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ABSTRACT
Familial hemiplegic migraine (FHM) is a rare subtype of migraine with aura. A
mutation causing FHM type 3 (FHM3) has been identified in SCN1A encoding the
Nav1.1 Na+ channel. This genetic defect affects the inactivation gate. While the Na+

tail currents following voltage steps are consistent with both hyperexcitability and
hypoexcitability, in this computational study, we investigate functional consequences
beyond these isolated events. Our extended Hodgkin–Huxley framework establishes
a connection between genotype and cellular phenotype, i.e., the pathophysiological
dynamics that spans over multiple time scales and is relevant to migraine with aura.
In particular, we investigate the dynamical repertoire from normal spiking (mil-
liseconds) to spreading depression and anoxic depolarization (tens of seconds) and
show that FHM3 mutations render gray matter tissue more vulnerable to spreading
depression despite opposing effects associated with action potential generation. We
conclude that the classification in terms of hypoexcitability vs. hyperexcitability is
too simple a scheme. Our mathematical analysis provides further basic insight into
also previously discussed criticisms against this scheme based on psychophysical and
clinical data.

Subjects Computational Biology, Genetics, Mathematical Biology, Neuroscience, Neurology
Keywords Inactivation, Hyperexcitability, Hypoexcitability, Familial hemiplegic migraine,
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INTRODUCTION
Familial hemiplegic migraine (FHM) is a rare monogenic, autosomal dominantly

inherited syndrome with hemiparesis during the aura phase of migraine. Three distinct

genetic mutations for FHM have been identified, in the CACNA1A calcium channel gene

(FHM1), in the ATP1A2 Na,K-ATPase gene (FHM2), and in the SCN1A sodium channel

gene (FHM3). It has been proposed that all three phenotypes reflect hyperexcitability in

the form of increased susceptibility for spreading depression (SD) (van den Maagdenberg

et al., 2007; Pietrobon, 2010). However, the functional connection between the molecular

findings and a facilitated generation of SD is unclear.

To determine the electrophysiological consequences of such a genetic defect, we

integrate a mutation of FHM3 into three types of computational models of neuronal
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dynamics. This allows us to bridge the gap between genotype and phenotype. A similar

approach was used by Clancy & Rudy (1999). We use a standard Hodgkin–Huxley model

for action potentials (AP) (Hodgkin & Huxley, 1952) and a model of SD (Hübel, Schöll

& Dahlem, 2014) to evaluate the change in the threshold of generating SD by tolerating

various brief intervals of transient ischemic attacks. Moreover, we use a model for anoxic

depolarization (AD) (Zandt et al., 2011) that is derived from a seizure model (Cressman et

al., 2009; Cressman et al., 2011) as a test of the robustness of our results.

The paper is organized as follows. In the Methods we introduce three computational

models and our method to incorporate measured tail currents in FHM3 (Dichgans et

al., 2005; Vanmolkot et al., 2007) into the Hodgkin–Huxley framework. In the Results

we present simulations and analysis of the wild-type and mutant models. We end with

the Discussion where we focus on three topics: (i) the appropriateness of the terms

hypoexcitable vs. hyperexcitable, (ii) the seemingly paradoxically increased susceptibility

to SD in the mutant model if one considers the firing rate, a measure that is usually used to

quantify slow neural dynamics, and (iii) the inadequate concept of a threshold as a quantity

measured by a single value.

METHODS
All three models are based on Hodgkin–Huxley type dynamics with different degree of

complexity from the classical model to a second generation with time-dependent ion

concentrations.

Hodgkin–Huxley model
The Hodgkin–Huxley (HH) model is one of the most widely used computational models

in neuroscience. It is a conductance-based neuron model (Hodgkin & Huxley, 1952) and

consists of four differential equations describing the membrane potential V and three

gating variables m, n and h that determine the conductances of potassium and sodium

channels. The change in membrane potential is proportional to the current that is flowing

across the membrane with the proportionality constant given by the capacitance of the

membrane Cm. The individual currents are modeled as the conductance gi of the respective

channel times the driving force, which is given by the difference between the membrane

potential and the respective ion’s reversal potential Ei, where i ∈ {K,Na,leak}. Note that

the conductance gj for voltage-gated channels, i.e., j ∈ {K,Na}, is given by the maximal

conductance ḡj times the respective gating variables as introduced below. The model takes

into account a sodium current INa+ , a potassium current IK+ , a leak current Ileak that is

carried by unspecified ions, and an applied current Iapp.

dV

dt
= −

1

Cm
(INa+ + IK+ + Ileak − Iapp), (1)

INa+ = ḡNam3h(V − ENa), (2)

IK+ = ḡKn4(V − EK), (3)

Ileak = gl(V − Eleak). (4)
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Table 1 Model parameters for the Hodgkin–Huxley model.

