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Summary

Data obtained using modern sequencing technologies are often summarized by recording the

frequencies of observed sequences. Examples include the analysis of T cell counts in

immunological research and studies of gene expression based on counts of RNA fragments. In

both cases the items being counted are sequences, of proteins and base pairs, respectively. The

resulting sequence-abundance distribution is usually characterized by overdispersion. We propose

a Bayesian semi-parametric approach to implement inference for such data. Besides modeling the

overdispersion, the approach takes also into account two related sources of bias that are usually

associated with sequence counts data: some sequence types may not be recorded during the

experiment and the total count may differ from one experiment to another. We illustrate our

methodology with two data sets, one regarding the analysis of CD4+ T cell counts in healthy and

diabetic mice and another data set concerning the comparison of mRNA fragments recorded in a

Serial Analysis of Gene Expression (SAGE) experiment with gastrointestinal tissue of healthy and

cancer patients.

1. Introduction

Many problems in biomedical research require inference for frequencies of some biological

entity, such as gene transcripts or molecular receptors. For example, in immunology,

investigators may want to compare the number of distinct T cell receptors and their

respective abundances in autoimmune patients and healthy individuals (Hsieh et al., 2006;

Ferreira et al., 2009). T cell receptors (TCRs) are molecules at the surface of T cells (a white

blood cell) that bind to antigens and trigger the immune response itself. Diversity of T cell

receptors, i.e., the number of distinct molecules, is an important characteristic of the immune

system. In molecular biology, the comparison of different tissue samples may be based on a

comparison of counts of different types of messenger RNA (mRNA), an intermediate
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product in protein synthesis. The abundance of different types of mRNA characterizes gene

expression. These two examples serve as the motivating applications in this discussion. In

both applications, the data are sequence counts, of proteins and of base pairs, respectively.

We will therefore generically refer to the biological entities that are being counted as

sequences. Table 1 shows the first few lines of a typical data set. The left table shows the

raw data of counts for each unique sequence. The number of rows is the number of unique

sequences. The right table shows the summary as frequencies of counts (clonal size

distribution or sequence abundance distribution). The corresponding number of rows is the

number of different counts in the first table.

By the nature of the underlying biological processes or by the way the data are collected or

processed, the distribution of the observed data in such studies shows several general

characteristics. First, samples may be characterized by a large number of sequences recorded

at low frequencies together with just a few sequences recorded very frequently. This leads to

overdispersion relative to a Poisson model where variance is tied with the mean (see

examples in Bentley et al., 2008; Yoon et al., 2009). In addition, the sequencing experiment

may fail to record many rare sequence types of the original population. Therefore, a single

sample may not capture all distinct sequences that are present in a population. Zero counts

are not included in the count data, i.e., zero counts are censored. As a consequence, the

observed frequencies are biased estimates of true abundances. Some correction is needed

when analyzing the data (Morris et al., 2003; Sepúlveda et al., 2010).

Several modeling approaches have been proposed to analyse sequence abundance

distributions under different inferential assumptions. Common modeling strategies include

the zero-inflated Poisson regression model (Nie et al., 2006; Dhavala et al., 2010) and the

negative binomial distribution where the variance is modeled explicitly as a function of the

mean and an additional dispersion parameter (see Robinson and Smyth, 2007; Hardcastle

and Kelly, 2010; Anders and Huber, 2010). Indeed, the negative binomial distribution can be

characterized as the marginal distribution in a Poisson-gamma mixture model (see, for

example, Cameron and Trivedi, 1998). The method by Robinson and Smyth (2007) is

implemented in the widely used EdgeR package and relies on the estimation of a common

overdispersion parameter across samples. Other proposals include the Poisson-lognormal

distribution (Sepúlveda et al., 2010; Rempala et al., 2011) or the truncated Poisson-gamma

(Thygesen and Zwinderman, 2006). Alternatively, finite mixtures of Poisson distributions

have been proposed as a way to provide a better description of this type of data, often with

an assumed known number of mixing components (Zuyderduyn, 2007).

We build on these approaches and propose Bayesian inference in a semi-parametric mixture

of Poissons model to estimate the distribution of the observed counts in the presence of

overdispersion and uncertainty on the true number of unique sequences in a population (e.g.,

tissue or cell type). More specifically, we assume a Dirichlet process prior on the mean of

the Poisson components. The Dirichlet process prior has been extensively used as an

automatic and adaptive method for density estimation (see, for example Ferguson, 1983;

Escobar and West, 1995; Gasparini, 1996). In addition, we explicitly model the

experimentally induced censoring of zero counts. Inference includes estimating the

underlying population sequence diversity, that is the number of different unique sequences
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that can be found in the population. We show that for small and moderate size data sets with

overdispersed data, such a correction is non-negligible. Reliable estimates of sequence

abundances are particularly important if one aims to compare the sequence-abundance

distribution under different biological or experimental conditions. An extension of the semi-

parametric Poisson mixture model to carry out such comparisons is another contribution of

this paper. The proposed inference is valid for both small and large datasets and allows for

different degrees of overdispersion across samples.

