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Abstract The immune system has a dual role in cancer

development and progression. On the one hand, it can

eradicate emerging malignant cells, but on the other hand,

it can actively promote growth of malignant cells, their

invasive capacities and their ability to metastasize. Immune

cells with predominantly anti-tumor functionality include

cells of the innate immune system, such as natural killer

cells, and cells of adaptive immunity, such as conventional

dendritic cells and cytotoxic T lymphocytes. Immune cells

with predominantly pro-tumor functionality include a

broad spectrum of cells of the innate and adaptive immune

system, such as type 2 neutrophils and macrophages,

plasmacytoid DC, myeloid-derived suppressor cells and

regulatory T lymphocytes. The presence of immune cells

with tumor-suppressive and tumor-promoting activity in

the cancer microenvironment and in peripheral blood is

usually associated with good clinical outcomes and poor

clinical outcomes, respectively. Significant advances in

experimental and clinical oncoimmunology achieved in the

last decade open an opportunity for the use of modern

morphologic, flow cytometric and functional tests in clin-

ical practice. In this review, we describe an integrated

approach to clinical evaluation of the immune status of

cancer patients for diagnostic purposes, prognostic/pre-

dictive purposes (evaluation of patient prognosis and

response to treatment) and for therapeutic purposes.
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Introduction

It is now well accepted that the immune system has a dual

role in cancer development and progression. It can eradi-

cate malignant cells by an orchestrated action of innate and

adaptive branches, thus preventing tumor growth. On the

other hand, it can actively promote growth of malignant

cells, their invasive capacities and ability to metastasize.

This controversial role of the immune system is described

in the concepts of immune surveillance and immune edit-

ing. The specific role of several key immune cells and

cytokines has been elucidated in numerous in vitro studies,

animal experiments and clinical trials. Here, we will

describe the main types of immune cells with tumoricidal

and pro-tumorous activities focusing on the practical sig-

nificance of their evaluation in cancer patients for diag-

nostic (immune status of cancer patients), prognostic/

predictive (prognosis and response to treatment) and ther-

apeutic purposes.

We are now at the point when the broad knowledge

accrued by experimental immunology is entering clinical

practice. Laboratory techniques designed to evaluate

numbers, phenotype and functionality of immune cells are

becoming commonly available (Tables 1, 2), and soon the

assessment of immune status will become a part of a
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routine evaluation of cancer patients, with the potential to

significantly improve the overall clinical outcome.

Immune cells with the anti-tumor functions

Immune cells with predominantly anti-tumor functionality

include cells of both the innate and adaptive immune sys-

tem, such as natural killer (NK) cells, conventional den-

dritic cells and cytotoxic T lymphocytes [1]. The cells of

the innate immune system are the first to detect the

emergence of neoplastic cells. Numerous studies showed

that the presence of immune cells with the potent anti-

tumor function in the tumor microenvironment is associ-

ated with good clinical outcome, suggesting the importance

of their assessment for clinical purposes.

Natural killer cells

NK cells play a major role in the elimination of tumor cells

that have lost MHC expression [2, 3].

In general, NK cell density is low in human neoplasms,

with the exception of some renal cell carcinomas [4–7]. In

regard to the correlation of NK cell density at the tumor

mass with the clinical course and prognosis, the majority of

studies showed favorable prognostic value, specifically, for

gastric carcinoma [5], colorectal carcinoma [6] and pul-

monary adeno- and squamous cell carcinoma (SCC) [4, 8].

Confirming the importance of a spatial distribution of NK

cells in tumor tissue, Al-Shibli et al. [8] showed that high

density of stromal NK cells was an independent positive

prognostic factor for disease-specific survival in pulmonary

carcinoma, whereas high density of NK cells within tumor

Table 1 Commonly used

immunohistochemical stains for

tumor-infiltrating leukocytes

Target Staining Properties

B lymphocytes CD20 33 kD protein, pan-B lymphocyte marker

T lymphocytes CD3 Part of T cell receptor complex

T helper cells CD4 Cell-surface glycoprotein, co-receptor for the T Cell receptor complex

Cytotoxic T cells CD8 Cell-surface glycoprotein, co-receptor for the T cell receptor complex