Name Value & unit Description

Cm 1 µF/cm2 Membrane capacitance

ḡNa 120 m/cm2 Max. sodium conductance

ḡK 36 m/cm2 Max. potassium leak conductance

gl 0.3 m/cm2 Leak conductance

ENa 50 mV Sodium reversal potential

EK −77 mV Potassium reversal potential

Eleak −54.402 mV Leak reversal potential

In the HH model the potassium current is modeled as a delayed rectifier current with

activation gate n while the sodium current is described by a transient current with an

activation gate m and an inactivation gate h. All gating variables are voltage dependent and

are given by the following equations:

dx

dt
=

x∞ − x

τx
with (5)

x∞ =
αx

αx + βx
and (6)

τx =
1

αx + βx
for x ∈ {n,m,h}. (7)

x∞ describes the steady-state of the gating variables and τx is the time constant.

The rate equations for αx and βx are voltage-dependent and given by

αm =
0.1(V + 40)

1 − exp(−(V + 40)/10)
, (8)

βm = 4exp(−(V + 65)/18), (9)

αn =
0.01(V + 55)

1 − exp(−(V + 55)/10)
, (10)

βn = 0.125exp(−(V + 65)/80), (11)

αh = 0.07exp(−(V + 65)/20), (12)

βh =
1

1 + exp(−0.1(V + 35))
. (13)

This model is capable of producing action potentials in response to depolarizations of the

membrane caused by an appropriate externally applied current Iapp. All model parameters

that were used in the simulations of the HH model can be found in Table 1. It is interesting

to remark that trying to study the effect of the mutation in a reduced two-dimensional

model in the phase plane did not lead to promising results because the mutation quickly

led to bistability, which is consistant with our results of a prolonged plateau of action

potential and early depolarization block in the form of bistability.
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Spreading depression model
The classical HH model neglects the time-dependency of ion concentrations caused by

spiking dynamics. Ions accumulate very slowly but also progressively due to the fluxes

across the neuronal membrane. Therefore, changes in concentrations become significant

either in the course of many rapid action potentials or under metabolic stress with

insufficient ion pump activity, such as during transient ischemic attacks. Hence both the

onset of spiking and also the response to reduced ion pump activity are of interest. These

can be modeled by the spreading depression model described in more detail by Hübel,

Schöll & Dahlem (2014).

This model is also based on HH dynamics, but uses several changes and extensions.

Instead of an unspecified leak current, a combined Na+–K+-leak current is used. The

equations for sodium and potassium currents, including a pump current Ip that is

introduced below, therefore change to

INa+ = (g l
Na + ḡ

g
Nam3h) · (V − ENa) + 3Ip , (14)

IK+ = (g l
K + ḡ

g
Kn4) · (V − EK) − 2Ip. (15)

Furthermore, the SD model uses dynamic ion concentrations to be able to model the

breakdown of the ion gradients that is observed during SD. The intracellular potassium

concentration Ki and extracellular potassium concentration Ke are modeled explicitly

as dynamical variables, while the intra- and extracellular sodium concentrations (Nai

and Nae) are computed from the potassium concentration due to the constraint of

electroneutrality

dKi

dt
= −

γ

ωi
IK+, (16)

dKe

dt
=

γ

ωe
IK+ + Jdiff(Ke) (17)

Nai = Na(0)
i − Ki + K(0)

i , (18)

Nae =
ωi

ωe
(Na(0)

i − Nai) + Na(0)
e . (19)

The factor γ converts currents to ion fluxes and depends on the membrane surface Am and

Faraday’s constant F:

γ =
Am

F
, (20)

ωi and ωe are constants describing the intra- and extracellular volume, respectively, and the

buffer flux Jdiff is

Jdiff = Fdiff(Kbath − Ke). (21)

An overview of all constants and the values that were used in the simulations can be found

in Table 2.
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Table 2 Model parameters for the SD model.

Name Value & unit Description

Cm 1 µF/cm2 Membrane capacitance

gl
Na 0.0175 m/cm2 Sodium leak conductance

g
g
Na 100 m/cm2 Max. gated sodium conductance

gl
K 0.05 m/cm2 Potassium leak conductance

g
g
K 40 m/cm2 Max. gated potassium conductance

Nai 27 mM/l ECS sodium concentration

Nae 120 mM/l ICS sodium concentration

Ki 130.99 mM/l ECS potassium concentration

Ke 4 mM/l ICS potassium concentration

ENa 39.74 mV Sodium reversal potential

EK −92.94 mV Potassium reversal potential

ωi 2,160 µm3 Volume of ICS

ωe 720 µm3 Volume of ECS

F 96,485 C/Mol Faraday’s constant

Am 922 µm2 Membrane surface

γ 9.556e−6 µm
2Mol
C Conversion factor

ρ 5.25 µA/cm2 Max. pump current

φ 3/ms Gating timescale parameter

Fdiff 3.75e−5/ms Diffusion parameter

Kbath 4 mM/l Potassium bath concentration

If ion concentrations are time-dependent, they actually change drastically during

neuronal activity. To still maintain homeostasis an ion pump has to be included that

pumps Na+ ions out of and K+ ions into the cell at a 3/2 ratio. The pump current thus

depends on the extracellular potassium and the intracellular sodium concentration. The

pump is modeled according to Barreto & Cressman (2011)

Ip(Nai,Ke) = ρ


1 + exp


25 − Nai

3

−1

(1 + exp(5.5 − Ke))
−1, (22)

with ρ being the pump current strength. Note that the pump current also shows up in the

equations for Na+- and K+-currents (Eqs. (14) and (15)).