Recent related nonparametric Bayesian literature includes work by Trippa and Parmigiani

(2011) who use semi-parametric Poisson mixture models as a tool to generate realistic

simulation scenarios for the evaluation of false discovery procedures, and a sequence of

papers by Lijoi et al. (2007a,b, 2008) and Favaro et al. (2009, 2012), where they use

nonparametric Bayesian priors for a sampling model on species diversity in experiments

similar to the SAGE experiments discussed in this paper. They focus on inference for the

expected number of species under a given additional sampling effort. Similar to the use of

semi-parametric Poisson mixtures to model overdispersion, Canale and Dunson (2012)

develop models with underdispersion, i.e. distributions where variance is less than the mean,

by using kernel mixture models with kernels induced through rounding of continuous

kernels.

We illustrate our methodology with two applications, one related to the study of T cell

receptors in healthy and diabetic mice (Ferreira et al., 2009) and another one measuring gene

expression using SAGE (Serial Analysis of Gene Expression) technology. The analysis of

the T cell receptor data has two objectives: quantify the receptor diversity and compare the

frequencies of the receptors across different T cell populations. In the analysis of the SAGE

data, the main objective is to compare the frequency of mRNA transcripts across different

libraries of healthy and tumour colon tissues.

The structure of the paper is as follows. Section 2 introduces the model for the single sample

analysis. The section includes a simulation study to compare inference with similar

parametric models as well as inference for the two motivating applications. Section 3

extends the model to the multivariate case in order to compare several sequence-abundance

distributions. Subsections 3.3 and 3.4 discuss related inference in the two motivating

applications. Finally, Section 4 finishes with some concluding remarks. Supporting

information on the journal website contains implementation details for the posterior

simulation.

2. Modeling Relative Sequence Abundances

2.1. A Semi-parametric Model

Sampling model—We start by considering a model for inference with a single sample or

library of sequence counts. Let yi, i = 1, …, k denote the counts of the k distinct sequences in

a sample. However, counts yi = 0 are not observed, leaving only k′ ≤ k observed counts yi >

0. We refer to k and k′ as the population and the sample diversity, respectively. The balance

k0 = k − k′ is a measure of the sampling error, that is the undercounting of sequences with

low copy numbers, due to censoring of zero counts.
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We first summarize the proposed model in words. Let G(yi) denote the unknown distribution

of counts yi. We estimate G(·) based on the observed data yi, using a Bayesian non-

parametric approach, i.e. with minimal assumptions on the data generating mechanism. In

turn, this allows us to make inference about the sample diversity k. Let Ĝ(y) denote the

empirical frequency of counts y > 0. Figure 1 shows Ĝ(y) as a pin plot. The frequency of

zero counts can be estimated by extrapolating the observed trend of …, Ĝ(3), Ĝ(2), Ĝ(1) to

y = 0. This could be done by inferring ad-hoc the behavior of the Ĝ(·) curve at y = 0 and

adequately re-normalizing the weights to ensure that the total mass is 1. The proposed

model-based approach makes that “eye-balling” more formal and attempts to describe the

related uncertainties. In Figure 1 the solid line shows the estimated E(G | y) under the

proposed model. The many thin grey dotted lines illustrate uncertainty as draws from the

posterior distribution of G, i.e. G ~ p(G | y). Information on G(·) does not yet allow inference

about true abundances of the sequences, for lack of any parameter that could be readily

interpreted as sequence abundance. We achieve such inference with a simple trick. We

represent G(·) as a mixture of Poisson distributions. The mixture naturally introduces a latent

variable λi that can be interpreted as true abundance of the i-th sequence.

We start the formal model construction with a binomial distribution for the sample diversity

k′:

where G(0) = Pr(yi = 0) is the probability of a zero count, and G(+) = Pr(yi > 0) denotes the

complement probability of a non-zero count.

Let y = {yi, i = 1, …, k′} denote the observed sequence counts. Conditional on the sample

diversity k′, the likelihood for G and k is . Thus,

(1)

Note that the sampling model (1) includes positive probability for k′ = 0, although by the

nature of the experiment at least some tags are always counted, i.e. k′ > 0. This is not a

problem for posterior inference, since the observed data always includes k′ > 0.

Nonparametric prior—We continue the model construction with a nonparametric

Bayesian prior for G(·). A parametric model would be too restrictive and inappropriately

determine the extrapolation to G(0) by the particular assumed parametric form. For example,

in a Poisson sampling model the mean determines the Poisson rate, and thus Pr(yi = 0).

From a data analysis perspective this is undesirable. Instead, we assume that the counts yi

are independently sampled from a mixture of Poisson distributions. Let Poi(x; λ) denote a

Poisson distribution for the random variable x with expectation λ. In our setting, the
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parameter λ is a measure of the true abundance of a sequence in the biological sample. We

assume

(2)

i = 1, …, k, independently conditional on P. Besides the increased flexibility in modeling

G(·), the introduction of the mixture model is important for the desired inference. One of the

inference goals is to estimate the abundance of each sequence. Consider an equivalent

expression of (2) as a hierarchical model,

(3)

The variables λi can be interpreted as the true abundance of the i−th sequence. Also, since P

features in the model as the prior for the latent, unobservable variables λi, it suffices to

assume a discrete probability measure P. In fact, a discrete mixing measure P has the

additional advantage of introducing a clustering of the observed sequences into groups of

comparable abundance. We discuss details below.

