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ABSTRACT Traditional lead optimization projects involve long synthesis and testing
cycles, favoring extensive structure-activity relationship (SAR) analysis and
molecular design steps, in an attempt to limit the number of cycles that a project
must run to optimize a development candidate. Microfluidic-based chemistry and
biology platforms, with cycle times of minutes rather than weeks, lend themselves
to unattended autonomous operation. The bottleneck in the lead optimization
process is therefore shifted from synthesis or test to SAR analysis and design. As
such, the way is open to an algorithm-directed process, without the need for
detailed user data analysis. Here, we present results of two synthesis and screening
experiments, undertaken using traditional methodology, to validate a genetic
algorithm optimization process for future application to a microfluidic system.
The algorithm has several novel features that are important for the intended
application. For example, it is robust to missing data and can suggest compounds
for retest to ensure reliability of optimization. The algorithm is first validated on a
retrospective analysis of an in-house library embedded in a larger virtual array of
presumed inactive compounds. In a second, prospective experiment withMMP-12
as the target protein, 140 compounds are submitted for synthesis over 10 cycles
of optimization. Comparison is made to the results from the full combinatorial
library that was synthesized manually and tested independently. The results
show that compounds selected by the algorithm are heavily biased toward the
more active regions of the library, while the algorithm is robust to both missing data
(compounds where synthesis failed) and inactive compounds. This publication
places the full combinatorial libraryandbiological data into the public domainwith
the intention of advancing research into algorithm-directed lead optimization
methods.
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Using biological data in “real time” to drive a chemistry
optimization program was suggested over 10 years
ago by several groups.1-7 At GlaxoSmithKline (GSK),

wehave retainedan interest in suchapproaches foranumberof
years and have made several attempts to drive traditional
lead generation or lead optimization projects in this fashion.
However, several factors contributed to only incomplete
results. The traditional make/test cycle can be very long for
anything but the most straightforward chemistry. This is
compounded by the fact that the algorithms tend to suggest
small numbers of noncombinatorial products. The extended
cycle times provide plenty of time for reflection and analysis,
which will inevitably compete with the suggestions of the
algorithm, particularly in the early stages. In addition, other
external factors come into play, such as structure-activity

relationship (SAR) from related series, which may make the
current template of less interest to the program.

A microfluidic-based chemistry and biology platform8

providing autonomous operation addresses many of these
issues and is ideally suited to a real-time biology-driven
optimization. Such systems offer the advantage of rapid
synthesis under controlled conditions, followed by almost
immediate measurement of biological response. When
guided by the appropriate software tools, such platforms
lend themselves to unattended autonomous 24/7 operation.
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The process iterates over the “μ-COSM” (collection of steps
and materials), using the SAR generated at each iteration to
design the choice of reactant and reactions for subsequent
cycles. The ultimate goal is to discover the optimumproduct-
(s) accessible from each μ-COSM in the minimum time.

We have successfully implemented the individual compo-
nents of such a system.9-13 However, traditional medicinal
chemistry-based SARanalysis becomes the bottleneckwhen
cycle times ofminutes can be achieved through automation.
Thus, for the system to operate effectively, an efficient design
algorithm is required to drive each iteration.

To facilitate development and validation of algorithms to
drive the autonomous selection process ideally requires access
to a full combinatorial data set of reasonable scope. However,
such data sets are relatively rare. Thus, to validate our approach
and to demonstrate the concept of autonomous optimization,
a large-scale experiment was undertaken with the following
goals:

(1) To establish a test environment for evaluating the perfor-
mance of microfluidic platforms, under development for
rapid synthesis and assay of compounds, by providing high-
quality compound samplesmade and purified by conventional
processes and high-quality assay data (in conventional
plate-based assays) to act as standards against which to
compare the corresponding output from the microfluidic
assay platform.

(2) To provide a test environment in which to evaluate algo-
rithms for potential autonomous compound selection, by
running in real time through 10 generations of synthesis and
assay using conventional processes, guided by a suitable
optimization algorithm (see below).

(3) To provide a uniquely complete data set against which to
assess the effectiveness of the above and other algorithms
for iterative lead optimization, by synthesizing (through
several different routes appropriate to theRgroups), purifying,
analyzing, and assaying a full 50� 50 sulfonamide array,
using conventional processes.