Regulatory T cells CD25 IL-2R a chain, expressed by early progenitors of the T and B lineage as

well as by activated mature T and B lymphocytes

FoxP3 Member of the fork head/winged-helix family of transcriptional

regulators, in CD25? CD4? regulatory T cells

Natural killer cells CD56 Glycosylated transmembrane protein, expressed by NK cells, a subset

of T cells, and neuroectodermal-derived cells

CD57 Human natural killer-1, expressed on NK cells

Neutrophils Myeloperoxidase Enzyme in the granules of neutrophils and to a lesser extent the

granules of monocytes

CD15 Cell-surface membrane protein, expressed on neutrophils, a subset of

tissue macrophages and activated T lymphocytes

CD66b Member of the immunoglobulin superfamily, expressed on neutrophils

Macrophages CD68 Glycoprotein of cytoplasmic granules

HLA-DR Major histocompatibility complex, class II, cell-surface receptor,

marker of M1 activation

CD163 Transmembrane protein, marker of M2 activation

CD204 Macrophage scavenger receptor 1, marker of M2 activation

Immature myeloid

DCs

CD1a 49 kDa cell-surface glycoprotein expressed in association with beta-2-

microglobulin; expressed predominantly in early steps of DC

maturation

CD209/DC-SIGN DC-specific adhesion receptor that mediates DC binding to ICAM-3;

presumably mediates the recognition of non-self and the presentation

of foreign antigens; can regulate important adhesion processes

CD207/Langerin C-type lectin responsible for the formation of Birbeck granules, a

typical hallmark for DCs of Langerhans type

Mature myeloid

DCs

CD83 40-45 kDa glycoprotein expressed predominantly in the late steps of

DC maturation; CD83? DCs co-express the highest levels of HLA II

CD86 Membrane protein of the immunoglobulin superfamily, which provides

a co-stimulatory signal necessary for T cell activation and survival

CD208/DC-

LAMP

Member of the lysosomal-associated membrane protein (LAMP)

family; plays an important role in antigen processing and MHC-II

restricted antigen presentation

Plasmacytoid DCs CD123 IL-3 receptor a-chain involved in cell signaling for cell growth and

differentiation
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islets was not. On the other hand, in soft tissue sarcomas,

there was no correlation between NK cell density in tumors

or peritumoral tissues and the patients’ prognosis [9].

Conventional dendritic cells

Density of DCs in the tumor mass varies depending on the

type of malignancy. For instance, in breast carcinoma,

tumor-infiltrating DCs are detected in 30–50 % of tumors

[10]. In two main types of pulmonary non-small cell car-

cinoma (adenocarcinoma and SCC), DCs are found in

60–80 % of tumors [11, 12]. However, DC density in two

types of pulmonary neuroendocrine tumors (small cell

carcinoma and carcinoid tumor) is usually very low [13].

Katsenelson et al. found different populations of DCs,

including CD1a? immature DCs (iDCs) and CD83?

mature DCs (mDCs), in small cell carcinoma, but samples

of carcinoid tumor were devoid of DCs [14]. In transitional

cell carcinoma of the urinary bladder, a dense infiltrate of

S100? DCs is detected in 50 % of cases [15]. In oral SCC,

density of DC infiltrates was low in 20 % of specimens,

intermediate in 42 % of specimens and high in 37 % of

specimens [16]. Pancreatic carcinoma is characterized by a

paucity of tumor-infiltrating DCs; significant numbers of

S100? DCs and CD1a? iDCs were found in only 4 % of

tumors [17].

Unlike other tumor-infiltrating leukocytes, the density of

tumor-infiltrating DCs may be lower in the tumor than in

the corresponding normal tissue. For example, Troy et al.

compared the number of DCs in prostate carcinoma and

adjacent normal prostatic tissue and found that there were

significantly fewer CD1a? iDCs in prostate cancer com-

pared with normal prostatic tissue and only a small subset

of DCs expressed markers of activation, such as CD83 and

CD86 [18]. The density of CD83? mDC is also signifi-

cantly lower in gastric cancer tissue than in normal gastric

tissue [19]. As discussed below, the low density of tumor-

infiltrating DCs may present a survival advantage to

malignant tumors and thus be a mechanism of immune

escape. Vakkila et al. [20] compared DC density in pedi-

atric and adult tumors. While DCs were present in adult

tumors (colon carcinoma, breast carcinoma, esophageal

carcinoma), tumor-infiltrating DCs were virtually absent in

pediatric malignancies (Ewing’s sarcoma, rhabdomyosar-

coma, hepatoblastoma, neuroblastoma, Wilms’ tumor).

