the

nonnegative orthant, and this state is stable. For N > Ncrit, the free-of-infection state

becomes unstable, but the endemic state can be either stable or unstable within a stable limit

cycle. Without considering dynamics of latently infected T cells (i.e., η = 0), De Leenheer
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and Smith [35] examined Model (1.1) with f = f1 or f3. Assuming f(T) is a smooth function

and there exists a positive steady state T̄ for variable T such that

(1.3)

That is, homeostasis in a healthy individual is maintained at a steady state T ̄. Note Model

(1.1) with f = f1 or f3 is a competitive system with respect to the cone defined by G ={(T, T*,

V) ∈ R3 : T, V ≥ 0, T* ≤ 0}, and thus solutions with initial states ordered according to the

order of G (i.e., their differences are a vector in G) remain ordered for the backward time

[143]. Using theories of the three-dimensional competitive dynamical systems, De Leenheer

and Smith [35] conducted a global analysis of viral dynamics. If the basic reproduction

number R0<1, virus will be cleared and the infection will be eradicated; if R0>1, virus

persists in the host, solutions approaching either a chronic steady state (f = f2) or a periodic

orbit (f = f1), and here R0 = kT̄(N − i)/c, with i = 0 or 1.

HIV dynamic models that consider intracellular delays are more accurate in terms of

representing the real biological processes and pharmacokinetics. To account for the time

between viral entry into a target T cell and the production of new virus particles, several

delay differential models have been proposed [62, 83, 96, 97, 100, 102, 166, 179]. Herz et

al. [62] initially assumed that CD4+ T cells became productively infected τ time units after

initial infection and formulated a discrete delayed model. When fitting the proposed model

to experiment data, they found that including a delay term will change the estimate of the

viral clearance rate (c), but not the loss rate (δ) of productively infected T cells. Mittler et al.

[96, 97] assumed that the intracellular delay follows a gamma distribution and proposed the

model with a continuous but random delay. Fitting the model to experimental data, Mittler et

al. obtained a different estimate for the viral clearance rate. When considering imperfect

drug efficacy, Nelson et al. [101] formulated a model with a discrete infection delay and a

constant target cell density, and found that the estimated values of the viral clearance rate

and the loss rate of productively infected T cells were affected by introducing a delay.

Nelson and Perelson [100] further investigated the effects of delays on the estimate of the

loss rate of productively infected T cells, which became larger than the values estimated

from a non-delay model. These facts suggest that intracellular delays may not be neglected.

A notable feature of delay differential equation models is that delays will generally

destabilize an otherwise stable equilibrium and cause sustained oscillations through Hopf

bifurcations. In recent studies of within-host viral models with intracellular delays and cell

divisions [28, 166], it is shown that sustained oscillation can occur for realistic parameter

values. However, Li and Shu [83] considered a viral dynamic model with intracellular

delays but without cell divisions, and they showed that sustained oscillations are not

possible for their model. Let τ1 be the time between viral entry into a target cell and the

production of new virus particles, and τ2 be a virus production period for new virions to be

produced within and released from the infected cells. Without considering the latent infected

CD4+ T cells, Zhu and Zou [179] considered the following delay differential equations
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(1.4)

where μ1 is a constant death rate for infected cells that are not producing viruses, and μ2 may

differ from μ1. Model (1.4) is actually a simplified version of the model proposed by Nelson

and Perelson [100]. For Model (1.4), Zhou and Zou [179] obtained a ‘global’ stability result

for the infection-free equilibrium if R0 = λNke−μ1τ1−μ2τ2/(dc) < 1; otherwise, infection can

establish and become locally asymptotically stable. Li and Shu [83] further studied the

effects of delay by analyzing Model (1.4) in the presence of only one delay (i.e. assuming τ2

= 0), and showed that the basic reproductive number completely determines the global

dynamics of Model (1.4). In particular, if R0 = λNke− μ1τ1/(dc) ≤1, the infection-free

equilibrium is globally asymptotically stable, and hence viruses will be cleared completely;

if R0>1, the unique chronic infection equilibrium is locally asymptotically stable and acts as

an attractor. Finally, it should be mentioned that experimental data of CD4+ T cells in vivo

may not well support the hypothesis of sustained oscillations [15, 164] although

mathematical models with intracellular delays have predicted so [28, 166]. This could be

due to data sparsity, and further experimental work could resolve this mystery.

Antigen-specific immunity against HIV infection includes cytotoxic T cells (CTLs) that can

kill the infected cells. Let Z(t) denote the concentration of CTLs, then Model (1.1) without

considering latently infected cells can be modified as

(1.5)

where p denotes the killing rate and b is the death rate of CTLs. The function g(T, T*, Z)

describes the rate of antigen-specific CTL response [32, 33, 104, 116]. Some investigators

[66, 163] assume that the production rate of CTLs depends only on the concentration of the

infected cells and chose the linear form g(T, T*, Z) = ρT*. Based on this simple model,

Arnaout et al. [6] explained the biphasic decay of blood viremia in HIV patients under

treatment: viral load decreases quickly while CTLs are abundant, but slowly as CTLs are

rare. Nowak and Bangham [110] assumed that the production of CTLs is also dependent on

the concentration of CTL themselves, yielding g(T, T*, Z) = ρT*Z, and explored the effects

of between-subject variation in immune responsiveness on virus load and viral strain

diversity. The model in [110] has also been analyzed by Liu [86] and Kajiwara and Sasaki

[71]. Culshaw et al. [29] further assumed that the production of CTLs is CD4+ T cell-

dependent and accordingly chose the form g(T, T*, Z) = ρTT*Z. Assuming that the viral load

is proportional to the level of infected cells since free virus is thought to be short lived in

comparison with infected cells [6, 118], Culshaw et al. [29] considered the following model
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(1.6)

where the ratio k′/k is the proportion of infected cells that survive the incubation period. It

was shown that Model (1.6) had up to three equilibria and the local stability of these

equilibria was analyzed by Culshaw et al. [29]. Also, Culshaw et al. investigated the optimal

control problem in which they maximized the benefit in terms of levels of healthy CD4+ T

cells and other immune cells and the systemic cost of chemotherapy. In particular, a self-

regulating CTL response, g(T, T*, Z) = ρ, has also been discussed in [104].

HIV viral species that can successfully evade the host immune response are called “escape

mutants”. It is challenging to investigate the dynamics of immune escape. However, there

are some studies [5, 34, 104, 111] that made an attempt to tackle this problem by describing

antigenic escape from CTLs using simple mathematical models. Specifically, Nowak and

Bangham [110] proposed the following model to understand the interplay between selection

forces in favor of and against viral mutation:

(1.7)

where  and Vi denote the abundance of infected cells and free virus of type i, respectively,

and Zi denotes the concentration of antigen-specific CTLs against mutant i(i =1, ···, n). Viral

mutants differ in their antigenic specificity, the rate at which they infect cells (ki), and the

rate of virus production (Ni). De Boer [34] extended Model (1.7) by including a density-

dependent infection term which may better describe the dynamics of acute infection of the

viral loads and the immune response. Althaus and De Boer [5] added stochastic events of

viral mutation and considered the saturated interaction between infected cells and CTLs

according to Michaelis-Menten kinetics. Their computational model of HIV/SIV infection

has a broad cellular immune response targeting different viral epitopes. Their simulation

shows that a higher degree of immunodominance will result in more frequent immune

escape, a reduced control of viral replication, and a substantially impaired replicative

capacity of the virus.

2. HIV viral dynamic models with antiretroviral intervention

From Zidovudine (AZT) to dual-drug therapy and then to highly active antiretroviral therapy

(HAART), the treatment of HIV/AIDS has been exercised for more than 20 years. HAART

uses at least three different antiretroviral drugs (ARVs), typically two nucleoside or

nucleotide reverse transcriptase inhibitors (NRTI’s) and one non-nucleoside reverse

transcriptase inhibitor (NNRTI) or a protease inhibitor (PI) or another NRTI called abacavir

(Ziagen). Reverse transcriptase inhibitors (RTIs) can effectively block the infection of target

cells by free virus, while PIs prevent HIV protease from cleaving the HIV polyprotein into
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functional units. Modeling of antiretroviral intervention can significantly advance our

understanding of a variety of biological and clinical questions.

2.1 Modelling constant and variant drug efficacy

Let ηRT be the efficacy of RTIs and ηPI be the efficacy of PIs, the two parameters were

assumed to be constant in [117, 100]. Based on Model (1.1), the HIV viral dynamic model

with HAART treatment is given as

(2.1)

where VI and VNI denote the concentration of infectious and noninfectious virus,

respectively, and V = VI +VNI is the total viral load. Model (2.1) is a simplified version of

the model in [117], which considered a more complex form of T cell reproduction. Note that

variable VNI does not show up in the first three equations of Model (2.1), and hence the

qualitative dynamics of this model is the same as that of model (1.1) with f = f3 and i = 0.

Based on this model, it is easy to show that the virus-free equilibrium (E0 = (λ/d, 0, 0)) is

locally asymptotically stable if R0 ≤ 1, while the endemic state

is globally asymptotically stable when R0 > 1, where

(2.2)

Furthermore, the basic reproduction number is related to the threshold of drug efficacy to

achieve virus eradication. For example, if we only consider RT inhibitors, then virus can be

eradicated if drug efficacy ηRT is greater than a critical value .

Note that the drug concentration in HIV patients is not a constant, but can vary over time,

especially during the medication intervals. In fact, once a dose is administered, drug

concentration increases rapidly and reaches a peak value, then decreases gradually. When

another dose is administered, drug concentration is likely to vary in a similar way [144]. We

assume that drugs are taken at time tk (not necessarily equally spaced) and the effect of the

drugs is instantaneous, leading to a system of impulsive differential equations which have a

solution that is continuous for t ≠ tk and undergoes a sudden jump at t = tk (see [8, 9] for

more details on the theory of impulsive differential equations). Let C(t) be the intracellular

concentration of the drug and we have
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(2.3)

where h(t) is the drug elimination rate and can be parameterized by either first order

elimination kinetics or the Michaelis-Menten elimination kinetics. Considering a fixed dose

and a constant time-interval T (that is, tk +1 − tk = T), then the solution C(t) to model (2.3) is

a periodic and piecewise continuous function of time t, which can also be explicitly

expressed [144, 154]. In most viral dynamic studies, either drug efficacy was assumed

constant over treatment time, as in Model (2.1) [117, 174], or antiviral regimens are

assumed to be perfect for blocking viral replication [63, 118]. However, in reality, the effect

of antiviral treatment will change over time, primarily due to pharmacokinetic variation,

fluctuating adherence, the emergence of drug resistant mutations and other factors.

