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Abstract

We present two novel automated image analysis methods to differentiate centroblast (CB) cells

from non-centroblast (Non-CB) cells in digital images of H&E-stained tissues of follicular

lymphoma. CB cells are often confused by similar looking cells within the tissue, therefore a

system to help their classification is necessary. Our methods extract the discriminatory features of

cells by approximating the intrinsic dimensionality from the subspace spanned by CB and Non-CB

cells. In the first method, discriminatory features are approximated with the help of Singular Value

Decomposition (SVD), whereas in the second method they are extracted using Laplacian

Eigenmaps. Five hundred high-power field images were extracted from 17 slides, which are then

used to compose a database of 213 CB and 234 Non-CB region of interest images. The recall,

precision and overall accuracy rates of the developed methods were measured and compared with

existing classification methods. Moreover, the reproducibility of both classification methods was

also examined. The average values of the overall accuracy were 99.22% ± 0.75% and 99.07% ±

1.53% for COB and CLEM, respectively. The experimental results demonstrate that both proposed

methods provide better classification accuracy of CB/Non-CB in comparison to the state of the art

methods.
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I. Introduction

Follicular lymphoma (FL) is the second most common lymphoid malignancy in the western

world [1]. FL is a disease with highly variable clinical course and is currently only curable

with stem cell transplant. In a subset of patients, FL behaves as chronic indolent disease that

may never require therapy, whereas in another subset it acts aggressively and if not treated

with chemo-immunotherapy will result in patient’s rapid death. Moreover, in a subset of

patients with an initial indolent presentation, FL may transform into the aggressive type

where symptomatic patients must be treated. The reason why chemo-immunotherapy does

not apply in indolent cases of the disease is due to the lack of evidence in how beneficial it

will be. Therefore, in order to avoid unnecessary toxicity, treatment is reserved for

symptomatic patients and for those with the aggressive form of the disease.

Oncologist’s clinical decisions at the time of initiation and type of therapy are guided by risk

stratification. Risk stratification for each individual patient is based on a combination of

clinical and laboratory findings, including morphological characteristics of tumor tissue.

The World Health Organization (WHO) adopted the method proposed by Risa et al., which

is the most established and recommended one for morphological risk stratification of FL

[39]. In this method, a pathologist stratifies FL cases into histological grades based on the

number of large cancer cells, called centroblasts (CB). CBs are counted manually in

standard microscopic high power fields (HPFs) from Hematoxilin and Eosin (H&E) stained

tissue biopsies of FL. Due to the time constraints, CBs are only counted in ten random

HPFs, sampled from sections of malignant follicles [2]. Using this method, FL cases are

categorized into three histological grades according to the average CB count per HPF; grade

I (0–5 CB/HPF), grade II (6–15 CB/HPF) and grade III (>15 CB /HPF). Grade III cases are

further sub-classified into grade IIIa and IIIb. Follicles of grade IIIa contain CBs along with

small cells called centrocytes, while follicles of grade IIIb contain pure populations of CBs

without admixed centrocytes [1]. Grades I and II are considered as low risk cases and may

not require treatment unless the patient is symptomatic. Grades IIIa and IIIb though are

evaluated as high risk and indicate an aggressive type of disease that requires immediate

life-saving chemotherapy.

Manual histological grading of FL is highly subjective and it requires considerable effort,

along with an extensive training. Furthermore, the analysis of even one HPF under a light

microscope by the pathologist is a time consuming process. This laborious and time

demanding nature of the method is the reason why only ten HPF are analyzed per case. This

limitation makes the method highly vulnerable to sampling bias in cases of tumors with high

tissue heterogeneity. Moreover, due to the subjective nature of this method, some prognostic

clues are not easily observed by all pathologists. Indeed, inter- and intra-pathologist

variability has been reported, which normally ranges from 61% to 73% [4, 5]. All these

issues directly affect the clinical decisions about the timing and the type of therapy.

Therefore, increasing the reliability and reproducibility of the process of histological grading

is of great importance.
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Computer-aided diagnosis (CAD) is increasingly used in medicine to aid with detection,

diagnosis and prognosis of diseases both in radiology and pathology [6, 7, 42, 43, 44]. The

quantitative analysis of histological tissues is the subject of several earlier studies and it has

been successfully applied in the diagnosis of prostate cancer [19], neuroblastoma (NB) [20,

21], and breast cancer [22]. To better understand the different stages of CAD and some of its

applications, a comprehensive review can be found in [23].

CAD has also been reported to be beneficial in classifying tissue subtypes associated with

various grades of FL [8-15, 45]. The classification is often achieved by extracting features

from H&E stained images of FL. These features can distinguish the cells from each other,

and thereby classify them into different categories. Several morphological and topological

features [13], or their combination with texture features [8, 12], as well as with graph-based

features [14] have been introduced. The most discriminating subset of these feature vectors

are often identified in a lower dimensional space, created by employing Principal

Component Analysis (PCA) that captures the main modes of variations in the data. Using

this approach, classification accuracies ranging from 75% to 85% are reported [8,12,13], but

this level of performance may not be sufficient enough for certain clinical applications.