As a result of the dynamic ion concentrations also the reversal potentials become

dynamic

Eion =
26.64

zion
ln([ion]e/[ion]i). (23)

The fast gating dynamics of the m-gate is modeled adiabatically as

m = m∞(V) . (24)
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Note that in this model shifted versions of the rate equations are used (Cressman et al.,

2009; Cressman et al., 2011)

αm =
0.1(V + 30)

1 − exp(−(V + 30)/10)
, (25)

βm = 4exp(−(V + 55)/18), (26)

αn =
0.01(V + 34)

1 − exp(−(V + 34)/10)
, (27)

βn = 0.125exp(−(V + 44)/80), (28)

αh = 0.07exp(−(V + 44)/20), (29)

βh =
1

1 + exp(−0.1(V + 14))
. (30)

Furthermore, the time constants are scaled by a factor φ

τx =
1

φ(αx + βx)
. (31)

In contrast to Hübel, Schöll & Dahlem (2014) we did not reduce the dimension of the

model further by assuming a linear or sigmoidal relation between n and h. Instead, h was

kept dynamic since the changes caused by the mutation affect the h-gate.

Anoxia model
As a test of the robustness of our results we investigate the effects of FHM3 also in a mutant

model of anoxia (Zandt et al., 2011). In fact, migraine with aura has been linked to a higher

risk of ischemic stroke (Kurth & Diener, 2012). For furthere details on the rationale, see the

Sec. Results.

The anoxia model is similar to the SD model, but uses five more dynamic variables, in

particular, it also models chloride ion dynamics. The other dimensions are due to explicitly

modeling intra- and extracellular ion concentrations and not assuming mass conservation,

and also electroneutrality is not assumed in this model.

Therefore, in addition to Na+- and K+-currents as in Eqs. (14) and (15) a chloride

(Cl−) channel is included, which contributes to the leak current

dV

dt
= −

1

Cm
(INa+ + IK+ + ICl) (32)

ICl− = g l
Cl(V − ECl). (33)

Intra- and extracellular ion concentrations are dynamic and modeled as

dNai

dt
= −

A

VF
INa+ (34)

dNae

dt
=

βA

VF
INa+ (35)

dCli
dt

= −
A

VF
ICl− (36)
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Table 3 Model parameters for anoxia model.

Name Value & unit Description

Cm 1 µF/cm2 Membrane capacitance

gl
Na 0.0175 m/cm2 Sodium leak conductance

g
g
Na 100 m/cm2 Max. gated sodium conductance

gl
K 0.05 m/cm2 Potassium leak conductance

g
g
K 40 m/cm2 Max. gated potassium conductance

gl
Cl 0.05 m/cm2 Chloride leak conductance

Nai 27 mM/l ECS sodium concentration

Nae 120 mM/l ICS sodium concentration

Ki 130.99 mM/l ECS potassium concentration

Ke 4 mM/l ICS potassium concentration

ENa 39.74 mV Sodium reversal potential

EK −92.94 mV Potassium reversal potential

φ 3/ms Gating timescale parameter

A/VF 0.044 mM
s /( mA

cm2 ) Conversion factor

β 2.0 Ratio ICS/ECS

ρ 28.1 µA/cm2 Na–K-Pump rate

G 66 mM/s Glial buffering rate for K+

ϵ 1.3 s−1 Diffusion rate

k∞ 4.0 mM Concentration K+ in blood

T 310 K Absolute temperature

dCle
dt

=
βA

VF
ICl− (37)

dKi

dt
= −

A

VF
IK+ (38)

dKe

dt
=

βA

VF
IK+ − Ig − Id. (39)

The same pump current as in the SD model is used (Eq. (22)). While the total amount of

sodium and chloride is constant, the extracellular potassium concentration can be buffered

by glial cells (Ig) and diffuse into and out of the blood (Id)

Ig = G


1 + exp


18 − Ke

2.5

−1

, (40)

Id = ϵ(Ke − k∞), (41)

h and n are dynamic and given by Eqs. (5), (6) and (25)–(31). The sodium activation gate

m is adiabatically modeled as in Eq. (24). For parameter values see Table 3.