Without considering drug adherence or drug resistance, a simple pharmacodynamic Emax

model for dose–effect relationship can be given as [49]

(2.4)

where Emax is the maximal effect that can be achieved, C(t) is the drug concentration, and

EC50 is the drug concentration that corresponds to the 50% of the maximal effect. Note that

many different forms of Emax have been developed in previous studies; for example, the

sigmoid Emax model, the ordinary Emax model, and the composite Emax model [49, 141]. It

follows from Models (2.3) and (2.4) that the drug efficacy may be a periodic and piecewise

continuous function of time and there are studies on HIV dynamic models with periodic

drug efficacy [64, 176, 178]. Let drug efficacies ηRT(t) and ηPI(t) be periodic and

continuous (or piecewise continuous) function of time. For system (2.1) with ϖ -periodic

drug efficacies ηRT(t) and ηPI(t), Yang and Xiao [176] investigated the treatment dynamics

by employing the persistent theory for the periodic system [7, 167]. They defined a

threshold parameter, similar to the basic reproduction number, which determines the

extinction or persistence of the disease. Their main results showed that the disease-free

equilibrium of system (2.1) is globally asymptotically stable if r(ΦM (·) (ϖ)) < 1, while the

disease is persistent if r(ΦM (·) (ϖ)) > 1, where r(ΦM (·) (ϖ)) is the spectral radius of ΦM (·)
(ϖ), and ΦM (·) (ϖ) is the fundamental solution matrix of the linear and ϖ -periodic

differential equation

(2.5)

Note that the threshold parameter cannot be expressed explicitly, but it can be calculated

numerically [167, 176].
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2.2 Emergence of drug resistance

Although HAART has proved to be extremely effective in suppressing the plasma viral load

in most HIV-1 infected patients down to the detection limit (e.g., 50 RNA copies ml−1) of

the standard assay to date [25], drug treatment often fails to achieve virus eradication

primarily due to the emergence of drug-resistant mutants [37].

It is widely acknowledged that two reasons can account for the development of HIV drug

resistance: the transmission of drug-resistant mutants to susceptible individuals, or the

adaptive mutations generated during treatment [16, 128]. Ribeiro and Bonhoeffer [129]

calculated the probabilities of both reasons and suggested that under a wide range of

conditions, treatment failure is most likely due to the pre-existence of drug-resistant virus

before therapy. Bonhoeffer and Nowak [21] showed that, given pre-existence of drug-

resistant virus, a more efficient therapy could lead to a greater initial reduction of virus load,

but would also cause a faster rise of drug-resistant mutants. A number of mathematical

models have been developed to study the effect of ARV drugs on the evolution of drug-

resistant HIV mutants. McLean and Nowak [98] examined the competition between drug-

resistant and wild-type strains to determine which type of virus will eventually dominate the

virus population during the course of AZT treatment. Nowak et al. [108] considered a two-

strain model and compared the modeling results with experiment data on the development of

drug resistance in patients treated with nevirapine. Kirschner and Webb [77] investigated

drug resistance for the case of single drug treatment and compared the treatment outcomes

for drug therapies initiated at different CD4+ T cell levels. The effect of an immune

response on the emergence of drug resistance was investigated in [142, 170]. Rong et al.

[133] proposed a mathematical model including both wild-type and drug resistant strains to

understand the mechanism of the emergence of drug resistance during therapy. Let Ts(t) be

the concentration of cells productively infected by drug sensitive virus, Tr(t) be the

concentration of cells productively infected by drug-resistant virus, and Vs(t) and Vr(t)

represent concentrations of drug sensitive and drug-resistant virus, then the model can be

given as

(2.6)

where ks and kr denote the rate constants at which uninfected cells T(t) are infected by drug

sensitive and drug-resistant virus, respectively; also, u(0 ≤ u < 1) is a rate at which cells

infected by the drug sensitive virus become drug-resistant due to viral RNA mutation. Both

types of infected cells are assumed to have the same death rate δ. Assume that the drug

sensitive and resistant strains have different burst sizes, Ns and Nr, while they can have the

same virion clearance rate c. Without antiretroviral intervention, the reproductive ratio for

each strain
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(2.7)

can be obtained. The infection-free steady state E0 = (λ/d, 0, 0, 0, 0) is locally

asymptotically stable if Rs < 1/(1−u) and Rr < 1, and it is unstable if Rs > 1/(1−u) or Rr > 1.

The steady state with only drug-resistant virus exists if and only if Rr > 1 and it is locally

asymptotically stable if Rr > (1−u)Rs, and is unstable if Rr < (1−u)Rs. The co-existence

steady state exists and is locally asymptotically stable if and only if Rs > 1/(1−u) and Rr <

(1−u)Rs.

After drug intervention, the reproductive ratios for drug sensitive and resistant strains

become

(2.8)

where  are the efficacies of RTIs and  are the efficacies of PIs for the drug

sensitive strain and drug-resistant strains, respectively. An overall treatment effect for each

strain can be defined as follows

(2.9)

Based on the stability results with ART, there are two threshold values ε1 and ε2 for εs such

that: (i) both the wild type and the drug-resistant strains coexist if drug efficacy εs is less

than ε1; (ii) only the drug-resistant virus will persist for ε1 < εs < ε2; and (iii) both strains

will be eradicated if εs > ε2. This indicates that drug resistance is more likely to arise for an

intermediate level of treatment effectiveness, at which the reproductive ratios of both strains

are close. Furthermore, a pharmacokinetic model including both blood and cell

compartments is employed to estimate the drug efficacies against the wild-type and the

drug-resistant strains. Simulation results suggest that the perfect adherence to the regimen

protocol will well suppress the viral load of the wild-type strain while drug-resistant variants

develop slowly. However, an intermediate level of adherence may result in the dominance of

the drug-resistant virus several months after the initiation of therapy. This result is similar to

that of [145].

Experimental measure of adherence remains problematic and challenging. There are lots of

evidence showing that suboptimal adherence is associated with a high risk of developing

HIV drug resistance [10, 44, 140, 161] and is one of the major causes of treatment failure

[63, 175, 113]. A number of mathematical models have considered the effects of imperfect

adherence to drug regimens [45, 64, 122, 146, 161, 172] and see Heffernan and Wahl [60]

for a comprehensive overview. A standard definition of adherence and reliable measures of

adherence are still lacking. Fortunately, there have been substantial progresses in the two

areas within the past few years. Wahl and Nowak [161] considered the outcome of a therapy

as a function of the degree of adherence to drug regimen and determined the conditions

under which a resistant strain would dominate. Phillips et al. [122] proposed a stochastic

model to study the resistance development for different drug use patterns.
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The effect of time-varying or constant drug concentrations on HIV dynamics has been

modeled by a large number of studies [117, 174]. However, only a handful of studies have

modeled the direct interaction between drug concentrations and the dynamics of a pathogen

population, examining the necessary conditions for the emergence of drug resistance [95,

144, 145, 147]. In such models, the immune cells infected by virus (e.g., CD4+ T cells) are

divided into multiple classes, depending on whether a cell has been infected or has absorbed

any of the drugs. An impulsive differential equation can be used to model the change in drug

concentration when a new dose is administered. Let R(t) denote the intracellular drug

concentration that satisfies model (2.2), T(t) be the population of susceptible (uninfected)

CD4+ T cells, Ts(Tr) denote the cells infected by the wild-type (mutant) infectious virus, TRs

denote the uninfected cells which have absorbed sufficient amount of drugs such that the

wild-type strain can be inhibited from replication, but not enough to prevent infection by the

mutant strain. These cells may come into contact with the wild-type/mutant strain or the

drug. TRr represents uninfected cells which have absorbed sufficient amount of drugs such

that both wild-type and mutant strains are inhibited. Such cells will not become infected

while they remain in this state. These cells will eventually revert back to TRs cells if the drug

effect wears off, or if such cells undergo apoptosis. The model in [145] is thus given as

(2.10)

where ks(kr) is the rate at which wild-type (drug-resistant) virus infects T cells, Ns(Nr) is the

number of virions produced per infected cell and ω is the fraction of infectious virions

produced by an infected T cell. Furthermore, mRs and mRr are drug clearance rates for

intracellular compartments with an intermediate or high drug concentration, respectively.

d(d1) is the death rate of uninfected (infected) CD4+ T cells. Smith and Wahl [145]

considered three treatment regimens corresponding to a low, intermediate or high drug level,

respectively

(2.11)

where kP is the rate at which the drug inhibits the wild-type T cells when drug

concentrations are intermediate (R1 < R < R2), kR and kQ are rates at which the drug inhibits

the wild-type and drug-resistant T cells, respectively, when drug concentration is high (R >

R2). By analyzing all possible equilibria (or periodic solution) and their stability for low,

intermediate or high drug level, Smith and Wahl [145] predicted that drug resistance might
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arise at both intermediate and high drug concentrations, whereas at low drug levels

resistance would not emerge. Smith [146] used a model similar to (2.10) to determine how

many doses can be missed before HIV treatment is adversely affected by the emergence of

drug resistance. In [146], the dynamics of drug, and hence adherence, is also modeled by the

impulsive differential equations. Here the perfect adherence is that the dosage Rk is not zero

at each medication time t = tk. Otherwise, for example, if Rk = 0, k = 2, 3, 4 indicates 3 doses

missed after the first dose. Miron and Smith [95] extended the work from a single drug

holiday during any given therapy [146] to the case of more than one drug holidays.

2.3 Short-term HIV dynamics and optimal controls

A large number of HIV dynamic models have been proposed by AIDS researchers [119,

174] to provide a theoretical guidance for development of new HIV treatment strategies. For

simplicity, some modeling work focused on short-term dynamics while other models with

constant or time-dependent drug efficacy are formulated to explore long-term viral dynamics

[66, 69, 80, 170, 175]. Specifically, these short-term models either fit only the early segment

of the viral load trajectory [72, 90, 128, 153], or design an optimal drug therapy regime in a

short time interval [18, 29, 47, 70, 76, 133, 169].

The control-theory approach has been employed to design an optimal treatment strategy.