Selection of the best and clinically meaningful feature sets, as well as the design of

classifiers, is an active area of research [8, 9, 12, 13].

In the current study, our aim is to classify the cells in FL images in a similar manner as

perceived by the pathologists when they review tissue of FL under a microscope. For this

purpose, we set out to develop a tool called Kyttaro (meaning cell in Greek) that acts as a

content-based image retrieval system. This system brings the most relevant cell images from

its library of cell images, which are already classified into CB or Non-CB categories.

In clinical practice, pathologists identify several features of CB, such as size, circularity,

coarse texture, multiple nucleoli, vesicular chromatin and accentuated nuclear membrane.

Moreover, pathologists also take into account the structures around the cell, while making a

decision. However, not every pathologist uses these features; part of the knowledge is

implicit. Therefore, we concluded that we should consider the whole image of a cell with its

surroundings as a feature vector. In that way, we incorporate all the features mentioned by

the pathologist. Furthermore, redundant features are removed by linear and non-linear

dimensionality reduction methods.

The section to follow provides detailed information about the database used in the current

study. Section III describes the proposed classification methods along with a preprocessing

step necessary to suppress noise from the images. The training process of each proposed

classifier, as well as its comparative analysis with the state of the art methods are presented

in Section IV. This is followed by a comprehensive discussion in Section V. Finally, the

conclusions are given in Section VI.

II. Image Database

Tissue biopsies of FL stained with H&E, from 17 different patients were scanned using a

high-resolution whole slide scanner (Aperio - Image Scope). Three board-certified

hematopathologists selected 500 HPF images of follicular lymphoma out of the scanned
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tissue biopsies. These 500 images are then examined by two expert pathologists by using a

remote viewing and annotation tool, developed in our lab, to mark CB cells on the HPF

images. Using these markings, a set of images of CB cells was created. Each image contains

the CB cell at its center and is of size 71 × 71 pixels (Figure 1a). Similarly, a second set of

same size images of cells that were not marked by any pathologist as CB was generated.

These images are called Non-CB cells and typically include centrocytes, histoicytes, dendric

cells (Figure 1b). All together, the database is composed of 213 CB and 234 Non-CB

images. These cases were selected from the archives of The Ohio State University with

Institutional Review Board (IRB) approval (Protocol 2007C0069, renewed May 13, 2013).

III. Method

In this section, we describe the process of noise removal in the cell images, as well as the

two proposed methods of cells classification in FL images. While the first method extracts

discriminative features by utilizing linear dimensionality reduction, the second one uses a

non-linear dimensionality reduction to extract the discriminative features. The test image is

first projected into a low-dimensional space (discriminating feature space). Then the class

label of the image is determined by a distance function. The image retrieval system of

Kyttaro tool will be based on the most efficient of the two classification methods.

A. Noise removal

Microscopic images show variation within them or between them due to the conditions

under which they were acquired. Tissue cutting, processing and staining during slide

preparation are some of the steps that cause these variations, making it difficult to perform

consistent quantitative analysis on these images [40]. Therefore, all the images in our

database were first converted to grayscale and then standardized to partially compensate for

these differences. The new image after standardization is a centered, scaled version of the

grayscale image of a cell. Moreover, to reduce some salt-and-pepper type of noise while

preserving the inherent texture characteristics, we applied median filtering with a kernel size

of 5-by-5, to the standardized gray-scale images (see Figure 2).

B. Classification using orthogonal bases (COB)

The design of this classifier is inspired by the theoretical framework provided by Lars Elden

[38]. According to this framework, the CB/Non-CB classification problem can be

formulated as a minimization problem, where the objective is to minimize the least-square

error between a given image of CB/Non-CB and its low rank approximation. We assume

that we have n images of CB and the same number of images of Non-CB cells. Let any (i.e.

CB or Non-CB) cell image be a vector in a m -dimensional vector space, where m is equal to

the number of pixels in each image. Here, the vector entries are the intensity values at each

pixel. Within the m -dimensional vector space of all the images, there lie two different

hypothetical subspaces, one for the CB cells and the other for the Non-CB cells. We will

now present a detailed methodology to determine each hypothetical subspace which will

enable us to differentiate between CB and Non-CB cell images.

Let Ai ∈ ℝm×n be the matrix
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(1)

where columns are formed by concatenating n m -dimensional vectors of CB or Non-CB

cells in the training set. So, essentially each column corresponds to a unique CB or Non-CB

image from the set of n images. Unlike other popular methods, we created two different

matrices, one for CB and another one for Non-CB.

To remove the redundancy from each of these rectangular matrices, we can write Ai as:

(2)

where Ui ∈ ℝm × m and Vi ∈ ℝn × n are the orthogonal matrices, whose columns represent

the left and right orthonormal eigenvectors for Ai, respectively. Here, Σi corresponds to the

eigenvalues of Ai. Further, suppose that Ai has rank r. Then, matrices Ai can be written as:

(3)

where  is the kth m - dimensional orthonormal eigenvector of Ui,  is the kth n -

dimensional orthonormal eigenvector of Vi and  is the kth eigenvalue of Ai. Since m»n, in

case Ai has a full column rank, r would be equal to n. In that case r should be substituted by

n in equation (3) and the following equations.