In this paper, we describe the results of this experiment,
as well as details of a genetic algorithm optimizer (GAO) devel-
oped specifically todriveourmicrofluidic system.The chemical
structures of a 50�50 library, synthesized in a conventional
manner, are disclosed with associated QC and biological data,
thus providing a unique and valuable data set for further
exploration and algorithmic development.

The GAO used to drive each iteration cycle is similar to
previous publications,1,2 and the general scheme is illustrated
in Figure 1. However, we have incorporated a number of
important additional features. In the language of the GA, each
reagent is an allele in a specific gene (product). The complete
library, or genome, is the collection of genes. The population
is the set of molecules (individuals) that have been, or are
to be, made. To start the process, the user provides the
algorithm with the genome and various optimization para-
meters. The algorithm generates the starting population
(each molecule being a combination of alleles from each
gene), and the compounds are synthesized and tested. The
population is updated with the screening results (scores),
and a new population is generated using genetic operators.
The process is repeated until convergence or a user-defined
number of iterations have been reached. Here, we highlight

several important features of the implementation that dis-
tinguish it from previous approaches, with in-depth details
provided in the Supporting Information.

Any experimental process, be that synthesis or assay, will
be prone to errors. Similarly, certain molecules may not be
synthesizable. Thus, a novel aspect of the algorithm described
here is to allow for these potential errors in the optimization
process. At each iteration, those individuals that were selected
to be a parent are considered for retesting. If the parent has
been tested less than a user-defined number of times, then it
will be flagged for retesting.

A proportion of random individuals can be a good way of
maintaining diversitywithin the population.Within the context
of a virtual array, it is possible to identify regions of the space
that have been poorly sampled. Thus, as an alternative to the
randomoperator, a seek operator was implemented to identify
such regions and focus the random generation there.

If GAO requests a test and there are no results available for
the test, then the user can do one of three things: add no entry
for the test in to the fitness file, addanentrywith fitness data, or
add an entry with “<NULL_FITNESS>” as the fitness entry.

In all cases, GAO will keep the individual for retesting and
will request that it be tested again at some future generation.
All untested individualswill be stored in the population file as
individuals without fitness data. If the user wishes to indicate
that the test cannot be performed and that GAO should
not request a retest, then the user marks the individual with
“<NULL_INDIV>” as the fitness.

Figure 1. Outline of the GAO process.
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The algorithm knows nothing about the chemical compo-
sition of the individual reagents (alleles) or the products.
Thus, we have implemented the ability to define similarity
between alleles. The similarity is defined in terms of distance
andneednotbe symmetric. In addition, allelesmaybegrouped.
Two alleles that are not in the same group have a similarity of
zero. An allelemaybelong tomore than one group. There are
many ways of defining similarity between reagents and
clustering or grouping compounds, and the implementation
leaves it up to the user to decide on the most appropriate
criteria to use, based upon the problemat hand. For instance,
a group of heterocyclesmaybelong to both a group of aromatic
ring substituents and a group of hydrogen bond-accepting
substituents. The similarity between products (genes) rather
than between the reagents (individual alleles) can also be
defined.Whenenabled, similarityandgrouping lead tomodified
selection conditions for crossover and mutation that take
account of the molecular or reagent similarity in addition to
the similarity in biological response.

If the user has defined an initial set of groupings or simila-
rities, howdo these relate to theactual biological data obtained?
Is it possible to learn appropriate groupings and thus generate
an implied SAR from the data? To answer these questions,
options have been added to re-evaluate the similarity levels
associated within the groups at regular intervals during the
optimization. The algorithm uses the standard deviation of
fitness within the group to redefine the group similarity.

To test theGAO,weuseddata froman in-house combinatorial
array of 7 amines by 80 acids on a template designed in a drug
discovery program. The compounds had pIC50 values varying
from 4 to 8.8. Data were not available on 24 members of the
array, and these were set to NULL_INDIV (see above). To make
the experiment more realistic, an additional 100 amines and
100 acids were selected at random from an in-house reagent
database and used to expand the library to 19260 compounds.
Activitydata for theadditional compoundswere set toa random
number on the interval 3.5-4.