Such investigations employed various types of mathematical models and different objective

functions. For example, the studies in [18, 47, 76, 133] for optimal control of HIV

chemotherapy used an objective function based on simultaneously maximizing the CD4+ T

cell counts and minimizing the systemic cost of chemotherapy. Generally, drugs efficacies

ηRT and ηPI in Model (2.1) are replaced by the control variables u1 and u2 (0 ≤ ui ≤ 1, i = 1,

2) which accounts for reverse transcriptase and protease inhibitors actions, respectively. The

task then boils down to the determination of optimal control functions u1(t) and u2(t). For

example, the objective function can be defined as

(3.1)

which is maximized subject to model (2.1). The nonnegative constants B1 and B2 represent

the desired ‘weights’ of the benefit and the cost, respectively. By applying Pontryagin’s

Maximum Principle to the constrained control problem, the optimal controls can be

obtained. Joshi [70] considered controls representing immune boosting and viral suppressing

drugs. Wein et al. [169] proposed a deterministic control problem which is based on a finite

number of virus strains and allows virus mutations. Using numerical simulations, they

demonstrated a dynamic strategy that can reduce the total free virions, increase the

uninfected CD4+ counts, and postpone the emergence of drug-resistant strains. It should be

mentioned that the optimal treatment strategies resulted from these studies are for a finite

time window so the conclusions may not be applicable to a long-term treatment problem.

Recently, a handful of stochastic models were formulated to characterize the dynamics of

early infection when virus is released from cells [55, 72, 129, 157]. For example, Tuckwell

and Le Corefec [27, 156] applied the multi-dimensional diffusion process to model early

HIV-1 population dynamics. Tan and Wu [152] developed a 4-dimensional stochastic
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infection model for HIV and studied the system using Monte Carlo simulations. They noted

that there was a positive probability that the virus could be eliminated by the process. Monte

Carlo approaches were also used by Kamina et al. [72] and Heffernan and Wahl [61] to

study the probability that an infection would not be established after exposure to a pre-

specified amount of pathogens. Tuckwell et al. [157] investigated the probability of a viral

particle infecting one or more target cells before being cleared. A stochastic model of early

infection was developed by Haeno and Iwasa [55] to study the generation of drug-resistant

virus based on the assumption of exponential growth of virus. Ribeiro and Bonhoeffer [129]

also developed a stochastic simulation model of early infection to determine the best timing

to initiate antiretroviral therapy with considering the random generation of drug-resistant

mutants. Pearson et al. [114] modeled early infection using a discrete random process, in

which both the numbers of virions and infected cells are tracked for a gradual or a burst

release of virus. They showed that different viral release patterns lead to different early

dynamics (e.g., different probabilities of extinction, different distributions of time to

establish infection).

3. HIV viral dynamic models with long-term treatment and different

treatment strategies

Most HIV dynamic studies for short-term viral dynamics are under assumptions of ideal

patient behavior, treatment potency, and drug susceptibility. Although these studies

characterized HIV replication during a short period of antiretroviral (ARV) treatment, the

effectiveness of ARV therapies and variations of HIV-1 dynamics during chronic treatment

of HIV-1 infection in a more realistic setting have not been carefully studied quantitatively.

In particular, there are evidences showing that the viral load trajectory may change its shape

in the later stage due to variations in drug resistance, noncompliance or other clinical factors

[66]. Hence, it is necessary to develop models to account for, e.g., drug susceptibility and

drug adherence to quantify long-term dynamics under ARV therapies.

Note that for HIV subspecies within a host, the genetic diversity is usually notable,

corresponding to a great diversity in response to various ARV agents. In clinical practice,

genotypic or phenotypic tests can be used to measure the sensitivity of HIV-1 to ARV

before a treatment regimen is selected. Molla et al. [98] suggested that the phenotype

marker, median inhibitory concentration IC50, can be used to quantify agent-specific drug

susceptibility. Wu et al. [64, 66] used the following drug resistance model to approximate

the within-host changes over time of IC50

(3.2)

where I0 and Ir are respectively the values of IC50 (t) at the baseline and time point tr, at

which resistant mutations dominate. Huang and Wu [64] investigated the relationship

between actual failure time (the time at which the viral growth rate changes from negative to

positive) and detectable failure time (the time at which viral load rebounds to above the limit

of detection), and obtained an approximately linear relationship which could be used to
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estimate the actual rebound failure time from the detectable rebound failure time. They

examined how different patterns of adherence affect antiviral response. Their results suggest

that longer sequences of missed doses increase the chance of treatment failure and accelerate

the failure.

Patients may occasionally miss doses or multiple consecutive doses for various reasons such

as misunderstanding prescription instructions, serious side-effects and others. The deviation

from prescribed dosing affects drug exposure in a predictable way. Wu et al. [64, 66, 175]

used the following model to describe adherence

(3.3)

where 0 ≤ Rd <1 (d = 1, 2) with Rd denoting the adherence rate for drug d during the

interval, and Tk denotes the adherence evaluation time at the k-th clinical visit. Wu et al.

[172] developed a novel HIV-1 dynamic model with consideration of pharmacokinetics,

drug adherence and drug susceptibility to link plasma drug concentration to the long-term

changes in HIV-1 RNA observation after initiation of therapy. Their results show that any

single factor of pharmacokinetic (PK) adherence measured by pill counts and drug

susceptibility does not seem to contribute to long-term virologic response, but their

combinations in viral dynamic modeling can predict virologic response.

The inherent risks and problems associated with HAART such as adverse effects, imperfect

adherence and drug resistance have led to development of strategies of scheduled treatment

interruptions (STIs); in particular, CD4+ T cell count-guided STIs might provide a good

strategy to address these problems [4, 40, 72]. Several clinical studies have been done to

compare STI strategies with continuous antiretroviral therapy, but unfavorable results have

been reported [4, 40, 72]. Thus, more careful studies with appropriate quantitative

approaches are needed to resolve the problem.

HIV dynamic models and control theory have been used together to study both non-adaptive

and adaptive STI strategies [2, 54, 134]. Adams et al. [2] considered a complicated HIV

dynamic model and used control theory to design non-adaptive STI strategies that involve

several short-term interruptions after infection. They showed that such strategies could lead

to a long-term control of virus in some patients. Hadjiandreou et al. [54] formulated a non-

adaptive STI therapy as a dynamic programming problem and showed that STIs could

control disease progression. Tang et al. [148] proposed models to use CD4+ T cell counts as

a guide to start or halt the therapy. The proposed models extended the classical HIV

dynamic models [104, 117] to the piecewise dynamic model and were sued to explore

potential explanations why the controversial results were obtained from different clinical

studies [148]. The recent clinical studies [40, 72] initiated the ARV therapy once the CD4+

T cell counts dropped below a lower threshold (denoted by CTH, say 200 or 350 cells/ml)

and suspended the treatment once the CD4+ T cell counts increased above an upper

threshold (denoted by CTH, say 600 cells/ml or more), where [CTH, CTH] is called the

threshold window of treatment decision. In the absence of considering dynamics of
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noninfectious virus or latently infected individuals, we can extend Model (2.1) to include a

threshold window as follows

Drug-off state

(3.4)

Drug-on state

(3.5)

For the drug-off and drug-on states, there are steady states  and

 if the reproduction number for each subsystem is greater than one.

And obviously we have . Note that according to Models (3.4) and

(3.5), for a new patient, if T(t0) + T* (t0)>CTH, then this patient could be in the drug-off

state; if T (t0) + T* (t0)<CTH, he/she could be in the drug-on state; and if CTH < T(t0) + T*

(t0)<CTH, he/she may be either in the drug-off state or in the drug-on state, depending on

whether the trend of CD4+ T cell counts is increasing or decreasing. Furthermore, if

, the system reverts to the drug-off state before it can reach the equilibrium

Eon; while if , the system must switch to the drug-on state before it can

reach the steady state Eoff. The two observations together suggest that the system will

persistently alternate between drug-off state and drug-on state if

. Generally we assume that  and

. According to the relationships among , the lower

threshold CTH and the upper threshold CTH, we have four possible cases:

For Case 1 we can easily see that both equilibria Eon and Eoff are local stable in the given

range and are also virtual (see definitions in [12, 46]). It is clear that these stable but virtual

equilibria can never be actually reached, which indicates that the system may switch

between the drug-off state (3.4) and the drug-on state (3.5) forever. It follows that for the

given threshold window, the CD4+ T cell counts fluctuate periodically during the whole

treatment period. The variations of healthy and infected CD4+ T cells are also given,

respectively, in Fig. 1 (B). Fig. 1(C) shows that the durations of each drug-on/off are
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stabilized at fixed values and the duration of drug-on is much longer than that of drug-off.

Numerical simulations show that the effects of the width of threshold window on the

durations of drug-on and drug-off states are complex. The duration of the drug-on state is

more sensitive to the variation of thresholds compared with that of the drug-off state [148].

For Case 2, the drug-on equilibrium Eon becomes a regular steady state, which is globally

stable for the drug-on system (3.5) only. Fig. 2(A, B) shows that one trajectory (pink curve)

initiating from an initial point approaches the regular equilibrium Eon for CTH = 1400 ul−1,

whereas another trajectory (blue curve) starting from the same point oscillates periodically if

CTH = 1300 ul−1. Case 4 is similar to Case 2 except that the real drug-off equilibrium Eoff is

globally stable for the drug-off system (3.4). The CD4+ T cell counts either approach a

certain value (green curve), corresponding to free of therapy, or oscillate persistently (blue

curve), corresponding to a drug-on/off treatment, as shown in Fig. 2 (E, F). For Case 3, we

have that both equilibria Eon and Eoff are regular and globally stable for their own systems.

Fig.2 (C, D) shows that the CD4+ T cell counts will approach certain levels represented by

the equilibrium Eon or Eoff, corresponding to a continuous treatment strategy (pink curve) or

free of therapy (green curve), under certain thresholds. It is interesting to note that, similar to

Case 1, oscillation of the CD4+ T cell counts can also be observed, suggesting an STI

strategy with a threshold window is required (blue curve). This indicates that the STI

strategy with different thresholds may result in different treatment regimes such as drug-on/

off, continuous therapy, and free of ARV treatment.

In summary, the results showed that the CD4+ T cell counts can either fluctuate around the

two thresholds or stabilize at an equilibrium for drug-on or drug-off state. This implies that,

for a fixed threshold window, whether a patient needs a continuous therapy or STI strategy

depends on the initial CD4+ T cell counts of the patient at the treatment starting time.

Further numerical studies show that the STI strategy is needed for a patient with a relatively

high or low initial CD4 T cell counts, while the continuous therapy is required to maintain

CD4+ T cell count above a safe level (Fig. 2 (C–D)) if the initial CD4+ T cell count of a

patient is in the middle (data not shown here). This further confirms that it is important to

personalize the treatment strategy for different patients at different stages of their disease

progression with different initial CD4+ T cell counts.