Under physiological conditions this model behaves normally, as it responds with a single

action potential to a short current pulse and with periodic firing when a larger current
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Figure 1 Inactivation time constant as a function of membrane potential. (A) Voltage-dependent time
constant for mutation (τ∗

h ) and wild-type (τh). Insets show the response of h to a voltage-clamp protocol.
(B) shows the deinactivation (i.e., recovery from inactivation) process as a response to a step in voltage
from −10 mV to −120 mV. (C) shows the inactivation process by stepping the voltage from −120 mV to
−10 mV. The intersections of the h-curve with the 1/e- and (1 − 1/e)-lines, respectively, show the actual
time constants. For deinactivation τ∗

h is three-fold smaller than τh. For inactivation τ∗

h is three-fold lager
than τh.

of 1.5 mA/cm2 or more is injected (not shown). This model is also able to show seizure

activity (Cressman et al., 2009; Cressman et al., 2011).

Modified time constant function based on tail currents
The three models introduced above are given in their ‘wild-type’ formulation. The

‘mutant’ formulation has only a single difference, a modified INa current, as described

in the following and illustrated in Fig. 1.

From experimental data we know that the mutation leads to a two- to four-fold faster

deinactivation (Dichgans et al., 2005) and to a two- to four-fold slower inactivation

(Vanmolkot et al., 2007). We checked the robustness of our simulations within this range.

The simulations presented here, however, were performed at an intermediate value of a

three-fold change.

To change the responsiveness of inactivation and deinactivation accordingly, we need

to modify the time constant τh of the gating variable h. In the mutant model this time

constant is replaced by

τ ∗

h (V) = τh(V) · (κ1 · tanh(σ · (V − Vmax)) + κ2). (42)

The parameter Vmax shifts the sigmoidal tanh-function to the position of the maximum

of the time constant function τh(V). The slope factor of the sigmoidal tanh-function is

σ = 0.1 to ensure sufficiently rapid convergence to the limit of a three-fold change. The

other parameters are κ1 = 1.335 and κ2 = 1.665. These parameters result from the two

constraints κ1 + κ2 = f and κ2 − κ1 = 1/f for an f -fold change. We chose f = 3.
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To test the mutant time constant τ ∗

h , we simulated the experimental protocol performed

by Dichgans et al. (2005) in the computational model. The membrane voltage is clamped

to a holding potential of −120 mV and then stepped to a potential of −10 mV. At

−120 mV the h-gate is completely deinactivated, i.e., open. The step to −10 mV causes

the h-gate to inactivate. Therefore, we can measure the time constant of inactivation with

this protocol (see Fig. 1B). In contrast, holding the membrane potential at −10 mV and

then stepping back to −120 mV allows us to measure the time constant of the process of

deinactivation. At −10 mV the h-gate is completely inactivated, i.e., closed, and the step

to −120 mV causes the gate to deinactivate again, i.e., the gate reopens. An illustration

of this protocol can be found in Fig. 1C. By using this procedure and measuring the

two different time constants, it was assured that the chosen parameters lead to a 3-fold

slower inactivation and a 3-fold faster deinactivation. The main part of Fig. 1 shows the

inactivation time constants τh (black line) and τ ∗

h (green line) for the wild-type and mutant

model, respectively, as a function of the membrane potential V .

Note that in the Hodgkin–Huxley formalism, the gating subunits of a channel are

assumed to be identical and the inactivation and deinactivation as being independent.

Therefore this formalism cannot represent certain dependencies in a straightforward

manner in the kinetic states. For example, the inactivation of the Na+ channel (represented

by the h-subunit) has a greater probability of occurring when all subunits are open,

therefore the inactivation depends on activation (represented by the three m-subunits).

This violates the assumption of independent gating. Because of this independence in the

HH formulation, the dynamics of the h-gate is only described by a single time constant

function τh. An alternative ansatz is to use a Markov model to compute the occupancy of

the channel in its various kinetic states as done by Clancy & Rudy (1999).

RESULTS
Three different models are investigated, a model of action potentials (AP), a model of

spreading depression (SD), and a model of anoxic depolarization (AD). These models

describe normal cell functions in terms of the dynamic repertoire either without genetic

defect (three wild-type models) or with altered cell functions in FHM3 (three mutant

models). The three mutant models (AP, SD, and AD) are the same as the wild-type models

except that the INa current has a different voltage-gating mechanism in the fast gating

variable h. This is described in the wild-type model by the time constant τh and in the

mutant model by τ ∗

h (see Methods). The observed functional consequences of FHM3 occur

on time scales ranging from milliseconds to several tens of seconds.