Let:

(4)

Then Ai = XY can be written as an outer product expansion as:

(5)

Each of the terms  is an outer product of vectors uj and νj, weighted by the

eigenvalue σj.
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Equation (5) shows us that any new image of a cell z can be expressed in terms of the

orthogonal basis  as:

(6)

Since  is a scalar, we can rearrange the order of the factors to:

(7)

Now z is expressed as a linear combination of left singular vectors . The left

singular eigenvectors are an orthogonal basis for the column space of Ai so for the “image

space of CB” or the “image space of Non-CB.” We will refer to these eigenvectors as

“singular images.” Each coefficient in equation (7) is a product of two factors,  and σj.

The factor, , where • denoted the inner product of the two vectors, is jth

component of z relative to the orthonormal basis . Under the action of Ai, each ν
component of z becomes a u component after scaling by the proper σ. Hence, the

coefficients in equation (7) express the coordinates of the image z in terms of the singular

images .

The ordering of the singular images is based on the value of their corresponding

eigenvalues. The eigenvalues of ui are proportional to the values of the covariance matrix

among the images, which represent the second dimension of Ai. Therefore the eigenvector

with the highest eigenvalue points to the highest variance among the images. We assume

that the discriminating features of CB/Non-CB would be revealed in the directions pointing

towards the highest variance among the images. We therefore order the singular images on a

descending order of their corresponding eigenvalues.

In Figure 3 we present the grayscale version of the first three singular images in the “image

space of CB” and the first three singular images in the “image space of Non-CB.”

Reviewing these images, one can note that the first singular image may represent the size

feature of the cells because CB cells are typically bigger than Non-CB cells in size.

However, no immediate associations can be made with the features represented by the

following singular images.

The singular images make up the bases of the subspace of CB and Non-CB images. Any

unknown cell image can be classified as CB or Non-CB by calculating representations of the

image in terms of CB or Non-CB bases. The cell class whose bases approximate the

unknown image better in terms of least square error is selected as the class of the image.
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To determine which of the two bases of cell images better represent an unknown cell image

z, the norm of the residual vector is calculated in the least squares sense:

(8)

where ρ(z) denotes the norm of the residual vector  in each basis (it can be

ρ(z)CB or ρ(z)Non–CB when we have  and  corresponding to CB and Non-CB

singular basis vector images).

This problem can be restated in the following form:

(9)

where Uk = (u1u2…uk) and a is the linear combination of weights that need to be assigned to

each singular image uj. As mentioned before, the singular images, which consist of the

columns of Uk, are orthonormal, therefore . The solution of this problem is now

given by replacing the factor α in equation (9) by . The nice thing about this

formulation is that we do not need to compute the inverse while solving the least square

problem, which is generally the case. This makes it applicable to data residing in very high

dimensional space. In the end, we are calculating the norm of the residual vector as follows:

(10)

The classification criterion is defined like this:

Classification algorithm of method 1:

Training: For the training set of images of known CB and Non-CB cells compute the

SVD of each of the set of cells of the two kinds.

Classification: If ρ(z)CB ≤ ρ(z)Non–CB then z belongs to CB class otherwise z belongs to

Non-CB class.

The reason for assigning the unknown image to CB class in cases of a tie is because we want

to be conservative in the decision and leave the final decision to the pathologist.

C. Classification based on Laplacian Eigenmaps (CLEM)

A cell can be considered as a collection of numbers, each specifying light intensity. But this

collection also specifies the Cartesian coordinates of a point with respect to a set of axes

[47]. Therefore, any cell image can be identified with a point in an abstract image space.

The second classifier is based on preserving the similarities among the images of CB/Non-

CB cells by using Laplacian Eigenmaps (LEM). LEM is a non-linear dimensionality

reduction method which approximates the lower-dimensional manifold embedded in the
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abstract image space, while preserving the intrinsic spatial relationship among cell images

[31, 48]. In that way, it overcomes the limitation of linear dimensionality methods in which

the low dimensional space is approximated by projecting the data onto the eigenvectors. The

preservation of spatial relationship in LEM makes it relatively insensitive to outliers and

noise.

In order to achieve spatial relation preservation, an undirected, weighted graph G =<V, E>

of cells is constructed. This is the most crucial step of the LEM algorithm. The cell images

constitute the nodes, or vertices (V) of the graph and the approximate similarities among the

cells are represented by the edges (E) of the graph. Weights are assigned to the edges based

on the similarity values among the images of the cells, resulting in a weight matrix W. Two

metrics were considered, a dissimilarity measure (the Euclidean distance metric) and a

similarity measure (the linear cross-correlation coefficient metric), both preferred for their

simplicity.

