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Abstract

In medical imaging analysis and computer vision, there is a growing interest in analyzing various

manifold-valued data including 3D rotations, planar shapes, oriented or directed directions, the

Grassmann manifold, deformation field, symmetric positive definite (SPD) matrices and medial

shape representations (m-rep) of subcortical structures. Particularly, the scientific interests of most

population studies focus on establishing the associations between a set of covariates (e.g.,

diagnostic status, age, and gender) and manifold-valued data for characterizing brain structure and

shape differences, thus requiring a regression modeling framework for manifold-valued data. The

aim of this paper is to develop an intrinsic regression model for the analysis of manifold-valued

data as responses in a Riemannian manifold and their association with a set of covariates, such as

age and gender, in Euclidean space. Because manifold-valued data do not form a vector space,

directly applying classical multivariate regression may be inadequate in establishing the

relationship between manifold-valued data and covariates of interest, such as age and gender, in

real applications. Our intrinsic regression model, which is a semiparametric model, uses a link

function to map from the Euclidean space of covariates to the Riemannian manifold of manifold

data. We develop an estimation procedure to calculate an intrinsic least square estimator and

establish its limiting distribution. We develop score statistics to test linear hypotheses on unknown

parameters. We apply our methods to the detection of the difference in the morphological changes

of the left and right hippocampi between schizophrenia patients and healthy controls using medial

shape description.

1 Introduction

Statistical analysis of manifold-valued data has gained a great deal of attention in

neuroimaging applications [1], [2], [3], [4], [5], [6], [7], [8], [9]. Examples of manifold-

valued data that we encounter in medical imaging analysis include the Grassmann manifold,

planar shapes, deformation field, symmetric positive definite (SPD) matrices and the medial

shape representations (m-rep) of subcortical structures (Fig. 1). Some review papers on the

applications of manifold-valued data in medical imaging can be found in a recent special

issue of NeuroImage [10]. However, the existing statistical methods for manifold-valued
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data are primarily developed to estimate intrinsic and extrinsic means, to estimate the

structure of population variability, to carry out principal geodesic analysis, and to compare

intrinsic (or extrinsic) means across two or more groups [11], [9], [12], [13], [14], [15], [16],

[17].

Little literature exists for regression analyses of manifold-valued data. The existing

parametric and nonparametric regression models for manifold-valued data were primarily

developed for 2 (or 3) dimensional directional data [6], [18]. In parametric regression of

directional data, parametric distributions, such as the Von Mises distribution, are commonly

assumed for directional data, whereas it can be very challenging to assume useful parametric

distributions for other manifold-valued data, such as SPD matrices and the m-rep, which can

characterize the feature (e.g., shape) of real imaging data [15]. In the nonparametric analysis

of manifold-valued data, although smoothing splines have been developed for directional

data and planar landmark data, it is computationally difficult to generalize such smoothing

splines to other manifold-valued data [6]. Recently, local constant regressions have been

developed for manifold-valued data, but these regression models are defined with respect to

either the Frechet mean or the geometric median [2], [4].

According to the best of our knowledge, this is the first paper that develops a

semiparametric regression model with manifold-valued data as responses on a Riemannian

manifold and a set of covariates, such as time, gender, and diagnostic status, in Euclidean

space. Our regression model are solely based on the first-order moment, thus avoiding

specifying any parametric distributions. We propose an inference procedure to estimate the

regression coefficients in this semi-parametric model. We establish asymptotic properties,

including consistency and asymptotic normality, of the estimates of the regression

coefficients. We develop score statistics to test linear hypotheses on unknown parameters.

Finally, we illustrate the application of our statistical methods to the detection of the

difference in morphological changes of the hippocampi between schizophrenia patients and

healthy controls in a neuroimaging study of schizophrenia.

2 Method

2.1 Review of Regression Models

We consider a dataset that is composed of a response yi and a p × 1 covariate vector xi for i

= 1, ⋯, n. Responses may be continuous observations in classical linear models, such as age,

weight, income, and they may be discrete or ordinal observations, such as differing severity

of diseases and disease status (patients v.s. healthy subjects). Covariates may be

quantitative, such as age, or qualitative, such as handiness, gender, and presence of risk

factors (yes/no).

Regression models often include two key elements: a link function μi(β) = g(xi, β) and a

residual εi = yi − μi(β), where β is a q × 1 vector of regression coefficients and g(·,·) is an

known mapping from Rp × Rq to R. Regression models assume that

(1)
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where the expectation denotes the conditional expectation of ε given x. Moreover,

nonparametric regressions include a link function μi = g(xi), in which g(·) is an unknown

function, and a residual εi = yi − g(xi), for which equation (1) holds.

To carry out statistical inference on β (or g(·)), we need at least three statistical methods.

The first one is an estimation method for calculating parameter estimate of β, denoted by β̂.

