ACS**Medicinal**
Chemistry Letters

<pubs.acs.org/acsmedchemlett>

$_1$ A Novel ¹⁸F-Labeled Imidazo[2,1-b]benzothiazole (IBT) for High-2 Contrast PET Imaging of β -Amyloid Plaques

3 Behrooz H. Yousefi,[*](#page-3-0)^{,†} Alexander Drzezga,[†] Boris von Reutern,[†] André Manook,[†] Markus Schwaiger,[†] $_4$ Hans-Jürgen Wester, $^\ddag$ and Gjermund Henriksen *,†

 $\rm s$ †Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Strasse 22, 81675 ⁶ Mü nchen, Germany

 τ ‡ Lehrstuhl für Pharmazeutische Radiochemie, Walther-Meissner-Strasse 3, 85748 Garching, Germany

8 **S** [Supporting Information](#page-3-0)

9 ABSTRACT: ¹⁸F-labeled imidazo[2,1-b]benzothiazole ([¹⁸F] 10 8) was synthesized and evaluated as a tracer for cerebral β -¹¹ amyloid deposits (Aβ) by means of positron emission 12 tomography (PET). $[18F]8$ exhibits a high affinity to A β and 13 suitable brain uptake kinetics combined with a high metabolic 14 stability in the brain. In a double transgenic APP/PS1 mouse ¹⁵ model of Alzheimer's disease, we demonstrated a specific

16 uptake of $[^{18}F]8$ in A β -containing telencephalic brain regions. The specific binding of $[^{18}F]8$ to A β was confirmed by regional ¹⁷ brain biodistribution and autoradiography and correlated to immunohistochemistry staining. Analysis of brain sections of APP/

18 PS1 mouse injected with a cocktail of [¹⁸F]8 and reference compound [³H]PiB revealed that the two tracers bind to A β plaques

19 in the brain of mouse in a comparable binding pattern. [¹⁸F]8 represents the first high-contrast PET imaging agent for detection

²⁰ of Aβ plaques in transgenic mouse model of Alzheimer's disease and holds promise for transfer to a clinical evaluation.

- ²¹ KEYWORDS: Alzheimer's disease, 18F-labeled tracer for β-amyloid, IBT, β-amyloid plaques, positron emission tomography,
- ²² autoradiography, APP/PS1transgenic mice, neuroimaging

²³ Current tracer development for the noninvasive imaging of ²⁴ Alzheimer's disease (AD) is focused on markers of senile 25 plaques (SP) that consist of β -amyloid peptides (A β) with 26 positron emission tomography (PET).^{[1](#page-3-0)−[4](#page-3-0)} Several ¹¹C- and ¹⁸F- 27 labeled PET tracers have been provided, including $(N-[11]C-11)$ 28 methyl])-6-OH-BTA-1, Pittsburgh compound B $($ [^{11}C]PiB, 29 1a),^{[5](#page-3-0)} its ¹⁸F-labeled analogue derivative $3'$ -[¹⁸F]FPiB (Flute-30 metamol, GE-067, 1b), 6,7 6,7 6,7 [11 C]SB-13 (1c), 8 8 8 [18 F]Florbetaben 31 (1d).^{[9,10](#page-4-0)} [¹⁸F]Florbetapir (1e),^{[11](#page-4-0)–[13](#page-4-0)} [¹⁸F]BF228 (1f),^{[14](#page-4-0)} and $_{s1}$ 32 [¹⁸F]FDDNP¹⁵ (**1g**) (Scheme [1\)](#page-1-0).

33 Currently available ¹⁸F-labeled compounds ($t_{1/2}$ = 109.7 ³⁴ min) are hampered by a higher unspecific binding, i.e. to white 35 matter, as compared to their ¹¹C-labeled analogues ($t_{1/2}$ = 20.3) 36 min). Thus, despite the high concentrations of A β in advanced ³⁷ AD cases, the tracer uptake ratios AD patients/healthy controls 38 of $[^{18}F]$ FDDNP, $^{18}[F]$ Florbetaben, and $[^{11}C]$ PiB in brain 3[9](#page-4-0) regions known to contain A β have been found to be 1.3,^{[15](#page-4-0)} 1.5,⁹ 40 and $2,5,16$ $2,5,16$ $2,5,16$ respectively.