Given k number of images of CB and Non-CB cells x1,..,xk in the abstract image space  ,

we construct a weighted graph with k nodes, one for each image, and the set of edges

connecting neighboring images to each other. An edge is put between nodes i and j if xi and

xj are “similar.” To define similarity, typically either the ε -neighborhoods or the p -nearest

neighbors approach is used. In ε -neighborhood approach, the similarity is defined by a

threshold ε without taking into account the number of the neighbors that one node might

have. In the p -nearest neighbors approach, on the other hand the p most similar images are

chosen as the most similar neighbors. The former approach is more geometrically motivated

but may lead to several connected images, in case of a bad choice of a low threshold ε.

Although the p nearest neighbors is less geometrically motivated, it is simpler in

implementation. Additionally, in the p -nearest neighbors approach, an isolated node might

end up having neighbors that have in fact very low similarity with it. In order to define

similarity, we use a combination of the ε - neighborhoods approach and the p -nearest

neighbors approach. In our method the ith node is connected to the jth node if it is in the

group of its p (p=10) closest neighbors (and vice versa), but also satisfies the following

criterion:

(11)

where dist is either the Euclidean distance or the cross-correlation coefficient metric, ε =

αmd with md being the mean score of the Euclidean distances or the cross-correlation

coefficients, depending on the metric used, among all the training images. In our case, the

cross-correlation coefficient was chosen empirically as the metric to reflect the similarities

among the cell images, as it provided better classification results. In the end, our approach is

a hybrid of ε -neighborhoods and the p -nearest neighbors approaches. The value of α was

determined experimentally as 1.15 with the assumption that the threshold should be close to

the value md. Therefore, we searched the optimal value of threshold in the range of [0.05md

1.5md] in incremental steps of 0.05.

Moreover, the weights are assigned by a heat kernel:
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(12)

By using the heat kernel approach while assigning weights to the edges of a graph, we end

up in a similarity preserving character of classification that emphasizes the natural clusters

in the images. Equation 14 holds only for small t so as the heat kernel to become

increasingly localized and be characterized by Dirac’s δ-function [30]. Therefore, this

approach is limited by the necessity to choose a value for the parameter t. In our work, the

value for t was chosen empirically as 5.

After constructing the graph, the next step of the method is the creating of the manifold on

which the cell images reside. The manifold is created by connecting image-nodes based on

their similarity and it spans a lower dimensional space. The problem of defining the

manifold can be considered as generalized eigenvector problem. It can then be stated as a

problem of finding the eigenvectors that satisfy the following equation:

(13)

where ν are the generalized eigenvectors, λ are the generalized eigenvalues, D is the

diagonal weight matrix with its entries being column (or row since W is symmetric) sums of

W (Dii = ΣjWji) and L = D − W is the Laplacian matrix or the Laplacian operator of the

graph. The use of the Laplacian operator of the graph in order to compute the eigenvectors is

the key to achieve the optimal embedding of the manifold. As proved in [30] the Laplacian

operator of the graph is an approximation of the Laplace-Beltrami operator defined on the

manifold. The use of the Laplacian operator of the graph results in the optimal embedding of

the manifold; therefore, its intrinsic geometric structure is reflected.

The ordering of the eigenvectors is based on the criterion of mapping the weighted

connected graph G to a line so that two nodes νi,νj, which are connected to each other, stay

as close as possible after the mapping. Let v = (ν1, ν2, …, νn)T be the map from the graph

to the real line. Then, the optimal eigenvectors are computed based on the minimization of

the following objective function:

(14)

As proven in [30], for any v,

(15)

Therefore, the vector νopt that minimizes equation (14) is given by the minimum eigenvalue

solution to the generalized eigenvalue problem of equation (13). In the end, the optimal

eigenvector is the one that satisfies the following equation:
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(16)

where νT Dν = 1 is a constraint to remove an arbitrary scaling factor in the embedding and

νT D1 = 0 is a second constraint applied to prevent the collapse of all vertices of G onto the

real number 1. This might happen in case of a connected graph with the value of 1 assigned

to each vertex. It is easy to see that 1 is an eigenvector with eigenvalue 0 and in case of a

connected graph, is the only eigenvector for λ = 1. Therefore, this constraint of orthogonally

should be added. The solution νopt is finally given by the eigenvector with the smallest non-

zero eigenvalue.

Having computed the eigenvectors that consist the low dimensional space spanned by the

manifold, the classification is achieved by computing the Euclidean distance among the

embedded cell images on the manifold (Figure 4). We use the p-nearest neighbors concept

(p = 3) to achieve a more accurate estimation of the “closeness” between two embedded

images. Then we create two distance variables, DCB for the Euclidean distance of any tested

image from CB cells and DNon–CB corresponding to the closest images of Non-CB cells

from the training set. The classification criterion can be then summarized as:

Classification algorithm of method 2:

Training: For the training set of images of known CB and Non-CB cells, create the

manifold in which the images lie by computing the optimum generalized eigenvectors of

the Laplacian equation.

Classification: For the jth image, if Dj, CB < Dj, Non–CB then image j belongs to CB

class otherwise image j belongs to Non-CB class., where Di, CB and Di, Non–CB the

Euclidean distance of image j from the closest to it images of CB cells and Non-CB cells

from the training set respectively.