Mutant AP with marked plateau, increased responsiveness,
delayed excitation block, and firing onset unchanged
We first consider the shape of APs. The AP is rather directly affected by FHM3 through

altered voltage gating in h. In other words, the results are consistent with the measured tail

currents and therefore the results for a mutant AP are even to some degree predictable. This

situation will change, when we model dynamics separated three orders of magnitude from

AP dynamics.
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Figure 2 Spiking model. Comparison of wild-type (A) and mutant (D) spiking behavior. The main
plots show bifurcation diagrams by varying the external current Iapp. For the wild-type model Hopf

bifurcations can be found at Iapp = 9.78 µA cm−2 and Iapp = 154.52 µA cm−2. For the mutant model

Hopf bifurcations occur at Iapp = 9.72 µA cm−2 and Iapp = 175.02 µA cm−2. (B) and (E) show behavior

in the oscillatory regime as a response to a constant input current of 12 µA cm−2. (C) and (F) show the
response of the models in the excitatory regime to a 3 ms long current pulse with amplitude 3 µA cm−2.

For a single AP stimulated by a transient applied current Iapp(t) of 3 ms duration and

3 µA cm−2 amplitude (labeled ‘excitatory’ in Fig. 2), we observe that the mutant model

compared to wild-type model leads to a prolonged AP with a marked plateau. This is

consistent with the larger inactivation time constant τ ∗

h (Vdep) of the mutant as compared

to the wild-type inactivation time scale τh(Vdep), cf. tail currents in Fig. 1B. Note that we

omitted before the explicit voltage dependency of the time constants, but now we make

the dependency explicit because the mutant time constant function τ ∗

h (V) is in FHM3

increased only for the regime of the membrane potential V being depolarised. This voltage

regime is indicated by the superscript “dep” and it corresponds to an inactivation of h

(closed h gates).

Furthermore and a bit more subtle to observe, the mutant dynamics reacts faster

to a sudden brief stimulation. The mutant model fires an AP that reaches its maximal

amplitude just below 2 ms after the Iapp is turned off again, while in the wild-type model

the maximal amplitude is reached only after about 3 ms. Again, this is also consistent with

the defect in the time constant function τ ∗

h (V). In this case it is explained by the decreased

and therefore faster regime τh(Vpol) compared to the wild-type. The mutant time constant

function τ ∗

h (V) is decreased for V being in the polarised resting state indicated by the
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Figure 3 Nonlinear firing-rate function F(Iapp) for wild-type model (black, solid) and mutant model
(green, dashed).

superscript “pol”, cf. tail currents in Fig. 1A. This is the regime of deinactivation (open h

gates).

The modified AP profile is also observed during spiking, i.e., in the oscillatory regime,

when a constant Iapp larger than—by definition (see below)—the rheobase current Irh

is applied. Individual APs in the spike train show this plateau (labeled ‘oscillatory’ in

Fig. 2). As a result the spiking frequency is reduced in the mutant model, despite the overall

increased responsiveness (Fig. 3). This decreased spiking frequency can be associated with

hypoexcitability as the neural response is usually characterized by the firing-rate function.

To get some further quantitative measures of the effects of FHM3 with regard to

excitability, we investigated the change of stability in the resting state by varying the

input current Iapp. This is a bifurcation analysis (Fig. 2). The determined two so-called

bifurcation points mark the beginning and end of the oscillatory spiking regime. The

first Hopf bifurcation point (HB1) is the onset of oscillation at a minimal value of Iapp,

which is the definition of the rheobase current Irh. For the wild-type model the first Hopf

bifurcation (HB1) is at IHB1
app ≡ Irh = 9.78 µA cm−2 and the second Hopf bifurcation (HB2)

at IHB2
app = 154.5 µA cm−2, which determines the excitation block as the oscillation ceases at

this point. For the mutant model these Hopf bifurcations occur at Irh = 9.72 µA cm−2 and

IHB2
app = 175.0 µA cm−2. The first Hopf bifurcations (HB1) are subcritical, while HB2 are

both supercritical. This means that if the Iapp is not slowly ramped towards the rheobase

current Irh, one can observe the oscillatory regime even before the Irh. Hence the two

firing-rate functions in Fig. 3 start slightly before the values given here for HB1, with the

mutant model starting again earlier.

With regard to the rheobase current, the values for the wild-type and mutant differ

by less then 0.6%, with the mutant value being smaller, which, at least in principal,

corresponds to hyperexcitability, though due to the small magnitude this seems negligible

for all practical purposes. However, the excitation block observed at the second critical

transition HB2 occurs at larger values of Iapp for the mutant model. The mutant channels

tolerate an increased maximal IHB2
app by 13% compared to the wild-type. This means that
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the mutant neurons exhibit oscillatory behavior in a larger range of applied currents.

Therefore, this shift establishes a gain-of-function, which indicates hyperexcitability.

To summarize, while the reduced firing frequency indicates hypoexcitability, increased

responsiveness and delayed excitation block indicate hyperexcitability.

Mutant more vulnerable to SD
We now focus on effects of FHM3 upon cellular functioning that occurs in the same neural

substrate that generates APs but on time scales at least three orders of magnitude separated

from AP dynamics, that is, effects that occur during several tens of seconds up to minutes.