41 Further development in the field of $A\beta$ imaging aims at 42 providing tracers for $A\beta$ with improved opportunity for detection of less extensive amyloid pathology, that is, in patients that are not yet in an advanced clinical stage. 45 Therefore, new pharmacophores suitable for 18 F-labeling with improved brain uptake and clearance kinetics, combined with high metabolic stability in vivo and high binding affinity to A β - plaques, are required for advances in the field of Aβ-targeted radiopharmaceuticals.

Recently, we reported the synthesis and evaluation of $^{11}C-50$ labeled imidazo $[2,1-b]$ benzothiazoles (IBTs) as a new 51 pharmacophore for imaging $A\beta$.^{[17](#page-4-0)} Here, we report the synthesis 52 and evaluation of a novel 18 F-labeled 2-(p-methylaminophen- 53) yl)-7-(2-fluoroethoxy)imidazo $[2,1-b]$ benzothiazole $([$ ¹⁸F]IBT, 54 $[$ ¹⁸F]8). Compound 8 was compared with 1a for binding 55 affinity to A β fibrils in vitro, and $[^{18}F]8$ was used for the 56 evaluation of brain uptake kinetics in Balb-C mice. ⁵⁷ Furthermore, the properties of $\lceil {^{18}F} \rceil$ 8 were investigated in an s8 APP/PS1 transgenic mouse model of AD by means of in vivo 59 μ PET/CT, dual-tracer autoradiography, regional brain biodis- 60 tribution, and immunohistochemistry.

The IBTs 3−8, obtained in moderate to excellent isolated ⁶² yield (35−95%) in a high purity (>95% by HPLC), were ⁶³ characterized by means of LC-MS and NMR. The IBT ⁶⁴ derivative 3 was synthesized by direct coupling of 6- ⁶⁵ methoxybenzo[d]thiazol-2-amine and $N-(4-(2-bronoacetyl) - 66$ phenyl)acetamide 2 in ethanol at reflux temperature (Scheme $67 s2$ [2](#page-1-0)). Compound 3 was deacetylated by treatment with 2 M 68 s2 NaOH at 100 °C for 30 min under microwave heating. 69 Intermediate 4 was methylated using MeI in DMF to yield 5. ⁷⁰ Compound 5 was demethylated by BBr_3 in CH_2Cl_2 using 71 microwave irradiation at 120 $^{\circ}$ C for 30 min to yield 6. $\frac{72}{2}$

Received: March 30, 2011 Accepted: July 19, 2011 Published: July 19, 2011

Scheme 1. PET Tracers Evaluated in Clinical Trials

Scheme 2. Synthesis and Radiosynthesis of IBT 8^a

^aReagents and conditions: (i) EtOH, reflux, 2 h. (ii) 2 M NaOH, 100 °C, MW, 30 min. (iii) DMF, MeI, 90 °C. (iv) BBr₃ in CH₂Cl₂, MW, 120 °C, 30 min. (v) NaH, DMF, $[^{18}F]FETs$, 90 °C, 5 min. (vi) NaH in DMF, $F(CH_2)$,Br, 80 °C, 15 min. (vii) K₂CO₃ in DMF, ethylene glycol ditosylate, 100 °C, 15 min. (viii) DMF:CH₃CN (1:5), [K⁺/2.2.2]¹⁸F⁻, 120 °C, 20 min.