D. Classification approaches implemented for comparison

For comparison purposes, in addition to our two classification methods, eight more (both

supervised and unsupervised) classification methods were implemented. Two of these also

use dimensionality reduction in order to reveal the most discriminating features of images of

CB and Non-CB cells. The difference among all the implemented classification methods is

the space on which classification is performed, which is either the image or a low-

dimensional feature space and the final decision for the classification is based on the

similarity criteria.

D.1. Unsupervised methods

1. Euclidean distance (ED): The simplest way to classify the cells is using distance

(dissimilarity) or similarity metrics. The most commonly used dissimilarity metric is the

Euclidean distance between the corresponding pixels in two images [31]. The classification

in that case is the same approach as of the p - nearest neighbors. We experimentally

determined the value of p = 3. Therefore, each test image is assigned a class label based on

the label of its three nearest neighbors.
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2 – 3. Correlation coefficient (CC) and mutual information (MI): As for other similarity

metrics, the cross-correlation coefficient, as well as the mutual information (MI) [33]

between two images of cells were examined. Again p nearest neighbors approach was used,

experimentally setting p equal to 17 and 5 for cross-correlation coefficient and MI methods,

respectively. As MI is based on entropy, which is a measure of histogram dispersion, this

metric is intensity-based, in contrast to the Euclidean distance and cross-correlation

coefficient, which are both color-based measures.

4. k-means: This is one of the most commonly used clustering methods and falls into the

general category of variance based clustering [35, 36]. Given the set of N = nCB + nNon–CB

images of cells, in real m -dimensional space ℝm (m = 5041), and an integer k that defines

the number of classes considered for classification (i.e. in our case k = 2 corresponding to

CB and Non-CB cells), the problem is to determine a set of k points in ℝm, called centers, so

as to minimize the mean squared distance from each image to its nearest center [34].

5. Fuzzy C-means(FCM): FCM is based on minimization of the following objective

function:

(17)

where γ is weighting exponent for uij which controls the fuzziness of resulting clusters and

can be any real number greater than 1, uij is the degree of membership of xi image in the

cluster j, xi is the ith of m -dimensional images (N images in total), cj is the m -dimensional

center of the cluster (C classes in total) and ∥*∥ is any norm expressing the similarity

between any measured data and the center, which in our case was the Euclidean distance

among the images. Each test image is assigned a class label based on the membership

function [37].

D.2. Supervised methods

1. Classification by Linearly Projection in Low Dimensional Space (CLPLDS): SVD

was used again in another, simpler way for dimensionality reduction and cell classification.

Using all the training set of images of both CB and Non-CB cells, we calculate the

eigenvectors that span the orthogonal eigenspace of all the images of both kinds of cells, and

we then project the unknown image on this low dimensionality eigenspace. Again, the

eigenvectors were ordered in a sequence of the descending eigenvalues. The projection of

the image onto the subspace spanned by only a few eigenvectors would well characterize the

cells into the CB and Non-CB. Classification was achieved by calculating the dissimilarity

among the projected images, using the Euclidean distance. The smaller the score of the

Euclidean distance among the projected unknown image and the projected image of CB

from the training set, the more chances the unknown image to be a CB (and vice versa when

comparing to a Non-CB from the training set). p -nearest neighbors (p = 3) approach was

once again used in order to estimate the closeness of each unknown image to each class of

cells.
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2. Classification using Linear Discriminant Analysis (CLDA): Since LDA is a data

classification rather than a feature extraction method (as SVD), it was used along with SVD

in order to maximize the ratio of between-class variance to the within-class variance in the

training data set, guaranteeing in that way maximal separability. The projected training and

testing images in the eigenspace spanned with the eigenvectors calculated by SVD were

used as input to the LDA algorithm. The measure of closeness is the log of the probability

density function of the testing image, multiplied by the class’ prior probabilities. In the same

time, the probability density function of the testing image is based on the number of the

neighboring to it images in each class. LDA then assigns labels (CB, Non-CB) to each of the

testing images of cells, classifying them to one of the two classes. Using LDA, the

distribution of the features extracted through SVD is better differentiable.

3. Classification by optimizing on the Least Squares objective function with a penalty
on the L1-norm of the parameters (Lasso): Bridge regression, a special family of

penalized regressions of a penalty function Σ|βj|γ with γ ≥ 1 is considered in this work as a

classifier for CB and Non-CB images. Consider the linear regression problem y = Xβ + ε,

where y is a m-dimensional test image, X is a m-by- n matrix formed by concatenating the

training CB or Non-CB cell images, β is the n -dimensional vector of parameters and ε a m-

dimensional vector of independent and identically distributed random errors. Our goal is to

calculate the β parameters that minimize the squared error between X β and then use the

calculated β parameters to estimate this squared error. The class, in which the squared error

is smaller, is the one that better represents the test cell image. We implemented the approach

mentioned in [3] to solve bridge regression for γ ≥ 1. Particularly they developed a simple

algorithm for the lasso by studying the structure of the bridge estimators. The non-

differentiability of the objective function in lasso was handled with “Shooting” algorithm

which cycles through the parameters in order. The shrinkage parameter γ and the tuning

parameter λ are selected via generalized cross-validation (GCV).