Various estimation methods include maximum likelihood estimation, robust estimation,

estimating equations, among many others. The second is to prove that β̂ is a consistent

estimator of β and has certain asymptotic distribution (e.g., normal). The third is to develop

test statistics for testing the hypotheses:

(2)

where h0(·) is an r × 1 vector function and b0 is an r × 1 specified vector. In most

applications, we are interested in testing h0(β) = Hβ = b0 for a given r × q matrix H [18],

[7], [8].

2.2 Intrinsic Regression for Manifold-Valued Data

We formally develop an intrinsic regression model for manifold-valued responses and

covariates of interest from n observations. Suppose we observe a dataset {(Si, xi) : i = 1, ⋯,

n}, where Si are points on a Riemannian manifold 𝓢 and xi are covariates of interest in

Euclidean space.

The intrinsic regression model first involves modeling a ‘conditional mean’ of an manifold-

valued response Si given xi, denoted by μi(β) = g(xi, β), where g(·,·), called link function, is

a map from Rp × Rq to the manifold 𝓢. Note that we just borrow the term ‘conditional

mean’ from Euclidean space. Given two points Si and μi(β) on the manifold ℳ, the intrinsic

regression model also define the residual or ‘difference’ between Si and μi(β) to ensure that

μi(β) is the proper ‘conditional mean’ of Si given xi. At μi(β), we have a tangent space of the

manifold 𝓢, denoted by Tμi(β)𝓢, which is a Euclidean space representing a first order

approximation of the manifold 𝓢 near μi(β). Then, we calculate the projection of Si onto

Tμi(β)𝓢, denoted by Logμi(β)(Si), which can be regarded as the difference between Si and

μi(β) for i = 1, ⋯, n. If 𝓢 is a Euclidean space, then Logμi(β)(Si) = Si − μi(β).

The intrinsic regression model for manifold-valued data is then defined by

(3)

for i = 1, ⋯, n, where the expectation is taken with respect to the conditional distribution of

Si given xi. Model (3) does not assume any parametric distribution for Si given xi, and thus it

allows for a large class of distributions [15]. In addition, our model (3) does not assume

homogeneous variance across all i. This is also desirable for the analysis of imaging

measures, such as diffusion tensors, because between-subject and between-voxel variability

in the imaging measures can be substantial.
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2.3 Estimation

We calculate an intrinsic least squares estimator (ILSE) of the parameter vector β, denoted

by β̂, by minimizing the total residual sum of squares given by

(4)

where << ·,·>> is an inner product of two tangent vectors in Tμi(β)𝓢 and d(·,·) is the

Riemannian distance function on 𝓢. Thus, let , β̂ solves the

estimating equations given by

(5)

where ∂ denotes partial differentiation with respect to a parameter vector, such as β. The

ILSE is closely related to the intrinsic mean μ̂IM of S1, ⋯, Sn ∈ 𝓢, which is defined as

(6)

In this case, μi is independent of i and covariates of interest. Moreover, under some

conditions, we can establish consistency and asymptotically normality of β̂. A Newton-

Raphson algorithm is developed to obtain β̂. Let ∂βGn(β) and , respectively, be the

first- and second-order partial derivatives of Gn(β). We iterates

, where 0 < ρ = 1/2k0 ≤ 1 for some k0 ≥ 0 is

chosen such that Gn(β(t+1)) ≤ Gn(β(t)). We stop the Newton-Raphson algorithm when the

absolute difference between consecutive β(t)’s is smaller than a predefined small number,

say 10−4. Finally, we set β̂ = β(t). In addition, because  may not be positive

definite, we use  instead of  in order to stabilize the Newton-

Raphson algorithm.

2.4 Hypotheses and Test Statistics

In medical analysis, most scientific questions of interest involve a comparison of manifold-

valued data across diagnostic groups or detecting change in manifold-valued data across

time [8], [19]. These scientific questions usually can be formulated as follows:

(7)

We test the null hypothesis H0 : Hβ = b0 using a score test statistic Wn defined by

(8)
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where  and , in which β̃ denotes the

estimate of β under H0 and Ûi(β̃) is associated with ∂βGn(β). It can be shown that Wn is

asymptotically χ2 distributed.

2.5 Positive Definitive Matrices

We develop an intrinsic regression for SPDs. We introduce the tangent vector and tangent

space at any μ ∈ Sym+ (m), the space of SPDs [8]. The tangent space of Sym+ (m) at μ,

denoted by TμSym+ (m), is identified with a copy of Sym(m), the space of symmetric

matrices. Then we consider the scaled Frobenius inner product of any two tangent vectors Yμ

and Zμ in TμSym+(m), which is defined by << Yμ, Zμ >>= tr(Yμμ−1Zμμ−1). Given the inner

product, we can formally construct the Riemannian geometry of Sym+(m) [8].