 The IBT scaffold is an electron-rich heteroaromatic system with a lipophilicity value¹⁷ suitable for in vivo imaging of targets in the brain. A further advantage is the opportunity of introducing the ¹⁸F-label by means of an ¹⁸F-fluoroalkyl 77 group connected to the phenolic oxygen. In this study, compound 6 was directly reacted with F(CH₂)₂Br to yield 8 and also with ethylene glycol ditosylate to yield the precursor for one-step radiofluorination (7) in DMF. For the radiosyn- $_{81}$ thesis, 7 was reacted with $\rm [K^{+}/2.2.2]^{18}F^{-}$ to yield $\rm [^{18}F]8$ after 20 min at 120 °C in DMF:CH₃CN (1:5). The one-step 83 procedure provided $[{}^{18}F]8$ in a moderate radiochemical yield (24 \pm 5%). Alternatively, $[^{18}F]8$ was prepared in a high radiochemical yield via a two-step 18F-fluorination (radio- chemical yield, 58 \pm 4%; total synthesis time, 55 min). Both procedures provided $[18F]8$ in a high radiochemical (>99%) and chemical purity.

For the determination of binding affinity of 8 to $A\beta$, fibrils of 89 $A\beta_{1-40}$ and $A\beta_{1-42}$ were prepared from the respective 90 monomers according to a published procedure.^{[18](#page-4-0)} The presence 91 of fibrils was confirmed by transmission electron microscopy at ⁹² 10 and 100 μ M concentration. The inhibition constants, K_{ν} of 93 **8** and of 1a versus $[{}^{3}H]$ 1a are presented in Table 1. \qquad 94 t1

The brain uptake kinetics of $[^{18}F]8$ was compared to that of 95 $[$ ¹¹C]1a at 5 and 30 min postinjection (Figure [1\)](#page-2-0) in Balb-C $_{96 \text{ ft}}$ mice $(n \ge 4)$. The measure of lipophilicity of $[$ ¹⁸F]8 was 97 determined at pH 7.4: $\log P_{\text{oct/PBS}} = 1.92$ $(n = 6)$. 98

Table 1. K_i Values (nM; $x \pm SD$, $n = 2$) Determined for Inhibition of $[^3\mathrm{H}]$ 1a Binding to A $\pmb{\beta}$ Fibrils

ACS Medicinal Chemistry Letters Letters Letters Letters Letters Letters Letters Letters Letters

Figure 1. Brain uptake of $\binom{18}{1}8$ as compared to that of the reference $[$ ¹¹C]1a in male Balb-C mice at 5 and 30 min postinjection (mean \pm SD, $n \geq 4$).

⁹⁹ For comparison, the key preclinical data of a currently 100 advancing ¹⁸F-labeled tracer for $A\beta$, [¹⁸F]Florbetapir, were 101 reportedly^{[13](#page-4-0)} an in vitro binding affinity to $A\beta$ aggregates in 102 postmortem AD brain homogenates of 2.87 ± 0.17 nM, an 103 initial uptake of 6.2% ID/g at 2 min pi and 1.84% ID/g at 60 ¹⁰⁴ min in male mice. The brain uptake kinetics measurements in 105 Balb-C mice at 5 and 30 min pi of $[^{18}F]8$ and $[^{11}C]1a$ show the ¹⁰⁶ desirable characteristics for an in vivo amyloid imaging agent ¹⁰⁷ with an excellent initial brain uptake and rapid clearance ¹⁰⁸ properties.

109 The metabolic stabilities of $[^{18}F]8$ and $[^{11}C]1a$ from in vivo ¹¹⁰ experiments with Balb-C mice at 10 and 30 min pi in samples ¹¹¹ of blood and brain tissue were determined as reported t_1 112 elsewhere, $t^{17,19}$ $t^{17,19}$ $t^{17,19}$ $t^{17,19}$ $t^{17,19}$ and the results are given in Table 2.

Table 2. Speciation of Radioactivity in Brain and Blood of Mice Injected with $[^{18}F]8$ and $[^{11}C]1a$ (% Intact Tracer^a)

	blood		brain	
tissue	10 min	30 min	10 min	30 min
\lceil ¹⁸ F \rceil 8	12 ± 3	5 ± 4	92 ± 4	$88 + 6$
\lceil ¹¹ C \rceil 1a	20 ± 5	11 ± 2	96 ± 1	92 ± 3
mт	\sim .			