We specify a prior distribution for the mixture model (2) by assuming a nonparametric prior

on the mixing measure P. One of the most commonly used nonparametric Bayes priors is

the Dirichlet process prior. The Dirichlet process is characterized by two parameters: the

prior mean, G*, and the mass parameter, ν. The mass parameter determines, among other

important properties, the variation of the random measure around the prior mean. We write

P ~ DP(G*, ν). We refer to Ferguson (1973) and Walker et al. (1999) for a definition and

important properties of the Dirichlet process model. The main reasons that motivate us to

consider the proposed semi-parametric mixture of Poissons model are the increased

robustness of inference with respect to modeling assumptions, the lack of a good

biologically justified parametric model and the interpretation of the latent λi as sequence

abundance. We note that the nonparametric prior can not add information without exploiting

additional expert judgment. In general the semi-parametric model will only allow for a more

honest description of uncertainties in the extrapolation to G(0). The random G is infinite

dimensional, in contrast to, for example, a Poisson model that is determined by a single

parameter.

Random partition—Among other implications, the Dirichlet process prior on the mixing

measure allows for inference about clustering of observations, in the following sense. A key

feature is the a.s. discreteness of P; hence, a sample from P has a positive probability of ties.

In (3), let , j = 1, …, L, denote the L ≤ k unique values of λi. If we use the ties to define

clusters, then mixture of Dirichlet process models such as (2) can be used for detecting

clusters of observations (Green and Richardson, 2001; Quintana and Iglesias, 2003). It is

often convenient to restate the model in terms of latent cluster indicators si, such that si = j if

and only if observation i belongs to cluster j, that is . Let L denote the number of

clusters and let nj = |{i : si = j}| denote the size of the j-th cluster. The prior probability of a

given clustering structure, say s = {s1, …, sk}, is
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(4)

Assume that the goal is to group sequences with similar frequency patterns, according to the

values of the true abundances λi. The posterior distribution p(s | y) provides a full

probabilistic description of such partitions.

Dirichlet process mixture models like (3) have been extensively studied in the literature.

Posterior inference can be implemented by Markov chain Monte Carlo posterior simulation

to obtain desired posterior and posterior predictive summaries (Escobar and West, 1995;

MacEachern and Müller, 1998; Neal, 2000; Papaspiliopoulos and Roberts, 2008; Dahl,

2003). To achieve faster mixing Markov chains it is possible to analytically integrate out the

random probability measure P and the abundances λi, leaving a model in s only.

Model (2) is completed with a base measure G* and a prior on k. Using G*(λ) ≡ Ga(α, β),

i.e. a gamma distribution with mean α/β, defines a conjugate Dirichlet process mixture. This

greatly simplifies posterior simulation. Integrating out the λi’s, we are left with a Poisson-

gamma random mixture model. In the analysis of the examples in the following section, we

considered fixed hyperparameters α and β, chosen so to provide large support to the prior

distribution. Furthermore, since E(G) = G* a priori, the implied marginal for one

observation, p(yi) = E(G(yi)), is a negative binomial. However, the data will inform posterior

inference and E(G | data) can be very different a posteriori. Consider, for example, the data

for diabetic mouse Treg 1 in Table 2. The data show the skewed distribution that is typical

of the datasets that we consider. We can recognize a peak for low counts around 1, and some

evidence for a secondary peak for high counts around 36 and 40. Under the negative

binomial model, posterior inference has to balance between the very few sequences with

high counts and the several sequences with low counts. The resulting posterior shows a

single peak around 6. In contrast, the DP mixture model can capture the observed imbalance

in the data, allowing for a peak at count 0, and a secondary, much smaller, peak around 38

(not shown).

Similar parametric (finite) Poisson mixture models for the analysis of SAGE data have been

also considered by Zuyderduyn (2007) as a way to describe the overdispersion typical of

these data and identify sets of co-expressed genes. Although similar in motivation, our

approach does not require to fix in advance the number of mixture components and it allows

for simultaneous estimation of the number of missing sequences.

Finally, the choice of the prior on k requires careful consideration. Inference on k can be

very sensitive to the prior choice, and a poor prior may result in an overshrinkage of the

frequency estimates of the scarce sequences. The prior should ideally reflect specific expert

information. In lack of such information, we suggest to proceed with a conservative

approach. For example, a prior centered around the number of observed sequences, k′,

provides a reasonable default choice.

Implementing posterior simulation includes a Metropolis transition probability to update k,

using a simple discrete proposal (move up/move down). Since the number of parameters of
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the model is implicitly determined by the nonparametric prior, there is no need for a

reversible jump algorithm (Green, 1995). In the online supporting information, we discuss

full details of the conditional distributions that are used to define the transition probabilities

of a posterior simulation scheme.