The GAO was run with default settings and either in
optimization mode (crossover, 40%; mutation, 60%) or as
a randomwalk. The algorithmwas run to completeness, that
is, until all products had been selected, and the results
averaged over 50 independent runs (different random num-
ber seeds). The optimization performance is shown in Figure
2, for various generation sizes: 5, 10, 15, 20, 25, 30, and 50
(where generation size is the number of molecules selected
in that generation). The score represents the average activity
of the top 10 most active molecules in the population at that
point. The optimization works well compared to the random
walkwith the optimization runs converging after about 2000
molecules over all generation sizes.

Lookingmore closely at the early part of the curve (Figure 2b),
it can be seen that generation size has only a minor impact
on optimization performance except for a generation size
of 50. The algorithm remembers and can use all the data
generated, not just that from the last generation (see Sup-
porting Information). The results of this retrospective anal-
ysis suggest that the number of iterations is more important
than generation size per se. Smaller generation sizes allow
more efficient use of the information.

The results above show that the GAO can identify small
islands of activity efficiently from large compound sets. In
fact, the algorithm performs equivalently to a designed
subset synthesized as a combinatorial array. It is thus ideally
suited to the problemat hand,which is to drive amicrofluidic
synthesis and testing system for lead optimizationwhere the
cycle times mean that many iterations are possible. These
results gave us sufficient confidence to validate further the
approach by applying the algorithm in a prospective setting.

MMP-12 is a target of therapeutic importance, and in-house
high-throughput screening (HTS) had identified a series of
biaryl sulfonamides represented by 1, amenable to array

Figure 2. Mean activity of the top 10most active compounds selec-
ted so far as a function of population size. The results represent the
average of 50 runs at each generation size. (a) Overall performance
with the optimization runs as solid lines and the random runs as
dotted lines. (b) The early part of the plot up to a population size of
1000. The random runs all overlap in the lower curve.
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synthesis. Thus, this target and series were chosen for the
experiment. In accordance with the first goal above, com-
pounds were synthesized and screened iteratively off plat-
form using conventional methods as described in the Sup-
porting Information. The experiment involved two indepen-
dent synthetic efforts. The first was focused on the synthesis
of a complete 50 � 50 array with subsequent biological
testing (see the Supporting Information). The initial reagent
pool was selected with diversity inmind to allow exploration
of as comprehensive a chemical space as possible, while still
maintaining a reasonable physicochemical profile. The
reagents were selected with the aid of the ADEPT system,14

an in-house web-based application that provides tools for
identifying available reagents, calculating properties, refin-
ing the reagent list, and enumerating virtual libraries. An
important implication of the reagent selection approach is
that different chemistries were necessary in the synthesis of
the full library, such that a traditional combinatorial chem-
istry approach to the full array would not be feasible. Similar
issues will arise when attempting to move this chemistry to
the microfluidic platform, not so much because of the large
number of reaction schemes, as they can be implemented,
but because of a need to determine a priori the most app-
ropriate chemistry for any particular product. It is interesting
to note that the retest capabilities of the GAO provide one
approach to this problem and, in principle at least, the GAO
could learn from successful reactions for related reagents.

In a second independent effort, compounds were synthe-
sized in accordance with the results of the GAO selections.
Learning from the retrospective analysis, we chose to synthe-
size 14 compounds per generation. GAO was run with cross-
over, 50%; mutation, 40%; and random, 10%. To avoid the
scenario of early generations merely searching for active
start points, the first generation was seeded with two com-
pounds that were known to be active (A04B02 and A28B02),
while the remaining 12 were selected at random by GAO. No
structural knowledge (such as clustering and grouping fea-
tures of GAO) was used in this preliminary experiment,
although they would be anticipated to give more rapid
optimization. In total, there were 10 iterations of synthesis
and testing. All results are shown with respect to the data
from the full array for consistency, although the correlation
between the results was very high.