^aThe extraction efficiency from the blood and brain homogenate samples was 64−95%.

In vivo $A\beta$ imaging with $[$ ¹⁸F]8 in Tg mice and cross- 113 confirmation of its imaging properties with ex vivo experiments ¹¹⁴ were performed by employing homozygous animals of the ¹¹⁵ $APP/PS1$ AD mouse model.^{[20](#page-4-0)} A multimodal approach was $_{116}$ followed, including μ PET/CT, ex vivo regional brain 117 biodistribution, and dual-tracer digital autoradiography. For ¹¹⁸ the PET studies, Tg animals $(24.0 \pm 0.4 \text{ months old}; \text{body }_{119})$ weight, 34.5 ± 3.6 g; $n = 7$) were injected with a single bolus of 120 $[^{18}F]8$ (11.7 \pm 4.1 MBq). Age-matched C57B6/J (25 \pm 2 121 months old; body weight, 34.8 ± 3.0 g; $n = 3$) were used as 122 controls and received a single bolus injection of $[$ ¹⁸F]8 (11.5 \pm 123 3.4 MBq). The PET images (Figure 2) were generated as 124Ω summed frames from 36 to 45 min pi. To obtain the anatomical ¹²⁵ reference, the CT image obtained in the PET/CT sequence ¹²⁶ was overlaid with a cerebral MRI template of an age-, gender-, ¹²⁷ and weight-matched Tg/control mouse (Figure 2). 128

The brain uptake kinetics in Tg animals and controls as ¹²⁹ measured by means of μ PET are presented in Figure [3A](#page-3-0). The 130 f3 time−radioactivity curves (TACs) from whole cortex and ¹³¹ cerebellum and the cortex/cerebellum ratio curves in Tg and ¹³² C57BL/6J control mice were calculated (Figure [3](#page-3-0)B). 133

For the multimodal analysis, a 25 months old Tg mouse was ¹³⁴ coinjected with a mixture of 13.5 MBq $[^{18}F]8$ and 4.0 MBq 135 $[3H]$ 1a into a tail vein and first scanned with a Siemens Inveon 136 μ PET/CT for 45 min in list mode. The control (28 months 137 old) mouse received a mixture of 10.0 MBq $[^{18}F]8$ and 3.7 138 MBq $[{}^3H]$ 1a. Animals were killed at 45 min postinjection. 139 Analysis of the data from dual-label autoradiography (tritium ¹⁴⁰ and fluorine-18) and brain biodistribution verified the cortical ¹⁴¹ uptake of $\lceil^{18}F\rceil8$ seen in the PET studies and also that the 142 uptake of $\lceil^{18}F\rceil8$ represents a true binding of $\lceil^{18}F\rceil8$ to cortical 143 Aβ plaques. Furthermore, the binding profile of fluorine-18 ¹⁴⁴ autoradiography channels is consistent with that of 1a (Figure 145 f4 [4](#page-3-0)) as well as with that of the results from $\mathbf{A}\beta$ immunohis- 146 f4 tochemistry (IHC).

On the basis of the results from μ PET/CT and ex vivo 148 experiments in this Tg mouse model, we conclude that $[^{18}F]8$ 149 has a specific binding to $A\beta$ plaques in hippocampal and 150 cortical regions. The time−activity curves (TACs) evidenced an ¹⁵¹ excellent brain uptake and clearance profile. From 5 min pi on ¹⁵² to the end of the PET examination (45 min), an excellent ¹⁵³ differentiation of cortex and cerebellum was observed in Tg ¹⁵⁴ animals. In contrast, the ratio of tracer uptake in cortex relative ¹⁵⁵

Figure 2. Orthogonal μPET images superimposed onto a MRI template. The PET signal represents the summed frames 36−45 min postinjection of $[{}^{18}F]8$ in (A) Tg and (B) control (coregistered μ PET images of all animals in each experimental group were summed to generate these images).