2.2. Estimation of TCR Diversity

In Immunology, T cell diversity is a key quantity to understand how an efficient immune

system can react to a virtually infinite set of microorganisms without responding against

body components at the same time (Nikolich-Zugich et al., 2004). T cell diversity is usually

defined as the number of distinct T cell receptors (TCR) collectively presented by this cell

type. Distinction between these molecular receptors is often made through the corresponding

nucleotide or aminoacid sequence encoding them, as illustrated in Table 1a. These receptors

are generated during T cell development in the thymus through a recombination mechanism

where different gene segments are randomly assembled. Therefore, TCR diversity might be

extremely high in the body and can only be ascertained through sampling. In this scenario,

one usually collects a sample of T cells and determines their corresponding TCR sequences.

Data are then summarized as sequence counts as shown in Table 1.

We analyze data that report the number of distinct TCR sequences and their respective

abundances obtained from 3 NOD and 2 B6 mice as summarized in Table 2 (Ferreira et al.,

2009). NOD and B6 are two lab strains that are commonly used in immunology and

hereafter referred to as diabetic and healthy mice, respectively, since the former

spontaneously develops type I diabetes while the latter maintains stably healthy under strict

laboratory conditions. The goal of the analysis is to estimate TCR diversity of two important

T cell types, the so-called regulatory and conventional CD4+ T cells, which have been

implicated in the pathogenesis of type I diabetes. We fit the semi-parametric hierarchical

model (3) to each sample, i.e., the mice in Table 2. Here the index i in (2) denotes the i-th

unique sequence and yi denotes the respective observed abundance. The parameter k is the

unknown TCR diversity. We use the following hyperparameters for the nonparametric prior.

The mass parameter of the Dirichlet process is fixed at ν = 1. This implies a prior

expectation of E(L) = ν log((ν+k′)/ν)) ≈ log(k′) clusters in the population (Antoniak,

1974). The centering measure G* = Ga(1.0, 0.05) (mean=20, σ = 400) was chosen to

provide substantial probability for a large range of yi values, as it is common to observe

long-tailed sequence abundance distribution in this type of data. The prior distribution for k,

the unknown TCR diversity of each T cell population, is assumed to be a Poisson

distribution with mean Ξ = 172 and 234 for sick and healthy mice, respectively,

corresponding to the overall number of distinct sequences observed across all samples of the

same lab strain. Centering around the observed diversity is a conservative choice to avoid an

over-estimation of k by shrinkage to the prior mean. Indeed, we also considered alternative

values for Ξ, but found no remarkable variations on the resulting inference over k. Finally,

we speed up posterior simulation by analytically integrating out the latent sequence

abundance λi, leaving us with the marginal model of the cluster membership indicators si

only. For the Markov chain Monte Carlo implementation we took advantage of the split-

merge algorithms proposed in Jain and Neal (2004) and Dahl (2003). See the online

supporting information for details.
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Figure 2(a) shows the boxplots of the posterior distributions for the TCR diversity k. The

posterior distributions for TCR diversity are essentially the same across all samples of

healthy mice (Figure 2a). In other words, in healthy mice, regulatory and conventional T

cells seem equally diverse in terms of TCR diversity. In the case of the diabetic mice data,

the posterior distributions for TCR diversity suggest that regulatory T cells are less diverse

than conventional T cells (Figure 2b). The result is in agreement with previous findings

(Ferreira et al., 2009).

For these results we carried out separate inference for each sample in Table 2. Later we will

extend model (2) to allow joint inference across samples in a single hierarchical model and

compare abundance of each sequence across cell types and lab strains.

2.3. Simulation Study

We carried out a simulation study to confirm that the proposed semi-parametric model can

indeed address some of the shortcomings of a traditional parametric model. We created a

simulation truth with 172 unique TCR sequences by pooling all samples from the

experiments with diabetic mouse strains described in Section 2.2. We decided for the use of

such pooled data in the absence of a gold standard data set for TCR diversity estimation and

because similar pooled data are commonly used in the immunological literature, presumably

to obtain larger sample sizes. Experimental constraints make it difficult to obtain large

individual samples (Wong et al., 2007; Hsieh et al., 2004). Also, pooling different data sets

has the effect of producing intricate sequence-abundance distributions (Sepúlveda, 2009).

Figure 3 shows the proportions of the unique sequences in the pooled data. Data simulation

was implemented as multinomial sampling of 250 sequences from the population of 172

unique sequences. The probabilities of each hypothetical sequence were defined by the

corresponding relative abundances in the pooled data for the diabetic mouse strains.