4. Inverse problems for differential equation models

Solving inverse problems is more challenging and usually of great importance to

mathematical modeling, especially when the majority of key model parameters are

unknown. Although some parameter values found in literature can be plugged into models,

biases are usually introduced into the estimates of the rest parameters, which will

consequently affect the validity and generality of biological conclusions inferred. It is

therefore desirable to rigorously determine all unknown parameter values from available

data and given model structures in practice. In this section, we briefly review the main

techniques for solving the inverse problems of differential equation models for HIV

dynamics, including nonlinear least squares (NLS), time-varying parameter estimation, and

the estimation methods for mixed-effect ODE models. More advanced nonparametric

smoothing-based methods are also discussed.
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4.1 Nonlinear least squares approach

Notice that the ODE identifiability, in particular nonlinear ODE identifiability problem

should be carefully addressed before the ODE parameter estimation is carried out. The

nonlinear ODE identifiability studies, in particular for HIV viral dynamics models, are

recently reviewed by Miao et al. [94], and thus are omitted here. The solutions to even linear

ODEs are usually nonlinear such that the nonlinear least squares (NLS) method has been

widely used in practice by researchers in various fields. In this section, we review the basic

principle of NLS and the associated practical issues.

For a nonlinear ODE system, the measurement model can be written as follows

where xi ∈ Rm a vector of state variables, θ* ∈ Rq the true parameter vector, yij the observed

variable, n the number of observation points, and Ji the number of replicates at xi. For

convenience, we introduce the notations y = (y11, y12,…, y1,J1,…, yn1, yn2,…, yn,Jn)T and ε =

(ε11, ε12,…, ε1,J1,…, εn1, εn2,…, εn,Jn)T, and let Σ denote the covariance matrix; then the

unbiased estimator θ̂ of the true parameter vector θ* is given by

where S(θ)is also called the weighted residual sum of squares (WRSS). When Σ is unknown

and has to be estimated, the computing details can be found in Seber and Wild [139]. For

simplicity, let Σ = σ2V and assume ε ~ MVN(0,σ2V), where MVN stands for multivariate

normal distribution. The distribution of θ̂ is thus

where  is also called the Fisher information matrix. The unbiased

variance estimator of σ2 is given by

where  is the total number of observations.

Although the NLS is conceptually simple, the associated computing issues need to be

carefully addressed. Specifically, the NLS regression problem boils down to the
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determination of the global minima of S(θ), which becomes very challenging for a high-

dimensional parameter space or for noisy data. Therefore, the choice of the appropriate

optimization algorithms becomes critical to obtaining reliable estimates. Four categories of

optimization algorithms have been widely used in practice, including direct search methods,

gradient-based methods, global optimization methods, and hybrid (or memetic) algorithms.

Briefly speaking, the direct search methods (e.g., the Simplex method [30]) search for local

minima and are usually sensitive to the starting point and computationally expensive. The

gradient-based methods, such as the Levenberg-Marquardt method and the Gauss-Newton

method, can efficiently search for local minima based on the Jacobian and/or Hessian matrix

of the objective function [103]. The sequential quadratic programming (SQP) algorithms are

among the highly recommend algorithms in the gradient-based category. High-quality

implementations of SQP can be found in the fmincon routine in MATLABTM (The

MathWorks Inc.), SOLNP by Ye [177], or SNOPT by Gill etc. [50]. Although the gradient-

based algorithms have been previously used for parameter estimation of ODE models [41],

these methods can be easily trapped by local minima or just fail to converge for nonlinear

ODE models. To overcome such problems, global optimization algorithms have been

considered for ODE models (e.g., differential evolution [149], particle swarm [74], and

scatter search [51]). Although the global optimization algorithms are capable of searching

the global minima/maxima for spiny nonlinear objective functions, the associated computing

costs are usually prohibitive for such methods to converge. It is thus natural to combine the

global methods with gradient-based methods to achieve a better balance between estimation

accuracy and computing efficiency, which results in the so-called hybrid or memetic

algorithms. Rodriguez-Fernandez et al. [130] combined the scatter search algorithm with the

SQP method and applied their algorithm to an example of HIV models for parameter

estimation. However, the DESQP algorithm proposed in [84] may have a better performance

in comparison with the approach in [130] primarily due to the superiority of the differential

evolution algorithm over the scatter search method.

4.2 Parameter estimation for semi-mechanistic models

One common concern about mathematical modeling is that any given model structure can

only take a limited number of biological factors into consideration such that the conclusions

may become model structure specific. Furthermore, many biological mechanisms may

remain unknown or undistinguishable such that the development of mechanistic models

becomes infeasible. To address the problems above, semi-mechanistic modeling has been

introduced and employed for a variety of biomedical problems [1, 18, 41, 44, 53, 73, 75,

148]. In particular, the work of Liang et al. [84] considered a more general framework for

semi-mechanistic modeling and used the long-term HIV dynamics as an example. More

specifically, the following model with both constant and time-varying unknown parameters

was considered

(4.1)
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where the biological meaning of state variables and model parameters are the same as those

in Model (3.4) except that a time-varying parameter η(t) is introduced to describe the

infection rate which may vary due to the change in antiviral drug efficacy (e.g., the

development of drug resistance). To estimate both the constant and time-varying parameters

in this model, the semi-parametric model was turned into a parametric model by

approximating the unknown time-varying parameter η(t) using, e.g., splines. For example,

Li et al. [82] used natural cubic splines to approximate the unknown time-varying

parameters in a pharmacokinetic model. However, different types of splines can be used for

approximation, such as the well-known piecewise polynomial splines and basis splines. Here

we use the B-splines to illustrate the idea so Model (4.1) becomes

(4.2)

where  is approximated by a linear combination of the kth-order basis

spline function bi,k (t). Since bi,k (t) are uniquely determined once k is given and knots are

specified, the unknown model parameters are now (λ, ρ, N,δ, c, a1, a2,…, as)T, which are all

constant. In this way, the semi-parametric model becomes a parametric model so the NLS

method introduced in the above subsection can be applied for parameter estimation.

Two practical issues need to be addressed for this approach. First, the spline order k is

usually between 2 and 5. B-splines of order 2 are actually piecewise straight lines. Also,

higher order B-splines (e.g., k> 5) can introduce unnecessary dramatic local oscillation

called Runge’s phenomenon [135]. Second, the positions of knots can usually be selected by

quantile such that the number of data points is nearly equal between any two consecutive

knots. However, the knots’ position may have to be manually adjusted for some problems to

achieve certain temporal patterns, and unfortunately there are no systematic and rigorous

methods so far for automatic determination of optimal knots’ positions. That is the reason

Liang et al. [84] did not select knots’ positions but spline orders using Akaike Information

Criterion (AIC) [3], Bayesian Information Criterion (BIC) [138] and corrected Akaike

Information Criterion (AICc) [19].

4.3 Parameter estimation for mixed-effects ODE models

Longitudinal dynamic systems were first introduced in Han, Chaloner and Perelson [54];

however, this work was formulated in the regular nonlinear mixed-effects model framework

instead of general mixed-effects ODE models. Li et al. [82] and Huang, Liu and Wu [65]

formally addressed this issue. Specifically, it was suggested in Huang et al. [65] that a

general longitudinal dynamic system can be given as follows:
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where the subscript i denotes the ith subject, xi(t) ∈ Rm is a vector of state variables, yi(tij) ∈
Rn the measured output variable vector, ui(t) ∈ Rp the known system input vector, θi ∈ Rq

the parameter vector, and x0i the initial condition vector. In the two equations above, the

structure of the dynamic system is the same for all subjects but the values of parameters and

initial conditions could be different for different subjects. The between-subject variation of

parameters and initial conditions can be generally specified as

where  is the subject-specific parameter vector, μ the population parameter

vector, and bi are random effects. For simplicity, it is usually assumed bi ~ MVN(0, D), βi =

μ + bi, and εi (tij)|bi ~ MVN(0, Ri). In nature, the formulation above is still a nonlinear

mixed-effects (NLME) model [31]. Guedj, Thiébaut and Commenges [52] proposed a

maximum likelihood estimator (MLE) and investigated the associated statistical inference

for ODE NLME models. As argued in [52], the advantages of the MLE approach over the

Bayesian approach include a much lower computing cost, requiring no prior distributions,

and a well-established framework of inference theories. Although the original work of Guedj

et al. [52] accounted for the left-censored data, it is not the focus here and thus we only give

the complete data log-likelihood function here

The key step to obtain the maximum likelihood estimates in Guedj et al. [52] is to compute

the first order derivatives of the log-likelihood in two stages. At the first stage, the score of

the full log-likelihood was calculated for given random effects; at the second stage, the score

of the observed log-likelihood was calculated by integrating out the random effects as

suggested in [87, 24]. In addition, a Newton-Raphson type of iterative method was proposed

to reduce the computing burden associated with the calculation of the Hessian matrix. Their

simulation studies suggested that the rate of successful convergence by the proposed method

is greater than 90% for a specific ODE model. However, there also exist a number of

alternative methods for fitting NLME models, among which the stochastic approximation

EM algorithm (SAEM) [38] looks a promising solution to general NLME problems due to

its accuracy and efficiency. The SAEM algorithm has also been extended and successfully

applied in a number of studies [78, 79, 137, 91, 92, 93].

Finally, it should be mentioned that the estimation problem of mixed-effects ODE models

has also been addressed using the Bayesian framework [54, 162] and the two-stage

smoothing-based approach [43]. But limited by space, the technical details are not described

here.
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4.4 Nonparametric smoothing-based approach

Varah [158] proposed an alternative parameter estimation technique, based on the earlier

work of Swartz and Bremermann [150] and Benson [11], that does not require repeated

numerical solutions of ODEs. This method fits the discrete measurements of the measured

dynamic variables, say y, empirically using a nonparametric smoothing method such as

splines, which are then differentiated with respect to time to obtain the estimated time-

derivative curves, dy/dt. This time-derivative information is then substituted into the ODEs,

converting the parameter estimation problem from a dynamic optimization problem into a

much simpler linear/nonlinear regression problem that can be solved using either the linear

or nonlinear least-squares method. For this smoothing-based method, parameter values are

selected to minimize squared residuals in the differential form of the model, (dy/dt–dŷ/dt)2

rather than the traditional integrated form of the model, (y − ŷ)2. Swartz and Bremermann

[150] and Varah [158] claimed that the main benefits of such a smoothing-based technique

include less computational time than other parameter estimation techniques for dynamic

models, and no need for determining the initial conditions for the output variables. The

drawback is that the estimate of the derivative curve is usually poor, which may result in

poor estimates of interested parameters.