Figure 3. (A) μ PET mean TACs from cortical and cerebellar VOIs in Tg (n = 7) and control mice (n = 3) of [¹⁸F]8. (B) Mean of ratios in Tg (n = 7) and control mice $(n = 3)$ of $\lceil 18 \text{F} \rceil 8$.

Figure 4. Ex vivo dual-tracer autoradiography of a 12 μ m thick axial section of Tg mouse brain killed 45 min after coinjection of $[^{18}F]8$ and [³H]1a superimposed to the optical image. (A) Separated image of [¹⁸F]8 autoradiography. (B) Separated image of [³H]1a autoradiography. (C) Fused IHC images of anti- $A\beta_{40}$ and anti- $A\beta_{42}$ (gray scale).

¹⁵⁶ to cerebellum in controls animals approaches unity. The 157 potential of $[^{18}F]8$ as a tracer for A β is strengthened by the ¹⁵⁸ results from the ex vivo regional brain biodistribution and $_{159}$ comparison to $[{}^{3}H]$ 1a in dual-tracer autoradiography experi- $_{160}$ ments. It was confirmed that $[^{18}F]8$ and $[^{3}H]1a$ bind in a 161 similar manner to brain of APP/PS1 Tg mice. A PET study of $_{162}$ the performance of $[^{18}F]8$ in a younger cohort of Tg mice is ¹⁶³ currently in progress.

164 This proof of concept study demonstrates that the $_{165}$ imidazo[2,1-b]benzothiazole [¹⁸F]8 allows high-contrast imag- $_{166}$ ing of A β in an APP/PS1 mouse model of AD by means of 167μ PET. The favorable properties of an efficient and rapid ¹⁸F-168 labeling combined with an excellent brain entry/clearance $_{169}$ kinetics as well as a high affinity for the amyloid- β plaques and 170 high in vivo stability justify the further evaluation of this 171 compound for the detection of amyloid plaques in the living ¹⁷² brain at an early stage of the disease.

■ ASSOCIATED CONTENT 173

\bullet Supporting Information 174

Full experimental details for compounds synthesized, proce- ¹⁷⁵ dures for radiosynthesis, $\log P_{\text{oct/PBS}}$ measurements, description 176 of assays, metabolite analyses, HPLC purity tests, animal ¹⁷⁷ studies, PET imaging, and ex vivo evaluation of control mouse. ¹⁷⁸ This material is available free of charge via the Internet at ¹⁷⁹ <http://pubs.acs.org>. 180

■ AUTHOR INFORMATION 181

Corresponding Authors 182

*Tel: +49 89 4140-6340. Fax: +49 89 4140-6493. E-mail: [b.](mailto:b.yousefi@tum.de) ¹⁸³ yousefi[@tum.de](mailto:b.yousefi@tum.de) (B.H.Y.). ¹⁸⁴ *Tel: +49 89 4140-4586. Fax: +49 89 4140-4841. E-mail: [G.](mailto:G.Henriksen@lrz.tum.de) ¹⁸⁵ [Henriksen@lrz.tum.de](mailto:G.Henriksen@lrz.tum.de) (G.H.). 186

Funding 187

This work was supported by grants from Deutsche For- ¹⁸⁸ schungsgemeinschaft (DFG) (HE4560/1-2, DR 445/3-1, DR ¹⁸⁹ 445/4-1, and IRTG 1373). ¹⁹⁰

■ ACKNOWLEDGMENTS 191

We thank Katrina McGuire, Andrea Alke, Monika Beschorner, ¹⁹² Sybille Reder, Axel Weber, and Markus Lehmann for their ¹⁹³ excellent technical support; Antje Willuweit, Michael Schoor, ¹⁹⁴ Heinz von der Kammer for provision of APP/PS1 (Arte10) ¹⁹⁵ animals and their scientific support for IHF; and Prof. Axel ¹⁹⁶ Walch and his group for excellent technical support for ¹⁹⁷

nuorescence microscopy. 198
■ REFERENCES 199

(1) Selkoe, D. J. Toward a comprehensive theory for Alzheimer's 200 disease. Hypothesis: Alzheimer's disease is caused by the cerebral 201 accumulation and cytotoxicity of amyloid beta-protein. Ann. N.Y. Acad. 202 Sci. 2000, 924, 17−25. 203

fluorescence microscopy. 198

(2) Klunk, W. E. Biological markers of Alzheimer's disease. Neurobiol. 204 Aging 1998, 19 (2), 145−147. 205