This is the time scale of SD. It is therefore relevant for pathological conditions, for instance,

in migraine with aura. In accordance with this pathophysiological context, we select the

stimulations of SD in the wild-type and mutant model as rather large perturbations to

neural homeostasis such as a compromised energy supply during focal hypoperfusion

that induces and occurs in conjunction with migraine aura symptoms (Olesen et al., 1993;

Friberg et al., 1994).

In particular, we investigate the effect of a breakdown of the Na+-K+-pump upon the

membrane potential V and reversal potentials ENa and EK. For this purpose the maximum

pump rate ρ is linearly down-regulated to 20% of its physiological value within 10 s, then

ρ is kept at 20% for a variable time window, and finally ρ is linearly up-regulated back to

100% within 5 s. The stimulation trace of ρ is shown in Fig. 4 with the dashed-dotted line.

The specific choice of the variable time window is additionally marked for the wild-type

and mutant stimulation trace by an annotated two-headed arrow. Let us remark that in our

studies we also used two other perturbations, namely a transient increase in extracellular

K+ concentration (by increasing Kbath) and a large current pulse Iapp, with basically the

same results (not shown).

We determined the minimal duration of the variable time window with reduced pump

rate (20%) that is just no longer tolerated and results in a long lasting but transient

breakdown of the reversal potentials ENa and EK characteristic for SD. For this purpose

we increased the variable time window by 0.1 s steps. While the wild-type model could not

tolerate a period of 13.6 s of reduced pump rate at 20%, the mutant model was less robust

and could not tolerate a period of 7.2 s of reduced pump activity (Fig. 4). Therefore, the

mutant model is approximately only half (53%) as robust to periods of reduced ion pump

activity as the wild-type model is.

Shorter stimulation periods did not lead to full blown SD signals. In this case, the

spiking ceased about a second after the interval began that increased the pump rate

back from 20% to 100% (this interval lasts 5 s) and, more importantly, both membrane

potential V and reversal potentials ENa and EK recovered within only a few seconds back

to physiological values (not shown). Thus, SD profiles of these potentials, which followed

longer stimulation periods, are clearly distinguished by a all-or-none phenomenon. Not

only do membrane potential V and reversal potentials ENa and EK change dramatically

after the stimulation is off, but also full recovery from SD to the initial physiological values

takes very long. Of course recovery reaches the resting state only asymptotically. For up to
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Figure 4 Spreading depression model. Development of SD in wild-type (A) and mutant (B) models. A
SD is elicited by down-regulating the pump current to 20% of its maximal value for 13.6 s (wild-type) and
7.2 s (mutant), respectively (see blacked dashed line). The red and blue dashed lines show the temporal
development of the sodium and potassium reversal potentials.

one to two hours the changes in particular in ENa are observable, while the signals in Fig. 4

are shown only for 100 s. It is noteworthy that the neuronal state is already back to basic

functioning emitting APs if stimulated after the repolarization, that is, even if the resting

state is not fully recovered. Similar dynamics is described in other computational models of

SD by Kager, Wadman & Somjen (2000), Yao, Huang & Miura (2011) and Hübel, Schöll &

Dahlem (2014).

To summarize, in terms of susceptibility to SD the mutant model is hyperexcitable. This

seems to be in contrast to the major effect of the mutant upon the AP firing frequency that

indicates that the mutant model is hypoexcitable (Fig. 3). This will be further discussed in

the Discussion.

Effects in anoxia model consistent with SD model
Last, we study a model of AD (Zandt et al., 2011); the AD model shares many features

with the SD model but is more detailed (see Methods) and hence effects obtained with

this model serve as control to compare them with effects obtained from the SD model.

The model was first published to study slow waves after decapitation in a computational

model (Zandt et al., 2011). By repeating this with a mutant version of this model, our focus

is set very similar to the previous section. In the decapitation study, anoxia is modeled by
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Figure 5 Anoxia model. Response of wild-type (A) and mutant (B) membrane potential to a complete
breakdown of pump, glial and diffusion currents at t = 5 s (black dashed vertical line). Red and blue
dotted lines show the Na+ and K+ reversal potentials over time. The time from the onset of spiking until
the beginning of the excitation block is approximately 6.7 s without and 2.7 s with mutation.

completely switching off all pump, glial, and diffusion currents, see Fig. 5. In fact, Fig. 5A

with the wild-type model is a reproduction of the simulations performed by Zandt et al.

(2011).

Note that patients with migraine with aura are at greater risk for stroke (Kurth &

Diener, 2012). Thus there is a rationale to perform this comparison beyond the mere

confirmation of plausibility of our results obtained above with the SD model. However,

the multiplicity of potential links include not only common genetic risk factors but also

indirect links like common triggers outside the brain, e.g., microemboli caused by cardiac

shunts. Furthermore, the model investigated by Zandt et al. (2011) is derived from a model

suggested by Cressman et al. (2009). This model exhibits periodic bursting similar to

seizure activity. Both migraine and epilepsy have genetically based forms caused by various

mutations in genes, while the mutation in FHM3 differs markedly within the several

mutations in SCN1A therein that it is not associated with epilepsy (see Introduction).