Ramsay [125] proposed another smoothing-based approach called the principal differential

analysis (PDA) wherein coefficients (possibly time-varying) in linear ODEs are fitted

empirically from the data. PDA has been used to fit linear differential equation models in a

variety of applications [126]. However, for the smoothing-based methods, there is always a

trade-off between the function being over-smoothed and being under-smoothed. In the

spline-based ODE parameter estimation approach, Varah [158] attempted to tackle this

trade-off problem by interactively adjusting the number and position of knots by hand until

satisfactory smoothing was obtained. Alternatively, the extent of smoothing can be

controlled by adding a penalty on higher-order derivatives of the splines [125]. Usually the

second-order derivative (curvature) is used, which is similar to the idea of smoothing

splines. Heckman and Ramsay [59] also considered the L-spline, i.e., replacing the second-

order derivative penalty with the ODE model-based penalty. Recently, Poyton et al. [123]

and Varziri et al. [159] proposed an iterative PDA (iPDA) approach for simultaneously

minimizing the PDA objective function with the ODE model-based penalty. Ramsay et al.

[126] proposed a new algorithm to minimize the penalized spline objective function to fit

ODE models.

Liang and Wu [85] adopted a different perspective (the measurement error in regression

model) to tackle the smoothing-based estimation problem, called two-stage pseudo least

squares (PLS). For simplicity, assume that the X(t) is a univariate state variable which is

directly observable, i.e.,
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In this case, the first step is to estimate x(t) and its derivative ẋ(t), say x̂(t) and , using a

smoothing method such as the local polynomial approach, and then at the second step a

regression model can be fitted

where  can be regarded as an error term due to replacement of ẋ(t) by its

estimate. Now the least squares approach can be applied, that is, to minimize,

with respect to the unknown parameter vector θ. Liang and Wu [85] have also established

the consistency and asymptotic normality of the PLS estimator under some regularity

assumptions. In constructing consistency, we utilized the asymptotic properties of both the

local linear estimator and the nonlinear least squares estimator. We have also shown that the

proposed PLS estimator is still asymptotically normal. Chen and Wu [22, 23] also extended

the above two-step PLS approach to estimate the time-varying parameters in the ODE

models.

5. Summary and discussion

In this article, we reviewed differential equation modeling methods for HIV viral dynamics,

especially those for understanding antiretroviral drug responses to HIV infection. Starting

from the classic HIV infection models, we illustrated how such models were extended to

account for drug efficacy. We then reviewed the studies on short-term and long-term

treatment modeling. The combination of mathematical models with control theories has

resulted in many interesting findings and predictions, which is also briefly reviewed. In

particular, the STI treatment strategies were shown to be mathematically complex but

effective; however, clinical evidences are still needed to support the development of

treatment strategies along this line of ideas.

The usability of the models in this article is worth of further discussion. In general, model

usability depends on the model assumptions, the goal of modeling and sometimes the data

availability. More specifically, it is usually not possible to include every relevant biological

detail in one model, so models are basically simplified mathematical representation of the

real world. Besides the essential components, if some other biological processes are not

explicitly included in a model, this model can be deemed as unusable for understanding such

specific processes. For example, some HIV viral dynamic models (e.g., Models (1.4)~(1.7))

do not explicitly consider the latently infected T cells, so they cannot be used to investigate

the effects of latent infection; however, these models can still be used to understand other

aspects of HIV viral dynamics as in [118]. Also, a model can be constructed for different

purposes such as simulation or parameter estimation. For simulation, more complex models
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can be used if the kinetics parameter values are known from literatures or experiments.

However, if a model is used for estimation purpose, one has to consider whether sufficient

data are available such that simpler models may be favorable. Furthermore, when multiple

models are developed for the same biological problem, we can assess and compare them by

considering the biological validity, the balance between complexity and parsimony, and the

capability of data interpretation. In practice, one can use model evaluation scores such as

AIC, BIC and AICc for model evaluation and comparison.

Parameter estimation techniques are of extreme importance in many settings to understand

and control HIV infection (e.g., determination of key kinetic/epidemic parameters), we

therefore also reviewed the classical and newly developed estimation approaches in this

article. Although numerous approaches for parameter estimation of ODE models have been

proposed within the last few decades, existing methods need to be further improved to

achieve a better balance between accuracy and computing efficiency (e.g., least squares vs.

smoothing-based methods). The introduction of semi-mechanistic modeling and the

development of mixed-effects ODE models allow investigators to use more flexible

structures to deal with more complex data.

In short, modeling of antiretroviral drug responses of HIV infected patients is far from being

mature in the sense of designing novel and realistic regimes and generating accurate

predictions of treatment outcomes. This review summarized a number of selected models to

provide a basis for further discussions and communications.

Acknowledgments

This research was supported by the USA NIAID/NIH grants P30AI078498, AI087135 and its supplement, the
NSFC-NIH (81161120403), the National Mega-project of Science Research No. 2012ZX10001-001 (China), and
the National Natural Science Foundation of China (NSFC 11171268).

References

1. Aarons L. Physiologically based pharmacokinetic modelling: a sound mechanistic basis is needed.
Br J Clin Pharmacol British. 2005; 60:581–583.

2. Adams BM, Banks HT, Kwon HD, Tran HT. Dynamic multidrug therapies for HIV: optimal and
STI control approaches. Math Biosci Eng. 2004; 1:223–241. [PubMed: 20369969]

3. Akaike, H. In: Petrov, B.; Csáki, F., editors. Information theory and an extension of the maximum
likelihood principle; Second International Symposium on Information Theory; Budapest:
Akadémiai Kiadó; 1973. p. 267-281.

4. Ananworanich J, Gayet-Agernon A, Le Braz M, et al. CD4-guided scheduled treatment interruption
compared to continuous therapy: results of the Staccato Trial. Lancet. 2006; 368:459–465.
[PubMed: 16890832]

5. Althaus CL, de Boer RJ. Dynamics of Immune Escape during HIV/SIV Infection. PLoS Comput
Biol. 2008; 4(7):e1000103.10.1371/journal.pcbi.1000103 [PubMed: 18636096]

6. Arnaout R, Nowak M, Wodarz D. HIV-1 dynamics revisited: Biphasic decay by cytotoxic T
lymphocyte killing. Proc Roy Soc Lond B. 2000; 265:1347–1354.

7. Bacaer N. Approximation of the basic reproduction number R0 for vector borne diseases with a
periodic vector population. Bull Math Biol. 2007; 69:1067–1091. [PubMed: 17265121]

8. Bainov, DD.; Simeonov, PS. Impulsive Differential Equations: Asymptotic Properties of the
Solutions. World Scientific; Singapore: 1995.

Xiao et al. Page 23

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



9. Bainov, DD.; Simeonov, PS. Impulsive Differential Equations: Periodic Solutions and Applications.
Longman Scientific and Technical; Burnt Mill: 1993.

10. Bangsberg DR, Perry S, Charlebois ED, Clark RA, Roberston M, Zolopa AR, Moss A. Non-
adherence to highly active antiretroviral therapy predicts progression to AIDS. AIDS. 2001;
15:1181–1183. [PubMed: 11416722]

11. Benson M. Parameter fitting in dynamic model. Ecol Mod. 1979; 6:97–115.

12. Bernardo MD, Budd CJ, Champneys AR, et al. Bifurcations in nonsmooth dynamical systems.
SIAM Rev. 2008; 50:629–701.

13. Besch CL. Compliance in clinical trials. AIDS. 1995; 9:1–10. [PubMed: 7893432]

14. Braake HAB, Van Can HJL, Verbruggen HB. Semi-mechanistic modeling of chemical processes
with neural networks. Eng Appl Artif Intel. 1998; 11:507–515.

15. Breban R, Blower S. Role of parametric resonance in virological failure during HIV treatment
interruption therapy. Lancet. 2006; 367:1285–1289. [PubMed: 16631884]

16. Blower SM, Aschenbach AN, Gershengorn HB, Kahn JO. Predicting the unpredictable:
transmission of drug-resistant HIV. Nat Med. 2001; 7:1016–1020. [PubMed: 11533704]

17. Bonhoeffer S, Nowak MA. Pre-existence and emergence of drug resistance in HIV-1 infection.
Proc Roy Soc Lond B. 1997; 264:631–637.

18. Bueno L, de Alwis DP, Pitou C, Yingling J, Lahn M, Glatt S, Trocóniz IF. Semi-mechanistic
modelling of the tumour growth inhibitory effects of LY2157299, a new type I receptor TGF-
[beta] kinase antagonist, in mice. Eur J Cancer. 2008; 44:142–150. [PubMed: 18039567]

19. Burnham KP, Anderson DR. Multimodel inference: Understanding AIC and BIC in model
selection. Sociol Methods Res. 2004; 33:261–304.

20. Butler, S.; Kirschner, D.; Lenhart, S. Optimal control of the chemotherapy affecting the infectivity
of HIV. In: Arino, O.; Axelrod, D.; Kimmel, M., editors. Advances in Mathematical Population
Dynamics-Molecules, Cells and Man. Word Scientific Press; Singapore: 1997. p. 557-569.

21. Castro KG, Ward JW, Slutsker L, Buehler JW, Jaffe HW, Berkelman RL. Revised classification
system for HIV infection and expanded surveillance case definition for AIDS among adolescents
and adults. MMWR Recomm Rep. 1993; 41:1–19.

22. Chen J, Wu H. Efficient Local Estimation for Time-Varying Coefficients in Deterministic
Dynamic Models with Applications for HIV-1 Dynamics. J American Statistical Assoc. 2008;
103:369–384.

23. Chen J, Wu H. Estimation of Time-Varying Parameters in Deterministic Dynamic Models.
Statistica Sinica. 2008; 18:987–1006.

24. Commenges D, Rondeau V. Relationship between derivatives of the observed and full
loglikelihoods and application to Newton-Raphson algorithm. Int J Biostat. 2006; 2:1–26.