Inflammatory infiltrate in pediatric tumors was composed

mainly of macrophages, whereas in adult tumors, DCs

formed 37 % of leukocytes within the tumor islands and

25 % around the tumors. The reason for this striking dif-

ference merits further investigation.

When present in the tumor mass, DCs can be seen

within cancer nests, in tumor stroma, and in peritumoral

areas. Their spatial distribution seems to depend on the

type of the tumor. In colorectal carcinoma, infiltration of

tumor stroma by DCs was significantly higher than in

tumor islets [21]. In contrast, in pulmonary non-small cell

carcinoma, DCs were located predominantly in cancer

nests and their number correlated with the extent of cancer

cell apoptosis. In areas of scattered DC distribution, only a

few apoptotic tumor cells can be detected, while in the

areas of DC aggregations, apoptotic tumor cells were sig-

nificantly more abundant [22].

Spatial distribution of tumor-infiltrating DCs seems to

depend on the level of their maturation. It was demon-

strated that the majority of iDCs are located within the

tumor nests, while mDCs are present in the stroma. For

example, in breast carcinoma, CD1a? iDCs were retained

predominantly within the tumor epithelium, whereas

CD83? and LAMP? mDCs were confined to peritumoral

areas [23, 24]. Similar data were reported for colonic

adenocarcinoma [25], oral SCC [26], biliary carcinoma

[27], transitional cell carcinoma of the urinary bladder [28]

and melanoma [29].

In regard to the correlation between DC density and

tumor grade, the majority of studies showed higher DC

density in well-differentiated than in poorly differentiated

neoplasms. This correlation was reported in pulmonary

non-small cell carcinoma [13], prostate carcinoma [30]

and endometrial carcinoma [31]. However, in breast

carcinoma, the number of tumor-infiltrating DCs was

higher in high-grade tumors [23]. Correlation of DC

density with tumor stage was performed by Kikuchi et al.

[32] who found that in head and neck cancer, the numbers

of iDCs were greater in patients with lower stage of the

disease and decreased with tumor progression. Interest-

ingly, mDC density showed the reverse correlation. Sig-

nificant decrease in iDCs with simultaneous increase in

Table 2 Commonly used flow cytometry markers for immunostim-

ulatory and immunosuppressive leukocytes

Target Flow cytometry pattern

B lymphocytes CD20?, CD19?

T lymphocytes CD2?, CD3?,

T helper cells CD2?, CD3?, CD4?

Cytotoxic T cells CD2?, CD3?, CD8?

Regulatory T cells CD2?, CD3?, CD25?, FoxP3?

Natural killer cells CD3-, CD56?, CD 57?

Neutrophils CD13?, CD15?, CD33?

Macrophages CD68?, HLA-DR?, CD163?, CD204?

Immature myeloid DCs CD1a, CD 209?, CD 207?

Mature Myeloid DCs CD 83?, CD86?, CD208?

Plasmacytoid DCs CD 123?

MDSCs granulocytic CD15?, CD66b?, CD33?

MDSCs monocytic CD14?
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mDCs was also demonstrated in the progression steps of

cervical SCC [33].

Correlations of the density of tumor-infiltrating DCs

with clinical outcome were extensively studied for

numerous types of tumors. In the majority of them, high

density of tumor-infiltrating DCs (especially mDCs) was a

favorable prognostic feature. In fact, some of the studies

found the density of tumor-infiltrating mDCs to be a better

predictor of clinical outcome than other well-established

parameters [34]. In a large cohort of patients with pul-

monary non-small cell carcinoma, increasing density of

stromal DCs was associated with increased disease-specific

survival (DSS) [8, 35]. In breast carcinoma, high mDC

density was also a favorable prognostic marker. At the

same time, no correlation was found for total DC and iDC

density [36, 37]. The same correlations were found in

colonic carcinoma [21], gastric carcinoma [19], hepato-

cellular carcinoma [38], biliary carcinoma [27], oral SCC

[16] and melanoma [39].