Detailed results for the full library are given in the Support-
ing Information, together with an indication of the genera-
tion from the GAO where applicable. The heat map for the
full library is shown in Figure 3. The reagents have been
sorted by their maximum pIC50 value. An alternative view of
the data is given in Figure 4. This presents a histogram of the
proportion of compounds within a defined activity range,
comparing the full library (red bars) to the GAO-optimized
selection (blue bars). From these figures, it is clear that the
GAO has indeed optimized the selection, favoring the higher
activity molecules within the data set. For example, consid-
ering a cutoff of pIC50>6, the GAO compound set has 68/
140 (48.5%) of compounds in this activity range as com-
pared to just 21.3% of the full array. Of course, while the
enrichment is good, not all of the most potent compounds
have been suggested within the limited set of compounds. Is

this a problem?Wewould argue not. Clearly, this question only
has value once all compounds have been made (benefit of
hindsight). We have already shown in the previous experiment
that, with enough iterations, GAO will locate all active com-
pounds significantlymore efficiently than a randomwalk. How-
ever, what is more important is that any subsequent lead
optimization is focusedon themost relevant region of chemistry
space. From Figure 3, it can be seen that SAR is tighter around
R2, and this is evident from the GAO output. Nine out of 10 top-
ranked reagents for R2 (sorting by most active compound)
have been covered with compounds having pIC50>6. The
“missing” reagent is B07, phenyl, which was not selected at all
during the limited number of iterations used here. However,
both p-Br and p-Me phenyl are included in the GAO set, thus
providing sufficient information to focus a further iteration.

Figure 3. Activity heat maps for the full library and the GAO-
optimized library. (a) MMP-12 pIC50 heat map for the full library.
(b) Heat map for the GAO library, solid squares; superimposed on
the full library heat map, open squares. The reagents are sorted by
the activity of the most potent compound containing the reagent.
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The results illustrate that the GAO is a robust optimization
process. Overall, 25% of the full library (620 compounds)
could not be synthesized, as shown in Figure 4 (red bars). A
further 7% (176 compounds) were inactive in the assay.
Thus, nearly a third of the library provided no or limited SAR.
Figure 5 shows the activity ranges for each of the 10 gener-
ations. As noted above, GAO can use the information from all
previous iterations so it is the fitness of the library as awhole
that should improve, which may be less apparent in any parti-
cular generation (e.g., if all of the most potent compounds
have already been made). Nevertheless, individual genera-
tions can provide interesting information on the progress of
the optimization. In the first generation, three of the mole-
cules could not be made, and a further two were inactive on
assay. The numbers of nonsynthesizable and inactive com-
pounds decrease over the next few generations and then
increases again as the GAO looks for new areas to explore.

In conclusion, the implementation of amicrofluidic-based
platform for compound optimization requires a combination
of robust technology and informatics to support the process.
The cycle times achievable on amicrofluidic platformmean that
alternatives to traditional medicinal chemistry optimization
strategies need to be explored as otherwise the interpretation

of the data and resulting decision-making becomes the
bottleneck. In this paper, we have described an optimization
procedure, GAO, that is based on the principles of a genetic
algorithm. GAO incorporates novel features that make it
particularly suited to the task. It is robust to missing data
and can suggest that compounds are to be remade and
retested. In a prospective experiment involving optimization
of a series of compounds against MMP-12, compounds were
synthesized and tested using conventional synthetic and
screeningmethodology according to the GAO suggestions in
cycles of 14 compounds. The full library of 2500 compounds
was synthesized independently to provide evidence that the
GAO did indeed optimize and find potent molecules. In just
10 cycles, or 140 compounds submitted for synthesis, a
thorough sampling of the active region of chemical space
was achieved, and active compounds were identified for
further investigation. The chemical structures of the full library
are disclosed with associated QC and biological data, thus
providing a unique and valuable data set for further explora-
tion and algorithmic development.

This proof of principle experiment illustrates that optimi-
zation algorithmsused inmanyotherdisciplines and industries
are applicable to medicinal chemistry, once the bottlenecks
of synthesis and screening are overcome. Although this optimi-
zation experiment was conducted on a single parameter
(MMP-12 inhibition), the underlying methods may readily
be adapted to direct multiobjective optimization.15

SUPPORTING INFORMATION AVAILABLE Full experimen-
tal procedures for synthesizing the compounds described, reagent
lists, QC and NMR data on key compounds, and the full experi-
mental data on the 50�50 array. This material is available free of
charge via the Internet at http://pubs.acs.org.
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