4. Quadratic discriminant Analysis (QDA) based Color Features Classification: Finally,

the performance of a recently proposed quantitative methodology was also examined here

[12]. This method was designed specifically for classifying CB and Non-CB cells in FL. The

method was based on training and testing of a quadratic discriminant analysis (QDA)

classifier. The novel aspects of that method were the identification of the CB object with

prior information, and the introduction of the principal component analysis (PCA) in the

spectral domain to extract color texture features. Both geometric and texture features were

used to achieve the classification. The average classification rate of that classifier was equal

to 82.56%. We will refer to this method as Color Features Classification (CFC).

IV. Experimental Results

In this section, we first describe the procedure to train both COB and CLEM classifiers and

subsequently we present the results of their performance in comparison with the

corresponding results of the state of the art classification methods.
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A. Training the classifiers

In order to train the classifiers, we divided the images of CB and Non-CB into training and

test sets using an 80% (training) - 20% (test) ratio. Due to the higher dimensional feature

vectors with limited sample size, the reliability of the proposed methods in extracting the

most discriminant features can be questioned. Therefore in order to provide a better

estimation of the performance of the tested methods, the pre-mentioned division was

repeated K times to yield the “Hold-out K-folds” cross-validation approach [41]. This is

considered as the outer loop of the procedure.

The CB and Non-CB images allocated for training were further subdivided into 90%-10%

portions, resulting in an inner loop. The division is again repeated K times. During each

iteration of the inner loop, the optimal number of eigenvectors and the optimal manifold of

embedded training images of CB and Non-CB classes were extracted based on the optimal

number of generalized eigenvectors while training COB and CLEM respectively. The

optimal number of eigenvectors during training of COB and the optimal manifold during

training of CLEM are chosen based on classification result of the 10% sub-testing images.

Moreover, in case of training COB, all the training images (i.e. 80%) are used at the outer

loop, whereas in case of training CLEM, only the 90% of the training images are used at the

outer loop.

Empirically, K is set to 10 in both approaches. An overall flow chart of the proposed

classification scheme can be viewed in Figure 5.

B. Demonstration of the results

In order to evaluate the performance of various approaches described in the methods section,

we used the two commonly used metrics: precision and recall. Furthermore, the overall

accuracy was computed to evaluate the classifier.

Precision is defined as the ratio of the number of correctly classified cells to the total

number of classified cells:

(18)

where tp (true-positive) corresponds to the sum of the classified CB or Non-CB cells and fp
(false-positive) corresponds to the sum of the misclassified CB or Non-CB cells.

Recall is defined as the ratio of the number of classified cells to the number of cells expected

to be classified:

(19)

where tp corresponds to the sum of the classified CB and Non-CB cells and fn (false-

negative) corresponds to the sum of the non-classified CB and Non-CB cells.
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Overall accuracy (OA) is defined as the ratio of the number of correctly classified CB and

Non-CB cells to the total number of classified cells

(20)

where tp, CB corresponds to the number of cells correctly classified as CB, tp, Non−CB

corresponds to the number of cells correctly classified as Non-CB, nCB is the total number of

classified CB cells and nNon−CB is the total number of classified Non-CB cells.

Table I demonstrates the results from the COB when no noise removal is applied. Table II

on the other hand demonstrates the results of classification using COB when only

standardization was applied, whereas in Table II, the corresponding results after applying

median filtering are demonstrated. Tables IV through VI show the corresponding results for

the CLEM approach. The results in all six tables correspond to the average performance of

each iteration during which the images were divided into training and testing sets with 80% -

20% ratio.

In Table VII the classification results of the other methods are presented for comparison

purposes. In case of the methods CLPLDS, CLDA, Lasso, CFC, COB and CLEM, which are

all supervised methods, the best classification results achieved during ten testing iterations

are presented. It should be noted that the particular pre-processing steps, which improves the

performance, are part our proposed methods. Therefore, no preprocessing was applied to the

images in case of all the implemented methods. Furthermore, it is interesting to see how the

classification depends on the number of terms in the CB-basis or Non-CB-basis, in COB,

CLDA and CLPLDS. In Figure 6 we show how recall changes depending on the number of

terms (up to a hundred) in the two bases.

Finally, we examined the consistency of COB and CLEM. Consistency in our case is

apprehended as the degree of agreement when applying a classification method in different

images of a cell, created based on different points inside its body (see Figure 7a). We

examined the consistency of our methods in 80 different cells (40 CB and 40 Non-CB).

Knowing the optimal center-point of each cell, marked by the pathologist, we tested the

methods in images of the cell created based on the closest to this, marking points. Closeness

is defined based on a radius around the original center of the cell (see Figure 7b). Taking

into account points which lie up to a radius of 7 pixels away from the original center (in

Figure 7b, Dmax = 7), we ended up with 224 different images of each cell (8 created based

on the points that lie 1 pixel away, 16 based on pixels lie 2 pixels away, 24 based on point

that lie 3 pixels away etc).