(3) Selkoe, D. J. Alzheimer's disease: Genes, proteins, and therapy. 206 Physiol. Rev. 2001, 81 (2), 741−766. 207

(4) Selkoe, D. J. Imaging Alzheimer's amyloid. Nat. Biotechnol. 2000, 208 18 (8), 823−824. 209

(5) Klunk, W. E.; Engler, H.; Nordberg, A.; Wang, Y.; Blomqvist, G.; 210 Holt, D. P.; Bergstrom, M.; Savitcheva, I.; Huang, G. F.; Estrada, S.; 211 Ausen, B.; Debnath, M. L.; Barletta, J.; Price, J. C.; Sandell, J.; Lopresti, 212 B. J.; Wall, A.; Koivisto, P.; Antoni, G.; Mathis, C. A.; Langstrom, B. 213 Imaging brain amyloid in Alzheimer's disease with Pittsburgh 214 Compound-B. Ann. Neurol. 2004, 55, 306−319. 215

 (6) Koole, M.; Lewis, D. M.; Buckley, C.; Nelissen, N.; Vandenbulcke, M.; Brooks, D. J.; Vandenberghe, R.; Laere, K. V. Whole-body biodistribution and radiation dosimetry of 18F-GE067: A radioligand for in vivo brain amyloid imaging. J. Nucl. Med. 2009, 50, 818−822.

 (7) Nelissen, N.; Laere, K. V.; Thurfjell, L.; Owenius, R.; Vandenbulcke, M.; Koole, M.; Bormans, G.; Brooks, D. J.; Vandenberghe, R. Phase 1 Study of the Pittsburgh Compound B 224 Derivative ¹⁸F-Flutemetamol in Healthy Volunteers and Patients with Probable Alzheimer Disease. J. Nucl. Med. 2009, 50, 1251−1259.

 (8) Henriksen, G.; Yousefi, B. H.; Drzezga, A.; Wester, H.-J. Development and evaluation of compounds for imaging of beta- amyloid plaque by means of positron emission tomography. Eur. J. Nucl. Med. Mol. Imaging 2008, 35 (Suppl. 1), S75−S81.

 (9) Rowe, C. C.; Ackerman, U.; Browne, W.; Mulligan, R.; Pike, K. L.; O'Keefe, G.; Tochon-Danguy, H.; Chan, G.; Berlangieri, S. U.; Jones, G.; Dickinson-Rowe, K. L.; Kung, H. P.; Zhang, W.; Kung, M. P.; Skovronsky, D.; Dyrks, T.; Holl, G.; Krause, S.; Friebe, M.; Lehman, L.; Lindemann, S.; Dinkelborg, L. M.; Masters, C. L.; Villemagne, V. L. Imaging of amyloid beta in Alzheimer's disease with 18F-BAY94−9172, a novel PET tracer: proof of mechanism. Lancet

 Neurol. 2008, 7 (2), 129−135. (10) O'Keefe, G. J.; Saunder, T. H.; Ng, S.; Ackerman, U.; Tochon-

 Danguy, H. J.; Chan, J. G.; Gong, S.; Dyrks, T.; Lindemann, S.; Holl, G.; Dinkelborg, L.; Villemagne, V.; Rowe, C. C. Radiation Dosimetry 241 of β-Amyloid Tracers ¹¹C-PiB and ¹⁸F-BAY94−9172. J. Nucl. Med. 2009, 50, 309−315.