25. Collier AC, Coombs RW, Schoenfeld DA, Bassett RL, Timpone J, Baruch A, Jones M, Facey K,
Whitacre C, McAuliffe VJ, Friedman HM, Merigan TC, Reichman RC, Hooper C, Corey L.
Treatment of human immunodeficiency virus infection with saquinavir, zidovudine, and
zalcitabine. New Engl J Med. 1996; 334:1011–1017. [PubMed: 8598838]

26. Conway JM, Coombs D. A stochastic model of latently infected cell reactivation and viral blip
generation in treated HIV patients. PLoS Comput Biol. 2011; 7(4):e1002033.10.1371/journal.pcbi.
1002033 [PubMed: 21552334]

27. Le Corfec E, Tuckwell HC. Variability in early HIV-1 population dynamics. AIDS. 1998; 12:960–
962. [PubMed: 9631156]

28. Culshaw RV, Ruan S. A delay-differential equation model of HIV infection of CD4+T-cells. Math
Biosci. 2000; 165:27–39. [PubMed: 10804258]

29. Culshaw RV, Ruan S, Spiteri RJ. Optimal HIV treatment by maximising immune response. J Math
Biol. 2004; 48:545–562. [PubMed: 15133623]

30. Dantzig, GB.; Thapa, MN. Linear programming 1: Introduction. Springer-Verlag; 1997.

31. Davidian, M.; Giltinan, DM. Nonlinear Models for Repeated Measurement Data. Chapman and
Hall; London: 1995.

32. De Boer RJ, Perelson AS. Towards a general function describing T cell proliferation. J Theor Biol.
1995; 175:567–576. [PubMed: 7475092]

Xiao et al. Page 24

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



33. De Boer RJ, Perelson AS. Target cell limited and immune control models of HIV infection: a
comparison. J Theor Biol. 1998; 190:201–214. [PubMed: 9514649]

34. De Boer R. Understanding the failure of CD8+ T-cell vaccination against simian/human
immunodeficiency virus. J Virol. 2007; 81:2838–2848. [PubMed: 17202215]

35. de Leenheer P, Smith HL. Virus dynamics: a global analysis. SIAM J Appl Math. 2003; 63:1313–
1327.

36. Deeks SG, et al. Variance of plasma human immunodeficiency virus type 1 RNA levels measured
by branched DNA within and between days. J Infect Dis. 1997; 176:514–517. [PubMed: 9237721]

37. Deeks SG. Treatment of antiretroviral-drug-resistant HIV-1 infection. Lancet. 2003; 362:2002–
2011. [PubMed: 14683662]

38. Delyon B, Lavielle M, Moulines E. Convergence of a Stochastic Approximation Version of the
EM Algorithm. Ann Stat. 1999; 27:94–128.

39. Ding AA, Wu H. A comparison study of models and fitting procedures for biphasic viral decay
rates in viral dynamic models. Biometrics. 2000; 56:16–23.

40. El-Sadr WM, Lundgren JD, Neaton JD, et al. CD4-T count-guided interruption of antiretroviral
treatment, the strategies for management of antiretroviral therapy (SMART) study group. New
Engl J Med. 2006; 355:2283–2296. [PubMed: 17135583]

41. Ellner SP, Bailey BA, Bobashev GV, Gallant AR, Grenfell BT, Nychka DW. Noise and
nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population
modeling. Am Nat. 1998; 151:425–440. [PubMed: 18811317]

42. Englezos, P.; Kalogerakis, N. Applied Parameter Estimation for Chemical Engineers. Marcel
Dekker; New York: 2001.

43. Fang Y, Wu H, Zhu L. A two-stage estimation method for random coefficient differential equation
models with application to longitudinal HIV dynamic data. Stat Sin. 2011; 21:1145–1170.
[PubMed: 22171150]

44. Feil, B.; Abonyi, J.; Pach, P.; Nemeth, S.; Arva, P.; Nemeth, M.; Nagy, G.; Rutkowski, L.;
Siekmann, J.; Tadeusiewicz, R.; Zadeh, L. Artificial Intelligence and Soft Computing-ICAISC.
Vol. 3070. Springer; Berlin/Heidelberg: 2004. Semi-mechanistic Models for State-Estimation –
Soft Sensor for Polymer Melt Index Prediction; p. 1111-1117.

45. Ferguson NM, Donnelly CA, Hooper J, Ghani AC, Fraser C, Bartley LM, Rode RA, Vernazza P,
Lapins D, Mayer SL, Anderson RM. Adherence to antiretroviral therapy and its impact on clinical
outcome in HIV-infected patients. J Roy Soc Interface. 2005; 2:349–363. [PubMed: 16849193]

46. Filippov, AF. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic;
Dordrecht: 1988.

47. Fister KR, Lenhart S, McNally JS. Optimizing chemotherapy in an HIV model. Electr J Diff Eq.
1998; 32:1–12.

48. Friedland GH, Williams A. Attaining higher goals in HIV treatment: the central importance of
adherence. AIDS. 1999; 13(Suppl 1):61–72.

49. Gabrielsson, J.; Weiner, D. Pharmacokinetic and Pharmacodynamic Data Analysis: Concepts and
Applications. Stockholm: Apotekarsocieteten; 2000.

50. Gill PE, Murray W, Saunders MA. An SQP Algorithm for Large-Scale Constrained Optimization.
SIAM Rev. 2005; 47:99–131.

51. Glover F. Heuristics for integer programming using surrogate constraints. Decision Sciences. 1977;
8:156–166.

52. Guedj J, Thiébaut R, Commenges D. Maximum likelihood estimation in dynamical models of
HIV. Biometrics. 2007; 63:1198–1206. [PubMed: 17489970]

53. Gupta P, Friberg LE, Karlsson MO, Krishnaswami S, French J. A semi-mechanistic model of
CP-690,550-induced reduction in neutrophil counts in patients with rheumatoid arthritis. J Clin
Pharmacol. 2010; 50:679–687. [PubMed: 19880676]

54. Hadjiandreou MM, Conejeros R, Wilson I. HIV treatment planning on acase-by-case basis. Inter J
Biol Life Sci. 2011; 7:148–157.

55. Haeno H, Iwasa Y. Probability of resistance evolution for exponentially growing virus in the host.
J Theor Biol. 2007; 246:323–331. [PubMed: 17306832]

Xiao et al. Page 25

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



56. Han, C.; Chaloner, K.; Perelson, AS.; Gatsoiquiry, C.; Kass, RE.; Carriquiry, A.; Gelman, A.;
Higdon, D.; Pauler, DK.; Verdinellinis, I. In Case Studies in Bayesian Statistics. Springer-Verlag;
New York: 2002. Bayesian analysis of a population HIV dynamic model; p. 223-237.

57. Han Y, Wind-Rotolo M, Yang H, Siliciano JD. Experimental approaches to the study of HIV-1
latency. Nat Rev Microbiol. 2007; 5:95–106. [PubMed: 17224919]

58. Harrigan PR, Whaley M, Montaner JS. Rate of HIV-1 RNA rebound upon stopping antiretroviral
therapy. AIDS. 1999; 13:59–62.

59. Heckman NE, Ramsay JO. Penalized regression with model-based penalties. Can J Stat. 2000;
28:241–258.

60. Heffernan, JM.; Wahl, LM. Treatment interruptions and resistance: a review. In: Tan, WY.; Wu,
H., editors. Deterministic and Stochastic Models of AIDS and HIV with Intervention. World
Scientific; Singapore: 2005. p. 423-456.

61. Heffernan JM, Wahl LM. Monte Carlo estimates of natural variation in HIV infection. J Theor
Biol. 2005; 236:137–153. [PubMed: 16005307]

62. Herz AV, Bonhoeffer S, Anderson RM, May RM, Nowak MA. Viral dynamics in vivo: limitations
on estimations on intracellular delay and virus decay. Proc Nat Acad Sci USA. 1996; 93:7247–
7251. [PubMed: 8692977]

63. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of
plasma virions and CD4 lymphocytes in HIV-1 infection. Nature. 1995; 373:123–126. [PubMed:
7816094]

64. Huang Y, Rosenkranz SL, Wu H. Modeling HIV dynamics and antiviral responses with
consideration of time-varying drug exposures, sensitivities and adherence. Math Biosci. 2003;
184:165–186. [PubMed: 12832146]

65. Huang Y, Liu D, Wu H. Hierarchical Bayesian methods for estimation of parameters in a
longitudinal HIV dynamic system. Biometrics. 2006; 62:413–423. [PubMed: 16918905]

66. Huang Y, Lu T. Modeling long-term longitudinal HIV dynamics with application to an AIDS
clinical study. Ann Appl Stat. 2008; 2:1384–1408.

67. Hoggard PG, Back DJ. Intracellular pharmacology of nucleoside analogues and protease inhibitors:
role of transport molecules. Curr Opin Infect Dis. 2002; 15:3–8. [PubMed: 11964899]

68. Ickovics JR, Meisler AW. Adherence in AIDS clinical trial: a framework for clinical research and
clinical care. J Clin Epidemiol. 1997; 50:385–391. [PubMed: 9179096]

69. Jackson RC. A pharmacokinetic–pharmacodynamic model of chemotherapy of human
immunodeficiency virus infection that relates development of drug resistance to treatment
intensity. J Pharmacokinet Phar. 1997; 25:713–730.

70. Joshi HR. Optimal control of an HIV immunology model. Optim Contr Appl Math. 2002; 23:199–
213.

71. Kajiwara T, Sasaki T. A note on the stability analysis of pathogen-immune interaction dynamics.
Discrete Cont Dynamical Systems - Series B. 2004; 4:615–622.

72. Kamina A, Makuch RW, Zhao H. A stochastic modeling of early HIV-1 population dynamics.
Math Biosci. 2001; 170:187–198. [PubMed: 11292498]

73. Kavli T, Lines GT. A unifying framework for mechanistic, fuzzy and data driven modeling,
EUFIT’96. Aachen Germany. 1996:1241–1246.

74. Kennedy, J.; Eberhart, R. Particle Swarm Optimization. Proceedings of IEEE International
Conference on Neural Networks IV; 1995. p. 1942-1948.

75. Kesteren CV, Zandvliet AS, Karlsson MO, Mathôt RAA, Punt CJA, Armand JP, Raymond E,
Huitema ADR, Dittrich C, Dumez H, Roché HH, Droz JP, Ravic M, Yule SM, Wanders J, Beijnen
JH, Fumoleau P, Schellens JHM. Semi-physiological model describing the hematological toxicity
of the anti-cancer agent indisulam. Invest New Drugs. 2005; 23:225–234. [PubMed: 15868378]

76. Kirschner D, Lenhart S, Serbin S. Optimal control of the chemotherapy of HIV. J Math Biol. 1997;
35:775–792. [PubMed: 9269736]

77. Kirschner DE, Webb GF. Understanding drug resistance for monotherapy treatment of HIV
infection. Bull Math Biol. 1997; 59:763–786. [PubMed: 9214852]

Xiao et al. Page 26

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



78. Kuhn E, Lavielle M. Coupling a stochastic approximation version of EM with an MCMC
procedure. ESAIM: Prob and Stat. 2004; 8:115–131.

79. Kuhn E, Lavielle M. Maximum likelihood estimation in nonlinear mixed effects models. Comput
Stat Data Anal. 2005; 49:1020–1038.