The results in the consistency are shown in Figure 8. These results were obtained after

applying all the necessary pre-processing steps (noise removal and standardization of the

images), as these led to the best results during training COB and CLEM (see Tables III and

VI). Out of the 40 tested original CB images, 78% and 88% were classified correctly in case

of COB and CLEM respectively. The classification results are reasonable considering that

40 images represent quite a small sample (19%) of the total amount of cell images used to

derive the results in all the presented Tables.
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On the other hand, the classification results in case of Non-CB were slightly higher (90%

and 85% for COB and CLEM respectively). Furthermore, one can notice that both in the

cases of CB, as well as Non-CB the classification accuracy is always above the threshold of

50%, even for 7 pixels away from the original center of the cell. On the contrary, it remains

consistent (almost equal to the accuracy in the original image) for up to 2 pixels away from

the center of the cell. Finally, the significant drop in accuracy in the Figure 8 of Non-CB

cells in large distances from the cell’s center (radius of 6 and 7) can be reasonably attributed

to the small size of a Non-CB. Due to that, there is a high chance that 6 or 7 pixels away

from the original center of the cell are not part of its body anymore.

Based on the results in Figure 8, we thought of examining the accuracy of our methods,

when taken into account the classification results of images of the cell created by the closest

(up to 7 radius distance) to original center pixels. In Figure 9 we see that, even considering

the results of points lying 3 pixels away from the center, accuracy still remains high and

close to the one of the original cell image, both for when applying COB or CLEM.

Moreover, this holds for both CB and Non-CB cell.

V. Discussion

The results in Tables I-VI indicate the effectiveness and reproducibility of our proposed

methods for the CB and Non-CB cell classification. They are effective because of high recall

and precision rates. They are reproducible because changing the training and test sets result

in similar performances. We observed that the subspaces spanned by PCA of each cell class

did not change drastically for different training sets, as this would result in low precision and

recall results in some iterations. Therefore, High Dimensional, Low Sample Size (HDLSS)

did not have a negative impact for this particular problem. These tables also demonstrate the

usefulness of the steps to remove the noise existed in the images (i.e. standardization and

median filtering). Preprocessing the input image to COB and CLEM with the median

filtering increased the average overall accuracy rate by 11.78% and 18.37% while reducing

the variance by 3.44% and 3.03%, respectively. These results justify our initial hypothesis

that FL images suffer from noise due to inconsistencies in the preparation phase. Therefore,

noise removal is necessary. Although we used median filtering for this study, other non-

linear filters with similar characteristics such as anisotropic diffusion filter (ADF) can also

be considered. ADF has the advantage of preserving the boundaries of the cells in the image,

however, this kind of filter is computationally expensive.

Time efficiency is very important in this application as the pathologist has to examine huge

images for every individual patient. Time efficiency is another quality of both COB and

CLEM, since only 750 ms and 900 ms are required for the classification of an unknown cell

respectively. It should be noted that Kyttaro was developed in Matlab ® (Mathworks,

Natick, MA) and it was not optimized for efficiency.

The results in Table VII indicate that our methods outperform some of the commonly used

or previously developed methods. Those methods use only features extracted from the image

while our methods utilize the whole images in the decision. Moreover, the results show the

importance of dimensionality reduction to reveal the most discriminative features. As
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expected, the methods that used this kind of approach (CLPLDS, CLDA, COB and CLEM)

showed the four best results among all the methods.

Furthermore, the results from Figure 8 indicate the consistency of our two proposed methods

with some tolerance to the selection of the cell location by the pathologist. These results

show that the pathologists don’t need to point to the exact same location to receive the same

results. Not every pathologist would identify the same exact pixel in the HPF FL image as

the center of that cell. In fact, as discussed later, inter-variability among pathologists is quite

common. In addition to that, the shape of the cells is not uniform. Therefore based on the

results in Figure 9, we concluded that it is better to take into account not only the marking of

each pathologist, but also the points around it in a radius to 3 pixels away, without risking on

the accuracy of the result. Experimental results indicate that CLEM method is very

susceptible to the values of its parameters. Therefore, the low recall results for Non-CB cells

may be due to non-optimal selection of its parameters. Optimization of the parameters of

different methods is beyond the scope of this study. In our future work, we will optimize the

parameters of our system and validate them on a larger dataset using some optimization

techniques [46].

In order to demonstrate the usefulness of the system, Belkacem-Boussaid et al., used the

input of two experienced pathologists to complete two different experiments on the test set

data [12]. In the first experiment the pathologists graded the images without the assistance of

our proposed CAD algorithms, whereas in the second experiment, they displayed the results

of the designed CAD on the same data set and asked them if either they agreed with the

results or not. In case there is a disagreement of judgment between the pathologist and the

CAD algorithms, the pathologist were free to change the grading. It was also noted that

these experiments were administered on different days for each pathologist. These

experiments revealed inter- and intra-reader variability between the grading of the two

pathologists. They noticed that the pathologists are not in concurrent in all cases. Inter- and

intra-reader variability errors are introduced during their subjective reading. This study

revealed that the intra- and inter-reader variability can be more than 25%.