We generated M = 100 different data sets. In each simulated data set we carried out

inference under the proposed semi-parametric approach using a uniform prior with support

between k′ and 5000 for the unknown true diversity k. Results were compared to the ones

obtained under previously proposed parametric models for TCR diversity estimation,

namely, the homogeneous Poisson, the geometric, the Poisson-gamma, the Poisson-

lognormal, and the Yule model (Sepúlveda et al., 2010). The homogeneous Poisson model

assumes a single Poisson distribution for all sequence counts. The other four models assume

a mixture of Poisson sampling model as in (2) with exponential, gamma, and lognormal

prior densities in the geometric, Poisson-gamma, and Poisson-lognormal models,

respectively. The Yule model uses a mixture of exponential distributions (Sepúlveda et al.,

2010). The five parametric models were estimated using the same uniform prior on k and

appropriate uniform priors for the remaining parameters.

For each simulation and each model we computed bias and coverage of highest posterior

density credible intervals. Bias was measured as the average difference (over the M repeated

simulations) between a Bayesian point estimate (posterior mean or median) for k and the

simulation truth (k = 172). Coverage is reported for 95% and 99% HPD credible intervals
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calculated according to the method proposed by Chen and Shao (1999). Results are

summarized in Table 3.

Inference about the unknown true diversity relies on the assumed model and its ability to

recover the salient features of the true sampling distribution from the observed counts.

Inference under none of the models attains both a precise and close estimate of true

diversity. However, inference under the proposed semi-parametric approach compares

favorably with the other models in terms of small bias and high coverage. We believe that

this is mostly due to the flexibility of the Bayesian semi-parametric specification, which

does not constrain the sampling distribution to a specific shape. Also, compared to the

parametric approaches, the lengths of the credible intervals (CI) under the Bayesian semi-

parametric model are neither too tight nor too large to make inference meaningless. With

respect to the 95% and 99% HPD credible intervals and the observed over coverage, we note

that the (frequentist) coverage need not exactly match the nominal (posterior) probability of

the C.I. In particular, in non-parametric Bayesian inference there is no equivalent to the

Bernsteinvon Mises theorem, which states that credible sets for parametric models are

asymptotically equivalent to confidence regions based on maximum likelihood estimators

(see Freedman, 1999). We refer the interested reader to recent work that attempts to provide

a better understanding of frequentist properties of nonparametric Bayes procedures, e.g.

Knapik et al. (2011) and Castillo (2012). In summary, our comparison confirms some recent

theoretical studies that have demonstrated that the sequence abundance distribution might be

too complex to be captured by simple parametric models (Sepúlveda, 2009). The Bayesian

semi-parametric approach provides a natural and flexible modeling choice to tackle TCR

diversity and gives a reasonable account of all uncertainties of the specific estimation

problem.

2.4. Estimation of SAGE Tag Abundances

We consider a SAGE library of normal colon epithelium tissue with a total number of 49,

610 recorded tags. Here, tags refer to the RNA fragments being counted in the experiment.

The library is publicly available on SAGE Genie (http://cgap.nci.nih.gov/SAGE, NC1

library) and has been analyzed by many authors (Zhang et al., 1997; Stollberg et al., 2000;

Morris et al., 2003). A total of 17, 703 distinct tags were observed from a healthy colon

tissue of a single individual. Most distinct tags were recorded with low counts: 75% of the

tags were observed once and 92% of the tags show frequencies less than five. However, tags

with low counts represent only 26.4% of the total mRNA mass expressed in the sample. This

skewed distribution with many scarce tags and few abundant tags is typical of SAGE

experiments (Morris et al., 2003). We fit model (2)-(3) to this dataset, with the following

choices of the hyperparameters. The base measure of the Dirichlet process is G* = Ga(1.0,

0.05) (mean=20, σ = 400), and the mass parameter is ν = 5.0, corresponding to E(L) ≈ 40.

This allows for a large range of λi values as well as flexibility in the estimation of the

density of the observed tag counts. We also investigated alternative choices of ν (not

shown). As expected, different ν did not affect the estimate of E(k | data) but only the

number of clusters in equation (2). We considered three values for the hyperparameter Ξ in a

Poi(Ξ) prior for k: Ξ = 17, 703, which corresponds to centering around the observed number

of distinct tags, k′, and is the most conservative estimate; Ξ = 25, 536, which is the number
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of unique tags estimated by Stollberg et al. (2000) in this normal colon tissue; and Ξ = 50,

000, as a realistic upper bound. The results are reported in Table 4 and suggest that the

estimate reported by Stollberg et al. might be slightly over estimating the true diversity of

tags, assuming similar bias as we observed in the simulation study.

Also, we note that the influence of prior assumptions is tempered by the evidence in the

data, as desired. Figure 4 summarizes posterior inference under Ξ = 25, 536. Figure 4(a)

plots the semi-parametric Bayes estimates versus the observed counts. The plot

demonstrates the shrinkage profiles relative to the empirical frequencies (diagonal solid

line), which are the maximum likelihood estimates (m.l.e.) under a Poisson model. In

particular, for censored sequences (with yi = 0) the posterior mean estimate inflates the

m.l.e. and reports E(λi|data) ≈ 0.9. The shrinkage profile induced by the semi-parametric

model is nonlinear, and affects the rare sequences more than the abundant ones. For

abundant sequences, posterior inference is driven only by the observed counts, and E(λi|

data) ≈ yi. Figure 4(b) shows the estimated distribution of sequence abundances λi. It is

highly skewed, with high probability mass on low copy number values and small mass on

extreme values.