80. Labbe L, Verotta D. A nonlinear mixed effect dynamic model incorporating prior exposure and
adherence to treatment to describe long-term therapy outcome in HIV-patients. J Pharmacokinet
Phar. 2006; 33:519–542.

81. Lassen K, Han Y, Zhou Y, Siliciano RF, Siliciano J. The multifactorial nature of HIV-1 latency.
Trends Mol Med. 2004a; 10:525–531. [PubMed: 15519278]

82. Li L, Brown MB, Lee KH, Gupta S. Estimation and inference for a spline-enhanced population
pharmacokinetic model. Biometrics. 2002; 58:601–611. [PubMed: 12229995]

83. Li MY, Shu H. Global Dynamics of an In-host Viral Model with Intracellular Delay. Bull Math
Biol. 2010; 72:1492–1505. [PubMed: 20087671]

84. Liang H, Miao H, Wu H. Estimation of constant and time-varying dynamic parameters of HIV
infection in a nonlinear differential equation model. Ann Appl Stat. 2010; 4:460–483. [PubMed:
20556240]

85. Liang H, Wu H. Parameter Estimation for Differential Equation Models Using a Framework of
Measurement Error in Regression Model. J Am Stat Assoc. 2008; 103:1570–1583. [PubMed:
19956350]

86. Liu W. Nonlinear oscillation in models of immune response to persistent viruses. Theor Popul
Biol. 1997; 52:224–230. [PubMed: 9466963]

87. Louis TA. Finding the Observed Information Matrix when Using the EM Algorithm. J Roy Stat
Soc Series B (Methodological). 1982; 44:226–233.

88. Maggioloa F, Airoldia M, Callegaro A, et al. CD4 cell-guided scheduled treatment interruptions in
HIV-infected patients with sustained immunologic response to HAART. AIDS. 2009; 23:799–807.
[PubMed: 19114869]

89. McLean AR, Nowak MA. Competition between zidovudine-sensitive and zidovudine-resistant
strains of HIV. AIDS. 1992; 6:71–79. [PubMed: 1543568]

90. Merrill, S. Lecture Notes in Biomath. Springer-Verlag; New York: 1989. Modeling the interaction
of HIV with the cells of the immune system, in Mathematical and Statistical Approaches to AIDS
Epidemiology.

91. Meza C, Jaffrézic F, Foulley JL. REML estimation of variance parameters in nonlinear mixed
effects models using the SAEM algorithm. Biometrical J. 2007; 49:876–888.

92. Meza C, Jaffrézic F, Foulley JL. Estimation in the probit normal model for binary outcomes using
the SAEM algorithm. Comput Stat Data Anal. 2009; 53:1350–1360.

93. Miao, H. MS Thesis. Department of Biostatistics & Computational Biology, University of
Rochester; 2010. Understanding B cell kinetics in human via heavy water labeling using nonlinear
mixed effects models and stochastic approximation EM algorithms.

94. Miao H, Xia X, Perelson AS, Wu H. On identifiability of nonlinear ODE models and applications
in viral dynamics. SIAM Rev. 2011; 53:3–39.

95. Miron RE, Smith RJ. Modelling imperfect adherence to HIV induction therapy. BMC Infect Dis.
2010; 10:1–16. [PubMed: 20044936]

96. Mittler J, Sulzer B, Neumann A, Perelson AS. Influence of delayed virus production on viral
dynamics in HIV-1 infected patients. Math Biosci. 1998; 152:143–163. [PubMed: 9780612]

97. Mittler J, Markowitz M, Ho D, Perelson AS. Refined estimates for HIV-1 clearance rate and
intracellular delay. AIDS. 1999; 13:1415–1417. [PubMed: 10449298]

98. Molla A, Korneyeva M, Gao Q, Vasavanonda S, Schipper PJ, Mo HM, Markowitz M,
Chernyavskiy T, Niu P, Lyons N, Hsu A, Granneman GR, Ho DD, Boucher CAB, Leonard JM,
Norbeck DW, Kempf DJ. Ordered accumulation of mutations in HIV protease confers resistance
to ritonavir. Nat Med. 1996; 2:760–766. [PubMed: 8673921]

99. Montaner JS, Harris M, Mo T, Harrigan PR. Rebound of plasma HIV viral load following
prolonged suppression with combination therapy. AIDS. 1998; 12:1398–1399. [PubMed:
9708426]

Xiao et al. Page 27

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



100. Nelson PW, Perelson AS. Mathematical analysis of delay differential equation models of HIV-1
infection. Math Biosci. 2002; 179:73–94. [PubMed: 12047922]

101. Nelson PW, Mittler J, Perelson AS. Effect of drug efficacy and the eclipse phase of the viral life
cycle on estimates of HIV-1 viral dynamic parameters. J Acquir Immune Defic Syndr. 2001;
26:405–412. [PubMed: 11391159]

102. Nelson PW, Murray JD, Perelson AS. A model of HIV-1 pathogenesis that includes an
intracellular delay. Math Biosci. 2000; 163:201–215. [PubMed: 10701304]

103. Nocedal, J.; Wright, SJ. Numerical Optimization. Springer Verlag; New York: 1999.

104. Nowak, MA.; May, RM. Virus Dynamics: Mathematical Principles of Immunology and Virology.
Oxford University Press; Oxford: 2000.

105. Nowak MA. Variability of HIV infections. J Theor Biol. 1992; 155:1–20. [PubMed: 1619947]

106. Nowak MA, Anderson RM, Boerlijst MC, Bonhoeffer S, May RM, McMichael AJ. HIV-1
evolution and disease progression. Science. 1996; 274:1008–1010. [PubMed: 8966557]

107. Nowak MA, Anderson RM, McLean AR, Wolfs TFW, Goudsmit J, May RM. Antigenic diversity
threshold and the development of AIDS. Science. 1991; 254:963–969. [PubMed: 1683006]

108. Nowak MA, Bonhoeffer S, Shaw GM, May RM. Anti-viral drug treatment: Dynamics of
resistance in free virus and infected cell populations. J Theor Biol. 1997; 184:205–219.

109. Nowak MA, May RM. Mathematical biology of HIV infections: Antigenic variation and diversity
threshold. Math Biosci. 1991; 106:1–21. [PubMed: 1802171]

110. Nowak MA, Bangham CRM. Population Dynamics of Immune Responses to Persistent Viruses.
Science. 1996; 272:74–79. [PubMed: 8600540]

111. Nowak MA, May RM, Phillips R, Rowland-Jones S, Lalloo D, et al. Antigenic oscillations and
shifting immunodominance in HIV-1 infections. Nature. 1995; 375:606–611. [PubMed:
7791879]

112. O’Brien TR, et al. Longitudinal HIV-1 RNA levels in acohort of homosexual men. J Acquir
Immune Defic Syndr Hum Retrovirol. 1998; 18:155–161. [PubMed: 9637580]

113. Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squler C, Wagener MM, Singh N.
Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. J Internal
Med. 2000; 133:21–30.

114. Pearson JE, Krapivsky, Perelson AS. Stochastic theory of early viral infection: continuous versus
burst production of virions. PLoS Comput Biol. 2011; 7(2):e1001058.10.1371/journal [PubMed:
21304934]

115. Perelson, AS.; Nelson, PW. Modeling viral infections. Am Math Soc; Proceedings of Symposia in
Applied Mathematics; 2002. p. 139-172.

116. Perelson AS. Modelling viral and immune system dynamics. Nature Rev Immunol. 2002; 2:28–
36. [PubMed: 11905835]

117. Perelson AS, Nelson PW. Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev. 1999;
41:3–44.

118. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion
clearance rate, infected cell life-span, and viral generation time. Science. 1996; 271:1582–1586.
[PubMed: 8599114]

119. Perelson AS, Essunger P, Cao Y, Vesanen M, Hurley A, Saksela K, Markowitz M, Ho DD.
Decay characteristics of HIV-1-infected compartments during combination therapy. Nature.
1997; 387:188–191. [PubMed: 9144290]

120. Perelson AS, Kirschner DE, de Boer R. Dynamics of HIV infection of CD4+ T cells. Math
Biosci. 1993; 114:81–125. [PubMed: 8096155]

121. Perelson AS, Kirschner DE, de Boer R. Dynamics of HIV infection of CD4+ T cells. Math
Biosci. 1993; 114:81–125. [PubMed: 8096155]

122. Phillips AN, Youle M, Johnson M, Loveday C. Use of a stochastic model to develop
understanding of the impact of different patterns of antiretroviral drug use on resistance
development. AIDS. 2001; 15:2211–2220. [PubMed: 11698693]

Xiao et al. Page 28

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



123. Poyton AA, Varziri MS, McAuley KB, McLellen PJ, Ramsay JO. Parameter estimation in
continuous-time dynamic models using principal differential analysis. Comput Chem Eng. 2006;
30:698–708.

124. Raboud JM, et al. Variation in plasma RNA levels, CD4 cell counts, and p24 antigen levels in
clinically stable men with human immunodeficiency virus infection. J Infect Dis. 1996; 174:191–
194. [PubMed: 8655993]

125. Ramsay JO. Principal Differential Analysis: Data Reduction by Differential Operators. J Roy Stat
Soc Series B (Methodological). 1996; 58:495–508.

126. Ramsay JO, Hooker G, Campbell D, Cao J. Parameter estimation for differential equations: a
generalized smoothing approach. J Roy Stat Soc Series B. 2007; 69:741–796.

127. Ramsay, JO.; Silverman, BW. Functional Data Analysis. Springer; New York: 2005.

128. Ribeiro RM, Bonhoeffer S, Nowak MA. The frequency of resistant mutant virus before antiviral
therapy. AIDS. 1998; 12:461–465. [PubMed: 9543443]

129. Ribeiro RM, Bonhoeffer S. Production of resistant HIV mutants during antiretroviral therapy.
Proc Natl Acad Sci USA. 2000; 97:7681–7686. [PubMed: 10884399]

130. Rodriguez-Fernandez M, Mendes P, Banga JR. A hybrid approach for efficient and robust
parameter estimation in biochemical pathways. Biosystems. 2006; 83:248–265. [PubMed:
16236429]

131. Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. J Theor
Biol. 2009; 260:308–31. [PubMed: 19539630]

132. Rong L, Perelson AS. Asymmetric division of activated latently infected cells may explain the
decay kinetics of the HIV-1 latent reservoir and intermittent viral blips. Math Biosci. 2009;
217:77–87. [PubMed: 18977369]

133. Rong L, Feng Z, Perelson AS. Emergence of HIV-1 drug resistance during antiretroviral
treatment. Bull Math Biol. 2007; 69:2027–2060. [PubMed: 17450401]

134. Rosenberg ES, Davidian M, Banksc HT. Using mathematical modeling and control to develop
structured treatment interruption strategies for HIV infection. Drug Alocoho Depend. 2007;
88:41–51.