T lymphocytes

High density of tumor-infiltrating CD3? T cells has been

associated with favorable prognosis in various types of

cancers. It was reported for pulmonary non-small cell

carcinoma [40], colorectal carcinoma [41], gastric carci-

noma [42] and ovarian carcinoma [43]. Recently, Goo-

den et al. [44] performed a meta-analysis of 33 large

clinical studies and found a strong positive effect of

CD3? tumor-infiltrating lymphocytes on patients’

survival.

Among specific subtypes of tumor-infiltrating lympho-

cytes, cytotoxic T cells have also been associated with

better survival in many types of cancer, including pul-

monary non-small cell carcinoma [8, 35], colorectal car-

cinoma [45], esophageal carcinoma [46], urothelial

carcinoma [47], cholangiocellular carcinoma [48], endo-

metrial carcinoma [49] and ovarian cancer [50]. However,

in other studies, CD8? T cell density was not found to

correlate with prognosis in pulmonary non-small cell car-

cinoma [51], esophageal SCC [52] and soft tissue sarcoma

[53]. In a meta-analysis, CD8? T cells had a positive effect

of on patients’ survival [44].

Tumor-infiltrating T helper cells are not studied as

extensively as CTLs; however, several reports indicate

their favorable prognostic significance. Remarkably,

this effect depends on a spatial distribution of the cells.

In a study of the prognostic role of epithelial and

stromal CD4? T cells in patients with resected non-

small cell carcinoma, Al-Shibli et al. [54] found that

increasing numbers of CD4? in tumor stroma, but not

in cancer islets, correlated significantly with improved

DSS. Other groups reported similar results [51, 55].

High density of CD4? T cells also correlated signifi-

cantly with an improved survival in patients with soft

tissue sarcoma [56]. In addition to the reports on the

individual role of T cell types, several studies found a

favorable prognostic effect of concurrent infiltration by

CD8? cells and CD4? cells. Specifically, this effect

was shown in pulmonary non-small cell carcinoma [57]

and esophageal SCC [58].

Immune cells with pro-tumor functions

Immune cells with predominantly pro-tumor functionality

include a broad spectrum of cells of the innate and adaptive

immune system, such as type 2 neutrophils, type 2 mac-

rophages, plasmacytoid DCs, myeloid-derived suppressor

cells (MDSCs) and regulatory T (Treg) lymphocytes. Their

presence in the tumor microenvironment and peripheral

blood is associated with a poor clinical outcome.

Neutrophils

Neutrophils represent the main population of leukocytes in

the blood and are considered to be the first line of immune

response to tissue injury. Neutrophils make up a significant

portion of the inflammatory cell infiltrate found in a wide

variety of human cancers [59–62]. Although neutrophils

are well equipped to kill malignant cells by several

mechanisms, in the tumor microenvironment they tend to

have the opposite effect and directly induce tumor cell

proliferation through the expression of growth-promoting

bioactive molecules. Specifically, neutrophil-derived

hepatocyte growth factor has been correlated with

increased tumor growth in lung cancers [61].

Even more important for tumor development are the

effects of neutrophils infiltrating central tumor stroma and

the peritumoral invasive margin. These cells promote

tumor progression through remodeling of the extracellular

matrix, enhancing tumor cell migration, and invasion and

modulating angiogenesis [63–65].

The majority of the clinical studies regarding tumor-

infiltrating neutrophils have demonstrated that their

presence and high density are associated with poor

clinical outcomes, including decreased survival. This

correlation has been shown for pulmonary adenocarci-

noma [62], gastric adenocarcinoma [66], colorectal

carcinoma [67] and renal cell carcinoma [60]. For

example, the presence of intratumoral neutrophils

decreased the 5-year recurrence-free survival rate from

87 to just 53 % [60]. However, in some studies, tumor-

infiltrating neutrophils were not found to be associated

with cancer prognosis [59, 68] or were associated with

reduced mortality risk [69].
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Macrophages

Macrophages are increased in tumors compared with

healthy tissues [70] and constitute a major component of

the leukocyte infiltrate in many malignant tumors [71].