3. A Model for Comparison across Biological Conditions

3.1. Multiple Samples

When the data include samples across different biological conditions, then the desired

inference extends beyond the estimation of the within sample abundances. The semi-

parametric Bayesian approach introduced in the previous sections can be extended to

accommodate the general case of sequence counts observed over several samples and

different biological conditions. Let T and C denote, respectively, the total number of

samples and conditions included in the data set.

As in Section 2, the total number of distinct sequences, k, is unknown due to sampling

variability. Data consist of counts yit of a sequence i in sample t = 1, …, T. Not all samples

may include the same set of sequences. This is similar to the censoring of zero counts in the

earlier setup, but now with many possible censoring patterns. The characterization of

censoring patterns requires some additional notation. We introduce binary indicators γit with

γit = 1 if a sequence i is present in sample t, otherwise γit = 0 and yit = 0. Then γi = (γi1, …,

γiT )′ is a binary vector that records the presence of sequence i. The set of k sequences can

be partitioned into subsets of units appearing in the same samples according to γi. We

denote the partitioning subsets by Κj, indexed by a running integer j = 0, …, 2T− 1. The

mapping from γi to j is determined by . Vice versa, the digits of j in a

binary expansion are the γit. Let  denote the common value of γi for all units in Κj, i.e.,

 for all i ∈ Κj. For example, if T = 2, then

.

Also denote by kj = |Κj| the size of each one of these sets, which corresponds to the number

of sequences with the same pattern of being observed and censored across samples. Here, k0

is the number of sequences with zero counts across all samples, i.e., the number of
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sequences that are zero-censored in all samples. The model construction proceeds similar to

before. We start with a model for censoring patterns, and then use a semi-parametric mixture

model to specify G(·). Specifically, we extend the model discussed in section 2 by assuming

that the distribution of kj is multinomial,

where  denotes the probability that a

sequence belongs to the partition set Κj. Similar to the discussion in Section 2 and in

accordance with the interpretation of the set Κ0, G+(0) denotes the probability of all zero

counts. Denote the set of recorded observations by y+ = {yit : yit > 0, i = 1, …, k, t = 1, …,

T} and let yi = {yit, t = 0, …, T}. Also, let k = (k, kj, j = 0, …, 2T−1)T. Then, we can write

, where G(yi) = Pr(Yit = yit, i ∈ Κj) is the sampling

distribution for the observations in the partition set Κj. Hence, the likelihood of the observed

counts can be expressed as

(5)

The framework is sufficiently general to accommodate a wide range of sampling

distributions. In the following examples we will again assume the random mixture of

Poissons models as in (2).

3.2. Multiple Conditions

We extend the model to study the abundance of sequences across different conditions. We

denote with xt = x, x ∈ {1, …, C} the type of tissue (or condition) collected in a sample t.

Without loss of generality, we assume that x = 1 refers to samples from a reference tissue

(e.g. a healthy cell), whereas x > 1 indexes treatment samples (e.g., tumor).

We replace the hierarchical model (3) by the more general

(6)

where nt is the size of sample t. Here, the abundance parameter λixt is normalized with

respect to the total level of abundance nt in each sample t, t = 1, …, T. This accounts for

between library variability (Baggerly et al., 2003). Also, we assume that the abundance rate

is condition-specific, i.e., λixt = λix for all samples with xt = x. When t is a library from the

reference tissue, we assume

(7)
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as in (2), i = 1, …, k. For other type of tissues, x ≠ = 1, we allow for the possibility of

different abundance rates λixt ≠ λi1. We augment the hierarchical model (3) by an additional

layer that models differential abundance across tissue types. We assume

(8)

For each condition, xt, the prior probability of non-differential abundance with respect to the

reference tissue is π + (1 −π) / (ν + 1), where the second term arises from the event that

two independent draws from P are tied and ν is the mass parameter of the DP as in Section

2.1. The marginal distribution of λix is P for any given x, i.e.,

. We introduce latent variables ωix ~ Bern(π) and

reformulate (8) as

The use of the latent variables ωix results in an augmentation scheme that simplifies

posterior simulation. In particular, it simplifies inference on the λix, hence the probabilities

of differential abundance, and hence also inference on k. Finally, note that we could always

modify equation (8) to obtain more detailed inference across conditions. In particular, if

three or more conditions were examined, it would be possible to include in (8) some terms

that allow for non-differential abundance among any pairs of conditions.

3.3. Comparison of T cell Receptor Abundances

Many recent studies have tried to better understand the protective role of regulatory T cells

against several autoimmune diseases, such as type I diabetes or lupus. Some of these studies

were designed to ascertain core differences between the TCR frequency presented by these

cells and their conventional T cell counterparts (Hsieh et al., 2004, 2006; Pacholczyk et al.,

2006, 2007; Wong et al., 2007; Ferreira et al., 2009; Sepúlveda et al., 2010). In this section

we extend the analysis reported in Section 2.2 to compare the abundances of each TCR

sequence across different conditions.