Investigating the underlying ion homeostasis in the three conditions of epilepsy, migraine,

and stroke may yield interesting results in future investigations of computational models

that can unify certain dynamical aspects and link disease genotype to phenotype. However,

this is clearly beyond the scope of this study.
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In this study, let us only refer to the dynamics resulting from switching off all pump,

glial, and diffusion currents until the excitation block and compare the wild-type and

mutant model. After a gradual rise of the membrane potential that lasts in either case about

30 s (note that the simulated ‘decapitation’ occurs in Fig. 5 at t = 5 s), the membrane

potential reaches the AP threshold, subsequently resulting in a final burst of spiking. These

initial, less than a minute lasting, phases in the wild-type and mutant model are indeed

very similar to the initial phases in the SD model following a transient energy failure. A

minor difference is that the gradual rise is overall slower, but this is explained by a slightly

different geometry (larger extracellular space) and by the chloride ion dynamics (Hübel,

Schöll & Dahlem, 2014). The similarity supports the robustness of our results, as this model

is an established model showing anoxia (Zandt et al., 2011) and seizure activity (Cressman

et al., 2009; Cressman et al., 2011).

To summarize, also for AD the slow gradual fall of the potentials does not significantly

differ during the initial leak phase in the wild-type and mutant model, while once the

model is spiking the excitation block occurs about 2.5-times faster, corresponding to a

faster breakdown of ion gradients due to spiking, in the mutant model.

DISCUSSION
Our main result is that the mutant model is more susceptible to spreading depression (SD).

With our computational model, we bridge the gap between the tail currents measured

by Dichgans et al. (2005) and altered cell function that constitutes the phenotype of

migraine with aura. Importantly, in a computational model we can follow in all needed

detail how the complex interactions of channel dynamics lead to altered cell function. A

similar approach was taken, for instance, to link a genetic defect to its cellular phenotype in

a cardiac arrhythmia by Clancy & Rudy (1999).

In the discussion, we mainly highlight aspects of hypoexcitable vs. hyperexcitable and

the concept of a threshold.

Hypoexcitable vs. hyperexcitable
The increased susceptiblility to SD does not contradict the reduced firing frequency for a

given stimulation current Iapp, although this change in firing frequency indicates that the

mutant model is hypoexcitable.

Firing a single action potential (AP) is a form of cellular excitability manifested as a

transmembrane voltage jump without significant changes in ion concentrations. SD is a

form of cellular excitability manifested by massive changes in ion concentrations. There is

not necessarily a direct relation between the two excitable systems, not even with regard

to merely classifying terms such as hypoexcitable and hyperexcitable. Rather, AP and SD

can be viewed as largely independent phenomena, because while sharing the same neural

substrate, AP and SD are separated by time scales differing in three orders of magnitude

(see below). Notwithstanding, the massive breakdown of ion gradients in SD is, of course,

mediated by APs that occur on the fast time scale.

In our view, “hypoexcitable” vs. “hyperexcitable” is in any case too simple a classification

scheme even considering AP and SD in isolation on their respective time scale. To support
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this criticism of classifying neural dynamics in migraine, let us mention that this problem

was also addressed in the psychophysical and clinical contexts, see studies by Shepherd

(2001) and Coppola, Pierelli & Schoenen (2007) and references therein; further support

comes from the mathematical picture (below)—which are two sides of the same coin.

To illustrate this with only a single example, consider, as already mentioned above,

that the mutant channels exhibit an increased range of spiking activity with a delayed

excitation block by 13% compared to the wild-type. We argued that this larger spiking

range establishes a gain-of-function. Consider further the increased responsiveness of the

mutant model. Both indicate a form of hyperexcitability with regard to AP. In contrast,

the change in firing frequency of AP indicates at the same time that the mutant model is

hypoexcitable (Fig. 3).

SD susceptibility
How do these three diverse effects observed for APs (delayed excitation block, increased

responsiveness, and lower firing frequency) manifest on the longer time scale under the

condition of SD?

In terms of susceptibility to SD, the shifted excitation block (see HB2 in Fig. 2) might

misleadingly suggest that the mutant model is less susceptible to SD. This is similar to

the lower firing frequency that we considered above. Since the characteristic sustained

breakdown of the reversal potentials ENa and EK is ignited in our model only if the system is

driven by any stimulation into the excitation block, its delay in the mutant model seems to

suggest that a longer stimulation may be needed and therefore a higher threshold exists.