135. Runge C. Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten.
Zeitschrift für Mathematik und Physik. 1901; 46:224–243.

136. Sabin CA, et al. Course of viral load throughout HIV-1 infection. J Acquir Immune Defic Syndr.
2000; 23:172–177. [PubMed: 10737432]

137. Samson A, Lavielle M, Mentré F. Extension of the SAEM algorithm to left-censored data in
nonlinear mixed-effects model: Application to HIV dynamics model. Comput Stat Data Anal.
2006; 51:1562–1574.

138. Schwarz G. Estimating the dimension of a model. Ann Stat. 1978; 6:461–464.

139. Seber, GAF.; Wild, CJ. Nonlinear Regression. John Wiley & Sons, Inc; Hoboken, New Jersey:
2003.

140. Sethi AK, Celentano DD, Gange SJ, Moore RD, Gallant JE. Association between adherence to
antiretroviral therapy and human immunodeficiency virus drug resistance. Clin Infect Dis. 2003;
37:1112–1118. [PubMed: 14523777]

141. Sheiner, LB. Modeling pharmacodynamics: parametric and nonparametric approaches. In:
Rowland, M.; Sheiner, LB.; Steimer, JL., editors. Variability in Drug Therapy: Description,
Estimation, and Control. New York: Raven Press; 1985. p. 139-152.

142. Shiri T, Garira W, Musekwa SD. A two-strain HIV-1 mathematical model to assess the effects of
chemotherapy on disease parameters. Math Biosci Eng. 2005; 2:811–832. [PubMed: 20369954]

143. Smith, HL. Monotone Dynamical Systems. AMS; Providence, RI: 1995.

144. Smith RJ, Wahl LM. Distinct effects of protease and reverse transcriptase inhibitors in an
immunological model of HIV-1 infection with impulsive drug effects. Bull Math Biol. 2004;
66:1259–1283. [PubMed: 15294425]

145. Smith RJ, Wahl LM. Drug resistance in an immunological model of HIV-1 infection with
impulsive drug effects. Bull Math Biol. 2005; 67:783–813. [PubMed: 15893553]

Xiao et al. Page 29

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



146. Smith RJ. Adherence to antiretroviral HIV drugs: how many doses can you miss before resistance
emerges? Proc Roy Soc B. 2006; 273:617–624.

147. Smith RJ, Aggarwala BD. Can the viral reservoir of latently infected CD4+T cells be eradicated
with antiretroviral drugs? J Math Biol. 2009; 59:697–715. [PubMed: 19165438]

148. Tang S, Xiao Y, Wang N, Wu H. Piecewise HIV virus dynamic model with CD4+ T cell count-
guided therapy: I. J Theor Biol. 2012; 308:123–134. [PubMed: 22659043]

149. Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization
over continuous spaces. J Glo Optim. 1997; 11:341–359.

150. Swartz J, Bremermann H. Discussion of parameter estimation in biological modeling: algorithms
for estimation and evaluation of the estimates. J Math Biol. 1975; 1:241–275.

151. Tam J. Delay effect in a model for virus replication. IMA J Math Appl Med Biol. 1999; 16:29.
[PubMed: 10335599]

152. Tan WY, Wu H. Stochastic modeling of the dynamics of CD4+ T-cell infection by HIV and some
Monte Carlo studies. Math Biosci. 1998; 147:173–205. [PubMed: 9433062]

153. Tan WY, Wu H. Stochastic modeling of the dynamics of CD4+ T-cell infection by HIV and some
Monte Carlo studies. Math Biosci. 1998; 147:173–205. [PubMed: 9433062]

154. Tang SY, Xiao YN. One-compartment model with Michaelis-Menten elimination kinetics and
therapeutic window: an analytical approach. J Pharmacokinet Phar. 2007; 34:807–827.

155. Tang SY, Xiao YN, Wang N, Wu H. Piecewise HIV virus dynamic model with CD4 T cell count-
guided therapy. J Theor Biol. 2012; 308:123–134. [PubMed: 22659043]

156. Tuckwell HC, Corfec EL. A stochastic model for early HIV-1 population dynamics. J Theor Biol.
1998; 195:451–463. [PubMed: 9837702]

157. Tuckwell HC, Shipman PD, Perelson AS. The probability of HIV infection in a new host and its
reduction with microbicides. Math Biosci. 2008; 214:81–86. [PubMed: 18445499]

158. Varah JM. A spline least squares method for numerical parameter estimation in differential
equations. SIAM J Sci Comput. 1982; 3:28–46.

159. Varziri MS, McAuley KB, McLellen PJ. Selecting optimal weighting factors in iPDA for
parameter estimation in continuous-time dynamic models. Comput Chem Eng. 32:3011–3022.
(200).

160. Verotta D. Models and estimation methods for clinical HIV-1 data. J Comput Appl Math. 2005;
184:275–300.

161. Wahl LM, Nowak MA. Adherence and drug resistance: predictions for therapy outcome. Proc
Roy Soc Lond B. 2000; 267:835–843.

162. Wang, Y. Semiparametric mixed-effects analysis on PK/PD models using differential equations
In Statistics. University of Nebraska; Lincoln, Nebraska: 2007.

163. Wang K, Wang W, Liu X. Global Stability in a viral infection model with lytic and nonlytic
immune response. Comput Math Appl. 2006; 51:1593–1610.

164. Wang L, Li MY. Mathematical analysis of the global dynamics of a model for HIV infection of
CD4+ T cells. Math Biosci. 2006; 200:44–57. [PubMed: 16466751]

165. Wang L, Li MY, Kirschner D. Mathematical analysis of the global dynamics of a model for
HTLV-I infection and ATL progression. Math Biosci. 2002; 179:207–217. [PubMed: 12208616]

166. Wang Y, Zhou Y, Wu J, Heffernan J. Oscillatory viral dynamics in a delayed HIV pathogenesis
model. Math Biosci. 2009; 219:104–112. [PubMed: 19327371]

167. Wang WD, Zhao XQ. Threshold dynamics for compartmental epidemic models in periodic
environments. J Dyn Diff Equat. 2008; 20:699–717.

168. Wei X, et al. Viral dynamics in human immune deficiency virus type 1 infection. Nature. 1995;
373:117–122. [PubMed: 7529365]

169. Wein LM, Zenios SA, Nowak MA. Dynamic multidrug therapies for HIV: A control theoretic
approach. J Theor Biol. 1997; 185:15–29. [PubMed: 9093552]

170. Wodarz D, Lloyd AL. Immune responses and the emergence of drug-resistant virus strains in
vivo. Proc Roy Soc Lond B. 2004; 271:1101–1109.

Xiao et al. Page 30

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



171. Wolinsky S, Korber BT, Neumann AU, Daniels M, Kunstman KJ, Whetsell AJ, Furtado MR, Cao
Y, Ho DD, Safrit JT. Adaptive evolution of human immunodeciency virus-type 1 during the
natural course of infection. Science. 1996; 272:537–542. [PubMed: 8614801]

172. Wu H, Huang Y, Acosta EP, Park JG, Song Y, Rosenkranz SL, Kuritzkes DR, Eron JJ, Perelson
AS, Gerber JG. Pharmacodynamics of antiretroviral agents in HIV-1 infected patients: using viral
dynamic models that incorporate drug susceptibility and adherence. J Pharmacokinet Phar. 2006;
33:399–419.

173. Wu H, Huang Y, Acosta EP, Rosenkranz SL, Kuritzkes DR, Eron JJ, Perelson AS, Gerber JG.
Modeling long-term HIV dynamics and antiretroviral response: Effects of drug potency,
pharmacokinetics, adherence and drug resistance. J Acquir Immune Defic Syndr. 2005; 39:272–
283. [PubMed: 15980686]

174. Wu H, Ding AA. Population HIV-1 dynamics in vivo: Applicable models and inferential tools for
virological data from AIDS clinical trials. Biometrics. 1999; 55:410–418. [PubMed: 11318194]

175. Wu H, Huang Y, Acosta EP, Rosenkranz SL, Kuritzkes DR, Eron JJ, Perelson AS, Gerber JG.
Modeling long-term HIV dynamics and antiretroviral response: effects of drug potency,
pharmacokinetics, adherence and drug resistance. J Acquir Immune Defic Syndr. 2005; 39:272–
283. [PubMed: 15980686]

176. Yang YP, Xiao YN. Threshold dynamics for an HIV model in periodic environments. J Math
Anal Appl. 2010; 361:59–68.

177. Ye, Y. Interior algorithms for linear, quadratic and linearly constrained non-linear programming,
in department of ESS. Stanford University; 1987.

178. Yang YP, Xiao YN, Wang N, Wu JH. Optimal control of drug therapy: Melding
pharmacokinetics with viral dynamics. Biosystems. 2012; 107:174–185. [PubMed: 22172775]

179. Zhu H, Zou X. Impact of delays in cell infection and virus production on HIV-1 dynamics. IMA J
Math Med Biol. 2008; 25:99–112.

Xiao et al. Page 31

Adv Drug Deliv Rev. Author manuscript; available in PMC 2014 June 30.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 1.
Simulation of typical solutions of drug on-off state systems (3.4) and (3.5) with CTH =

700ul−1, CTH = 200ul−1. (A) Time trajectory of total CD4+ T cell population; (B) Time

trajectory of health CD4+ T cell population (dashed line) and infected CD4+ T cell

population (solid line); (C) Durations of drug on and drug off for each drug on-off switch;

(D) Phase plane plot of health CD4+ T cell and infected CD4+ T cell populations.
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Fig. 2.
Numerical simulations of solutions of drug on-off state systems (3.4) and (3.5) with different

low and upper threshold values. Case 2: (A–B) Blue cure for the solution with CTH =

1300ul−1, CTH = 350ul−1, pink curve for the solution with CTH = 1400ul−1, CTH = 350ul−1;

Case 3: (C–D) Blue cure for the solution with CTH = 1300ul−1, CTH = 150ul−1, pink curve

for the solution with CTH = 1400ul−1, CTH = 350ul−1, and green curve for the solution with

CTH = 1300ul−1, CTH = 100ul−1; Case 4: (E–F) Blue cure for the solution with CTH =

700ul−1, CTH = 150ul−1, and green curve for the solution with CTH = 700ul−1, CTH =

100ul−1.
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