We analysed the data under model (6) through (8) using the same prior specification as in

section 2.2. Additionally, we chose π = 0.9. This choice limits findings to a small set of

scientifically interesting prospects (Efron, 2008). For comparison we also considered π =

0.5. We will describe several comparisons. Each comparison is across C = 2 conditions. See

below for details. Let υi = Pr(λi1 ≠ λi2 | data) be the posterior probability of differential

abundance of TCR sequence i across the two conditions. When multiple comparison is set as

a Bayesian decision problem, the optimal decision rule for many common loss functions can

be defined as identifying a TCR sequence with differential abundance across cell type or

mouse strain whenever υi > δ for some threshold δ (see Müller et al., 2007 and Bogdan et

al., 2008). It is worth noting that the choice of π generally affects inferences over υi but not

the resulting ordering of the TCR sequences.
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We start by comparing the abundances of each TCR sequence in the diabetic mice data.

After pooling samples of the same cell type, we compare counts in regulatory T cells versus

conventional T cells. Figure 5 plots the posterior probability υi under the proposed model

versus the difference on a scale of base 2 logarithm (log2 fold change) as calculated by the R

package EdgeR (Robinson and Smyth, 2007). According to this figure, TCR sequences with

differential abundances are usually associated with the highest log2-fold change difference

with few exceptions. The number of differentially abundant TCR sequences, i.e., υi δ,

decreases rapidly with increasing threshold δ. But for a fixed threshold δ, the number of

detections may depend on the choice of π.

Next we compared counts across healthy versus diabetic mice. Figure 6 shows the

comparison, for the regulatory T cells (panel a) and conventional T cells (panel b). The

figure plots the posterior probability υi versus the log2-fold change. The figure suggests that

there are no TCR sequences with differential abundance across mouse strains. For this

analysis we used π = 0.9. A qualitatively similar pattern was observed using π = 0.5 (results

not shown), but the corresponding posterior values were inflated.

For both comparisons, the R package EdgeR did not report any significantly different

abundances. The smallest p-value was greater than 0.25 in all cases. The method by

Robinson and Smyth (2007), which is implemented in the EdgeR package, relies on the

estimation of a common overdispersion parameter across samples. The estimation of this

overdispersion parameter improves with the sample size. However, in some cases, including

the T cell sequences considered in this work, the number of sequences available in each

sample is limited by the nature of the experiment. Hence, the estimation of a single

overdispersion parameter can be particularly challenging and it might affect the overall

inferential results.

3.4. Comparison of SAGE Libraries

The previous analysis is now extended to compare 4 libraries of normal and primary cancer

colon epithelium tissues. The same data have been analyzed by several authors before

(Zhang et al., 1997; Baggerly et al., 2004; Robinson and Smyth, 2007).

The number of unique tags recorded across the 4 libraries is 55,209. We implement model

(6) through (8), with π = 0.9, and the specifications of the prior hyperparameters as

described in Section 2.4. As a prior for the parameter k, we assumed a Poisson distribution

Poi(Ξ), with Ξ = 55, 209. This reflects the prior belief that most tags should already be

present in the collected libraries. This prior belief is in close agreement with the data as the

mean posterior of the overall k is 56,125 tags. In Figure 7, we plot the percentage of tags

assigned to the alternative hypothesis, i.e., 1/n∑i I(υi > δ), against the threshold δ.

We compare our findings with the methods discussed in Baggerly et al. (2003) and

Robinson and Smyth (2007). Baggerly et al. (2003) develop a beta-binomial sampling model

to account for within and between library variability and discuss the use of test statistics

 for the purpose of group comparisons. Here, p̂ij, j = 1, 2 is a

weighted sum of the proportions of tag i in each group and V̂
ij is an unbiased estimator of
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the variance of p̂ij. For example, p̂ij = ∑t:xt=j ωtp̂it, with p̂it = yit/nt and ωt = nt/∑t:xt=jnt.

Figure 8 compares the differences pî1 − p̂i2, as computed in Baggerly et al. (2003), against

the estimated differential expressions from our model, computed as E(λi1|data) − E(λi2|

data). Although the two quantities seem to be overall comparable, we observe many tags for

which the difference pî1 − p̂i2 is significantly different from zero according to Baggerly et al.

(2003) but are still assigned to the null hypothesis under the nonparametric prior. One of the

reasons for the discrepancy is that our approach allows for “borrowing strength” across tags,

whereas the test in Baggerly et al. (2003) works with one tag at a time.

Finally, we also analyzed the same data with the R package EdgeR (Robinson and Smyth,

2007) and found substantial agreement between that method and ours. More specifically, the

package EdgeR identifies 243 tags as differentially expressed with p-values less than 0.01.

Out of the first 250 tags that our method flags as differentially expressed, we identify the

same list as the one from EdgeR, except for five tags which are assigned probability of

differential expression equal to zero by our model. The difference in absolute counts in those

5 cases may be explained by the slightly larger size of the two tumor libraries.