To show the actual situation in Fig. 4, we highlighted a critical time window by a gray

shade. This critical time window opens with start of the reduced pump rate recovery (from

20% back to 100%) and it closes with the beginning of the excitation block. Considering

only the delay of the excitation block and the low frequency, it may seem surprising at

first, this critical period lasts 3.4 s in the wild-type model and only 2.5 s in the mutant

model. Note that this ‘paradox’ can also be observed in the overall shorter duration of

the whole initial firing pattern in the mutant SD model. Our attention should be on

signals that can actually be measured in a clinical setting, hence our focus is on these

signals also in the presentation of the computational model, where we can “measure”

everything. The reduced pump rate corresponds to hypoperfusion signals. The excitation

block in SD corresponds to the first peak in an electroencephalography (EEG) signal,

cf. the work by Zandt et al. (2011) where the simulated membrane potential is averaged and

high-pass filtered, cut-off at 0.1 Hz, to estimate the EEG—although this EEG might only be

observable intracranially.

That the mutant model is more susceptible to spreading depression (SD) is exclusively

explained by the much larger amount of ions transferred across the membrane during

spiking. This, in particular the intracellular ion concentration, cannot easily be measured

even in an in vitro setup. In Fig. 4, we see this by the much steeper slope of the reversal

potential EK in the mutant model.
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The multidimensional concept of thresholds
The complex question about susceptibility requires a deeper understanding of what a

threshold is. In fact, the very reason why we have to get beyond the idea of “hypoexcitable”

vs. “hyperexcitable” as a useful characterization of the system (see above) is that there is no

one-dimensional ansatz to determine a threshold as a demarcation.

Before explaining this further, let us give one more explicit example. In other model

variants of SD (Kager, Wadman & Somjen, 2000), a stimulation of SD may even stop before

the excitation block is reached. In this case a sustained afterdischarge carries the system

into the depolarisation block that then marks the start of the actual SD events. Clearly, in

this case the depolarisation block cannot be considered being the actual threshold, because

the system is ‘before’ this point when the stimulation is already off again.

In general, excitability or all-or-none phenomena do not possess a threshold in terms

of single quantity, whether it is a particular membrane depolarisation that demarcates

the all-or-none response in the form of an AP or a critical duration of hypoperfusion

that demarcates the all-or-none response in form of SD. A detailed analysis of neural

models shows that a threshold is a multidimensional surface (manifold) not a single

number as first shown by FitzHugh (1955) and as discussed in a modern style by Mitry

et al. (2013) and applied to migraine by Dahlem (2013). So the actual use of computational

models goes far beyond numerical simulations. We gain a deeper understanding of the

principal mechanisms in precise mathematical relationships, of which we can only give a

very general overview in this paper.
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• Niklas Hübel performed the experiments, analyzed the data, wrote the paper,

contributed reagents/materials/analysis tools, reviewed drafts of the paper.

REFERENCES
Barreto E, Cressman JR. 2011. Ion concentration dynamics as a mechanism for neural bursting.

Journal of Biological Physics 37(3):361–373 DOI 10.1007/s10867-010-9212-6.

Clancy CE, Rudy Y. 1999. Linking a genetic defect to its cellular phenotype in a cardiac
arrhythmia. Nature 400(6744):566–569 DOI 10.1038/23034.

Coppola G, Pierelli F, Schoenen J. 2007. Is the cerebral cortex hyperexcitable or hyperresponsive
in migraine? Cephalalgia 27:1427–1439 DOI 10.1111/j.1468-2982.2007.01500.x.

Cressman JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. 2011. Erratum to: the influence of
sodium and potassium dynamics on excitability, seizures, and the stability of persistent
states: I. single neuron dynamics. Journal of Computational Neuroscience 30(3):781–781
DOI 10.1007/s10827-011-0333-0.

Cressman Jr JR, Ullah G, Ziburkus J, Schiff SJ, Barreto E. 2009. The influence of sodium
and potassium dynamics on excitability, seizures, and the stability of persistent
states: I. single neuron dynamics. Journal of Computational Neuroscience 26:159–170
DOI 10.1007/s10827-008-0132-4.

Dahlem MA. 2013. Migraine generator network and spreading depression dynamics as
neuromodulation targets in episodic migraine. Chaos 23:046101 DOI 10.1063/1.4813815.

Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD,
Herzog J, van den Maagdenberg AM, Pusch M, Strom TM. 2005. Mutation in the neuronal
voltage-gated sodium channel in familial hemiplegic migraine. The Lancet 366(9483):371–377
DOI 10.1016/S0140-6736(05)66786-4.

FitzHugh R. 1955. Mathematical models of threshold phenomena in the nerve membrane. Bulletin
of Mathematical Biology 17(4):257–278.

Friberg L, Olesen J, Olsen TS, Karle A, Ekman R, Fahrenkrug J. 1994. Absence of vasoactive
peptide release from brain to cerebral circulation during onset of migraine with aura.
Cephalalgia 14(1):47–54 DOI 10.1046/j.1468-2982.1994.1401047.x.

Hodgkin AL, Huxley AF. 1952. A quantitative description of membrane current and its
application to conduction and excitation in nerve. Journal of Physiology 117:500–544.
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