We consider the link function μ(x, β) using the Cholesky decomposition of μ(x, β). For the i

−th observation, through a lower triangular matrix Ci(β) = C(xi, β) = (Cjk(xi, β)), the

Cholesky decomposition of μ(xi, β) equals μ(xi, β) = μi(β) = Ci(β)Ci(β)T. We must specify

the explicit forms of Cjk(xi, β) for all j ≥ k in order to determine all entries in μi(β). As an

illustration, for m = 2, we may choose the 2 × 2 matrix Ci(β) with ,

C12(xi, β) = 0, , and , where  and

β(k) for k = 1, 2,3 are subvectors of β. We introduce a definition of ‘residuals’ to ensure that

μi(β) is the proper ‘conditionalmean’ of Si given xi. Then, we calculate the residual
Logμi(β)(Si) given by Ci(β) log(Ci(β)−1SiCi(β)−T)Ci(β)T. The intrinsic regression is defined

in (3).

The first- and second-order derivatives of Gn(β) are given as follows. The a-th element of

∂βGn(β) is given by , where ℇi(β) =

log(Ci(β)−1SiCi(β)−T) and ∂βa = ∂/∂βa. The (a, b)-th element of  is given by

where  and , in which

(9)

and S̃
i(β) = Ci(β)−1SiCi(β)−T.

2.6 Median Representation

We develop an intrinsic regression for m-reps. An m-rep model consisting of k medial atoms

can be considered as the direct product of k copies of M(1) = R3 × R+ × S(2) × S(2), that is

, where S(2) is the sphere in R3 with radius one [5]. We introduce a

tangent space TPM(1) at the point P = (O, r, n0, n1), where O ∈ R3, r ∈ R+, and n0 and n1 ∈
S(2). The tangent vector U ∈ TPM(1) takes the form U = (U0, Ur, Un0, Un1), where U0 ∈ R3,

Ur ∈ R, Uni ∈ R3 and  for i = 0, 1. The inner product of any two tangent vectors
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U(0) and U(1) in TPM(1) is defined by << U(0), U(1) >>= U(0)TU(1). The geodesic distance

between P and P1 = (O1, r1, n0,1, n1,1) in M(1) is uniquely given by

To introduce an intrinsic regression for m-rep, we need to define a link function μ(x, β) =

(μO(x, β), μr(x, β), μ0(x, β), μ1(x, β))T ∈ M(1), which is a 10 × 1 vector. For instance, we

may set μO(x, β) = (xTβ1, xT β2, xTβ3)T and μr(x, β) = exp(xTβ4). A link function for

 is based on the stereographic projection given

by

(10)

where g5(·) and g6(·) are known link functions and β5,k and β6,k are subvectors of β. The

residual Logμ(x, β)(P) is given by

where Logμ0(x, β)(Un0) = arccos(μ0(x, β)TUn0)v/||v||2, in which v = Un0 − (μ0(x,

β)TUn0)μ0(x, β).

3 Results

To demonstrate our regression method, we applied our methods to the m-rep shape of the

hippocampus structure in the left and right brain hemisphere in schizophrenia patients and

healthy controls, collected at 14 academic medical centers in North America and western

Europe [19]. There were 56 healthy controls and 238 schizophrenia patients who met the

following criteria: age 16 to 40 years; onset of psychiatric symptoms before age 35;

diagnosis of schizophrenia, schizophreniform, or schizoaffective disorder according to

DSM-IV criteria; and various treatment and substance dependence conditions.

We investigated the difference of m-rep shape between schizophrenia patients and healthy

controls while controlling for other factors, such as gender and age. The hippocampi m-rep

shape at the 24 medial atoms of the left and right brain were used as the response in our

intrinsic regression model. Covariates of interest include Whole Brain Volume (WBV), race

(Caucasian, African American and others), age (in years), gender, and diagnostic status

(patient or control).

We tested the diagnostic status effect on the whole m-rep structure. We presented the color-

coded p-values of the diagnostic status effects across the atoms of both the left and right

reference hippocampi in Fig 2 (a) and (b) and the corresponding adjusted p-values using

false discovery rate were shown in Fig 2 (c) and (d). We observed large significance area in

the left hippocampus, and some in the right hippocampus even after correcting for multiple

comparisons.
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4 Discussion

We have developed an intrinsic regression model for the analysis of manifold-valued data as

responses in a Riemannian manifold and their association with a set of covariates. We have

developed an estimation procedure to calculate the intrinsic least square estimates. We have

developed score statistics for testing linear hypotheses on unknown parameters. We plan to

apply our method to other manifold-valued data including the Grassmann manifold, planar

shapes, and deformation field.
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Fig. 1.
Four different manifold-valued data (from the left to the right): deformation field reflecting

brain deformation obtained from the registration of either diffusion tensor images (DTIs) or

T1 magnetic resonance images (T1 MRIs); principal direction (PD) field reflecting fiber

orientations obtained from DTIs; diffusion tensor field reflecting water diffusion along fiber

tracts from DTIs; medial shape representations of hippocampi from multiple subjects

obtained from the segmented T1 MRIs
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Fig. 2.
Results for the m-rep shape analysis result mapped to the surface of the hippocampal

schizophrenia study: the color-coded uncorrected p–value maps of the diagnostic status

effects for (a) the left hippocampus and (b) the right hippocampus; the corrected p–value

maps for (c) the left hippocampus and (d) the right hippocampus after correcting for

multiple comparisons
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