4. Summary

We have discussed a coherent probabilistic framework for the analysis of sequence counts

data with a Bayesian semi-parametric approach. The strength of our modeling framework is

that it adapts easily to analyze datasets of different dimensions. In particular, we can apply it

to small but still overdispersed datasets as those described in sections 2.2 and 3.3, which

may pose a challenge for alternative methods that strongly rely on an accurate estimate of

some overdispersion parameter (e.g., Robinson and Smyth, 2007). Many experimental

techniques imply data censoring in the sense that many sequences might not be observed.

We account for unobserved sequences by explicitly modeling the discrepancy between

population and sample diversity. We showed how the shrinkage properties implied by the

nonparametric prior allow estimation of the true abundance of scarcely represented

sequences without affecting the estimation of true expression for more abundant tags.

Finally, we showed how our modeling framework can be extended to tackle the general

multicomparison problem across samples and conditions.

The implementation of the proposed method is computationally intensive. For example, for

the application in section 3, it took a C++ program 1 day to conclude approximately 1,000

iterations on an Intel Quad-Core processor with 4GB memory. The use of fast mixing

samplers, such as the Sequentially Allocated Merge-Split (SAMS) sampler by Dahl (2003)

is therefore particularly recommended. In particular, the application of this methodology to

modern sequencing technologies may require the use of fast approximation algorithms such

as the ones described in Blei and Jordan (2006), Daumé III (2007), Wang and Dunson

(2011). In addition, models of sequence formation as the one recently proposed by Gilchrist

et al. (2007) could be incorporated in the analysis to explicitly account for a varying

probability of generating an observable unit across sequences and experiments.
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Finally, the proposed corrections for censoring is not needed for all types of sequence count

data. For example, for high-throughput data the correction is less meaningful, simply

because censoring at zero counts is not an issue in that context with large total counts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
The rationale for a model based approach to inference on zero counts for sequence counts

data. The pins show the data yi listed in Table 2, healthy mouse Tconv 2, summarized as

empirical frequencies Ĝ(y), y = 1, 2, … Ad-hoc inference for G(0) could be based on

extrapolating the trend of Ĝ(y), y ≥ 1, to y = 0. The proposed approach formalizes this

extrapolation as model-based inference. The solid line shows the posterior expectation E(G |

data) under the proposed semi-parametric mixture of Poissons model. The gray lines show

draws from the posterior distribution G ~ p(G | y).

Guindani et al. Page 18

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2.
Boxplots of the posterior distribution of TCR diversity k for regulatory (Treg) and

conventional T cells (Tconv) across the different samples of diabetic and healthy mice.
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Fig. 3.
Relative abundance of 172 unique TCR sequences resulting from pooling all samples of

sick-mouse strain together.
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Fig. 4.
Analysis of SAGE library of normal colon epithelium tissue. (a) Posterior means E(λi|data)

on the vertical axis against observed counts yi on the horizontal axis. (b) Estimated mixing

measure G. The left panel zooms in to small counts, where the shrinkage with respect to the

maximum likelihood estimates is most noticeable.
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Fig. 5.
Comparison of TCR sequence abundances in regulatory and conventional T cells collected

diabetic mice. The figure plots υi versus the corresponding ranking based on the absolute

values of log2 Fold Changes as computed in EdgeR. The prior probability of differential

expression in (8) is set to π = 0.9 (a) and π= 0.5 (b).
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Fig. 6.
Comparison of TCR sequence abundances between diabetic and health mice: posterior

probability of differential abundances across distinct TCR sequences as function of their

ranking versus the corresponding ranking based on the absolute values of log2 Fold Changes

as computed in EdgeR for (a) regulatory T cells (b) conventional T cells.
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Fig. 7.
Percentage of tags that are declared differentially expressed versus the threshold δ in the rule

υi > δ to determine differential expression. See section 3.3 for details.
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Fig. 8.
Differential abundance estimated according to model (6) through (8) versus the difference of

weighted proportions p1̂ − p̂2 as in Baggerly et al. (2003) for the SAGE libraries considered

in section 3.3. The zoom to absolute differences less than 20 highlights the shrinkage

implied by the nonparametric prior.
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Table 1

Typical data of sequence abundances as counts of unique amino-acid sequences (left table) and summarized as

frequencies of counts (right table).

(a) Sequence Counts

unique sequence count

CAARGGLSGKLTF 40

CAAPRGGLSGKLTF 39

CAARTGGLSGKLTF 39

… …

CAARGADDNYQLIW 1

CAARGAKDNYQLIW 1

(b) Clonal size distribution

clonal size
(count)

frequency

1 22

… …

39 2

40 1
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Table 4

Posterior quantiles of tag diversity k according to different prior mean choices

Prior expectation Posterior quantiles

E(k) 0.05 0.50 0.95

17,703 19,934 21,371 23,124

25,536 21,279 23,437 25,541

50,000 24,962 28,218 31,763

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2015 April 01.