 (11) Wong, D. F.; Rosenberg, P. B.; Zhou, Y.; Kumar, A.; Raymont, V.; Ravert, H. T.; Dannals, R. F.; Nandi, A.; Brai1, J. B.; Ye, W.; Hilton, J.; Lyketsos, C.; Kung, H. F.; Joshi, A. D.; Skovronsky, D. M.; Pontecorvo, M. J. In Vivo Imaging of Amyloid Deposition in Alzheimer Disease Using the Radioligand 18F-AV-45 (Flobetapir F 18). J. Nucl. Med. 2010, 51, 913−920.

 (12) Kung, H. F.; Choi, S. R.; Qu, W.; Zhang, W.; Skovronsky, D. 18F Stilbenes and Styrylpyridines for PET Imaging of Aβ Plaques in Alzheimer's Disease: A Miniperspective. J. Med. Chem. 2010, 53, 933− 941.

 (13) Choi, S. R.; Golding, G.; Zhuang, Z.; Zhang, W.; Lim, N.; Hefti, F.; Benedum, T. E.; Kilbourn, M. R.; Skovronsky, D.; Kung, H. F. Preclinical Properties of 18F-AV-45: A PET Agent for Aβ Plaques in the Brain. J. Nucl. Med. 2009, 50, 1887−1894.

 (14) Kudo, Y.; Okamura, N.; Furumoto, S.; Tashiro, M.; Furukawa, K.; Maruyama, M.; Itoh, M.; Iwata, R.; Yanai, K.; Arai, H. 2-(2-[2- Dimethylaminothiazol-5-yl]ethenyl)-6- (2-[fluoro]ethoxy)- benzoxazole: A novel PET agent for in vivo detection of dense amyloid plaques in Alzheimer's disease patients. J. Nucl. Med. 2007, 48, 553−561.

 (15) Thompson, P. W.; Ye, L.; Morgenstern, J. L.; Sue, L.; Beach, T. G.; Judd, D. J.; Shipley, N. J.; Libri, V.; Lockhart, A. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer's disease pathologies. J. Neurochem. 2009, 109, 623−630.

 (16) Pike, K. E.; Savage, G.; Villemagne, V. L.; Ng, S.; Moss, S. A.; Maruff, P.; Mathis, C. A.; Klunk, W. E.; Masters, C. L.; Rowe, C. C. Beta-amyloid imaging and memory in non-demented individuals: Evidence for preclinical Alzheimer's disease. Brain 2007, 130, 2837− 2844.

 (17) Yousefi, B. H.; Manook, A.; Drzezga, A.; von Reutern, B.; Schwaiger, M.; Wester, H.-J.; Henriksen, G. Synthesis and Evaluation 274 of 11 C-labeled Imidazo $[2,1-b]$ benzothiazoles (IBTs) as PET tracers for Imaging β-Amyloid Plaques in Alzheimer's Disease. J. Med. Chem. 2011, 54, 949−956.

 (18) Lockhart, A.; Ye, L.; Judd, D. B.; Merritt, A. T.; Lowe, P. N.; Morgenstern, J. L.; Hong, G.; Gee, A. D.; Brown, J. Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer's disease PET imaging agents on beta-amyloid peptide fibrils. J. Biol. Chem. 2005, 280, 7677−7684.

 (19) Henriksen, G.; Hauser, A. I.; Westwell, A. D.; Yousefi, B. H.; Schwaiger, M.; Drzezga, A.; Wester, H.-J. Metabolically stabilized benzothiazoles for imaging of amyloid plaques. J. Med. Chem. 2007, 50, 284 −1089. 285

(20) Willuweit, A.; Velden, J.; Godemann, R.; Manook, A.; Jetzek, F.; 286 Tintrup, H.; Kauselmann, G.; Zevnik, B.; Henriksen, G.; Drzezga, A.; 287 Pohlner, J.; Schoor, M.; Kemp, J. A.; von der Kammer, H. Early-Onset 288 and Robust Amyloid Pathology in a New Homozygous Mouse Model 289 of Alzheimer's Disease. PLoS ONE 2009, 4 (11), e7931. 290