However, their density varies widely even in tumors of the

same origin.

Macrophages are polarized into two functionally distinct

types M1 and M2, most likely under the influence of

tumor-derived factors (e.g., TGF-b). M1 macrophages

produce high levels of IL-12, IL-23, TNF-a, IL-1, IL-6,

CXCL10, iNOS and effector molecules, such as reactive

oxygen and nitrogen intermediates and TNF-a, and thus

may display potent anti-tumor effects. M2 macrophages

express high levels of IL-10, IL-1R antagonist, CCL22,

scavenger receptors, arginase I and CD163 [72]. M2

macrophages promote tumor growth and metastasis by

secreting MMP-9, angiogenic factors and immunosup-

pressive cytokines [35, 73–76]. M1 macrophages are

located predominantly in tumor islets, whereas M2 mac-

rophages are present predominantly in tumor stroma.

Unfavorable prognostic role of M2 macrophages was

demonstrated in pulmonary [77], pancreatic [78], renal cell

[79] and endometrioid [80] carcinomas.

Plasmacytoid DCs

While present in the tissues at low numbers in a steady

state, pDCs accumulate in lymphoid and non-lymphoid

tissues under different pathological conditions [81]. They

commonly represent a minor fraction (10–15 %) of the

infiltrating immune cells [82], but at least in some tumors

they were found to be the most abundant DC subset [83].

Accumulation of pDCs in tumors has been directly

demonstrated in primary carcinomas of different organs

(breast, ovary, head and neck, lung, skin, cervix, prostate and

liver), as well as, cutaneous melanoma [83–85]. Numerous

experimental and clinical evidence shows that pDCs possess

immunosuppressive and tolerogenic properties and promote

tumor growth and progression. Tumor-infiltrating pDCs are

defective in IFN production and secrete immunosuppressive

soluble factors responsible for tumor progression [83, 85].

Tumor-infiltrating pDCs express IDO and secret Granzyme

B, which are involved in inhibition of T cell activation and

immunosuppression [86, 87]. In addition, pDCs can drive

CD4? T cell polarizations to CD4? CD25? Foxp3? Treg

cells, leading to anergy and immune suppression and

favoring the immune escape [88].

These findings have strong clinical correlations: prog-

nosis of different types of tumors is inversely related to the

density of tumor-infiltrating pDCs. Negative prognostic

influence of pDCs has been demonstrated in ovarian cancer

[83], breast carcinoma [36] and oral SCC [26]. For

instance, CD123? pDC infiltration was found in 13 % of

the breast carcinoma and their presence was strongly

associated with shorter overall survival and relapse-free

survival and was found to be an independent adverse

prognostic factor [36].

Regulatory T cells

Increased levels of CD4? CD25? Tregs have been reported

in peripheral blood and the tumor microenvironment of

patients with non–small cell lung carcinoma [89], gastroin-

testinal malignancies [90], ovarian cancer [91], SCC of the

head and neck [92], hepatocellular carcinoma [93], breast

cancer, pancreatic cancer [94] and prostate carcinoma [95].

Tregs variably present within the tumor microenvironment

[96]. They usually represent a small fraction of tumor-infil-

trating lymphocytes (5–10 % of CD4? cells), but may have

a significant influence on tumor development [97, 98]. It has

been shown that the amount of Treg cells is higher in tumors

than in normal tissues due to an active recruitment of these

cells into the tumor bed [99]. Accumulation of Tregs may be

associated with disease progression [100, 101]. High per-

centage of Treg cells in various neoplasms creates the

immune suppressive microenvironment that curbs anti-

tumor immunity, thus promoting tumor growth [98].

Not only the number of Tregs, but also their functional

activity is different in cancer patients. Yokokawa et al.

[102] showed that Tregs in patients with prostate carci-

noma had an increased functionality compared with the

healthy donors, which could be an important factor in the

suppression of tumor-specific immune responses in these

patients. Increased activity of Tregs can be caused by

tumor- or stroma-derived immunosuppressive factors, such

as PgE2, TGF-b and IL-10 [103, 104].