VI. Conclusions

In this paper, we developed a new quantitative methodology to classify cells in a FL image

into one of two categories of cells (CB versus Non-CB) using linear and non-linear

dimensionality reduction.

The proposed methods could be proven to be a useful diagnostic tool that facilitates

pathologists in accurate and reproducible FL grading. Moreover, Kyttaro could be beneficial

to inexperienced pathologists by retrieving the most similar cells to the ones they have

chosen to examine. The proposed methods also incorporate the features mentioned by an

expert pathologist while performing classification. The performance of the developed

methods was compared with some commonly used and previously developed methods. The

current overall classification rates (99.22% ± 0.75% and 99.07% ± 1.53% obtained by COB

and CLEM classifier, respectively) are very encouraging considering inter and intra-reader

variability of the pathologists which is over 25%.
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As a future work, the presented methods will be further refined, so that the selection of the

cells in Kyttaro will be done automatically, instead of a manual selection by a user. This will

be done by integrating Kyttaro with previously developed algorithms for the detection of

cells from FL images [8, 10-14]. This integration needs to be carried out in such a way to

take advantage of the common features of both systems to improve the classification

accuracy and efficiency. Moreover, we will further develop an overall automated system for

the quantitative analysis of the pathological images of FL, by incorporating the classification

methods proposed in this study. Our vision is to translate these efficient classification

methods to clinical use. Towards this vision, computer-assisted systems will be regularly

used in clinical practice for cancer grading and prognosis. Such a system would have whole-

slide FL images as input and the analysis of the images will be done in different scales,

starting from a coarse level, in which follicles need to be segmented. Then, moving to a finer

scale, HPF images, created around these follicle regions, will be analyzed after

automatically detecting the cells in them. After the identification of the cells, the region

around each cell would be encoded by one of our proposed methods in order to assess

whether the cell belongs to a CB class or a Non-CB class. Depending on the number of CB

cells computed in the image, a grade for whole image would be assigned. We are in the

process of setting up a clinical trial to assess the effectiveness of this system.
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Figure 1.
Images of a CB cell (left image) and Non-CB cells (right image). The scanner’s resolution at

40X magnification is 0.25 μm/pixel, therefore the yellow lines indicate a physical length of

4 μm in the tissue.
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Figure 2.
RGB image of a CB cell (top left image), its intensity representation in gray scale (top right

image), the gray scale image after applying standardization (bottom left image) and the

filtered with median filter the same gray scale standardized image (bottom right).
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Figure 3.
Grayscale version of the first three singular images in the “image space of CB” (top three

images) and the first three singular images in the “image space of Non-CB.” (bottom three

images).
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Figure 4.
The cell images (CB image cells shown in a hue of blue, whereas Non-CB image cells

shown in a hue of red) that lie on the three dimensional manifold (it is consisted of the three

first eigenvectors) and the tested image (shown in black) which resides on the top left of the

manifold. This specific tested image cell would be classified as a CB image cell since it

resides closer to CB image cells.
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Figure 5.
Flow chart of the proposed scheme for classification of tested image cells into CB and Non-

CB classes. The classification method used was either COB or CLEM, both extracting

discriminatory features used in the classification of the tested image cells.
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Figure 6.
Results of CB precision (top), CB recall (second from top), Non-CB precision (third from

top), Non-CB recall (fourth from top), as well as the overall accuracy results (bottom)

relative to the number of eigenvectors (or singular images in case of COB) used in the four

supervised classification methods that use dimensionality reduction. Here we plot the results

of only the first 15 eigenvector, since the rest do not add any discriminative information of

the data. Results of methods that use linear dimensionality reduction (CLPLRDS, CLDA

and COB) are shown in green, red, and blue respectively, whereas for CLEM (non-linear

dimenionality reduction) results are in black.
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Figure 7.
(a) Images of a CB cell created based on different points inside its body. The middle image

is the image created based on the pathologist’s marking. (b) Image of a cell used on the

examination of COB and CLEM’s consistency. New images of the cell were created based

on pixels that lie on the colorful rectangulars shown in the figure (created based on a

distance d from the cell’s center, shown with a white arrow).
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Figure 8.
Average results in consistency of COB (blue) and CLEM (blck) for 40 CB cells (top) and 40

Non-CB (middle). Results in consistency are nothing more than the classification accuracy

of the new images of the cells, created based on pixels that lie radius pixels away from the

original center of the cell (0 point in x-axis). The bars represent the average results and their

range represents the standard deviation from this mean value.
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Figure 9.
Results of classification’s accuracy in COB (blue) and CLEM (black) for 40 CB (top plot)

and Non-CB (bottom plot), when taking into account the results of the cell’s images created

based on the close to the cells’ center pixels in various radius away from it.
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