The prognostic significance of Treg infiltration was

studied extensively and showed conflicting results. It has

been associated with poor prognosis is some malignancies

[97, 105–107] and no clinical significance in others [108–

110]. It is also important to consider that Tregs could

reduce the efficacy of immunotherapeutic protocols and

thus, depletion of these cells could enhance vaccine-med-

iated anti-tumor immune responses and the efficacy of

chemotherapy [111, 112].

Myeloid-derived suppressor cells

MDSCs are heterogeneous populations of immature mye-

loid cells accumulating in blood, lymph nodes, bone mar-

row and tumor sites in experimental animals and patients

with cancer. They are capable of inhibiting both innate and

adaptive immune responses [113] and their accumulation

represents an important mechanism of tumor immune

evasion [114, 115].
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From the practical standpoint, the number of MDSCs is

significantly higher in cancer patients compared with age-

and sex-matched controls [116–120]. It is possible that some

cancers are associated with profound immunosuppression

even at an early stage while other cancers may only generate

severe systemic immunosuppression when metastatic.

The frequency of each MDSCs subset appears to be

influenced by cancer type. For some types of human can-

cers, such as renal cell carcinoma, glioma and bladder

cancer, granulocytic MDSCs is the prevalent population in

peripheral blood [121, 122], whereas, in patients with

melanoma, multiple myeloma, prostate and hepatocellular

carcinoma, monocytic MDSCs is the prominent population

[123–125]. In addition, a population of MDSCs that

express neither monocytic (CD14) nor granulocytic (CD15,

CD16) markers and therefore cannot be categorized into

one of the two main populations, has been demonstrated in

the blood of patients with glioblastoma, breast cancer,

colon cancer, lung cancer and kidney cancer [120, 126,

127]. The frequency and number of these cells has been

shown to reflect the tumor burden, and a high frequency

correlates with a poor prognosis and radiographic pro-

gression in a small number of patients with breast or

colorectal cancer [119].

Similar to peripheral blood, elevated level of MDSCs

are found in the tumor microenvironment of different

cancer types compared with the surrounding non-cancerous

tissues [116, 128, 129]. Recently, Sun et al. [116] reported

that increased percentage of HLA-DR-CD33? MDSCs in

colorectal cancer correlated with tumor stage and distant

metastasis. Gabitass et al. [118] found that density of in-

tratumoral MDSCs was an independent prognostic factor in

patients with pancreatic, esophageal and gastric carcinoma.

The authors suggested that MDSC percentage could

become a parameter for routine use in the prognostic

modeling of these diseases.

Clinical evaluation of the immune system in cancer

patients

Review of the studies presented above delineates several

immunologic parameters that are ready to be included in a

clinical evaluation of cancer patients. This list may not be

comprehensive, but definitely includes such anti-tumor

immune cells as NK cells, conventional DCs and cytotoxic

T lymphocytes, along with pro-tumor immune cells, such

as type 2 neutrophils, type 2 macrophages, plasmacytoid

DCs, MDSCs and regulatory T lymphocytes. Each of these

types of cells has been shown to influence clinical out-

come; however, it is still unclear which ones have the

highest importance or dominant significance. Thus, far,

there are no studies that analyze all of these parameters in a

large patient cohort both at the local level (in the tumor

microenvironment) and at the systemic level (in peripheral

blood, bone marrow, etc.). Nevertheless, remarkable

advances in phenotypic and functional characterization of

immune cells by immunohistochemical and flow cytomet-

ric methods have made it possible to perform a compre-

hensive evaluation of the immune status of cancer patients.

The scheme of this evaluation will differ in patients with

early stages and late stages of the disease and will signif-

icantly depend on the resectability of the primary tumor

mass. We believe that in patients with resectable solid

tumors such an evaluation may include five major steps.

Step one Malignancy is suspected based on a clinical

presentation (pain, tumor mass, etc.)

Step two Tissue diagnosis is established by sampling the

tumor mass (biopsy or cytologic evaluation). These tests

usually characterize the type and grade of the tumor, but

are insufficient for the evaluation of immune infiltrate in

the tumor microenvironment.

Step three The patient’s baseline immune status is

evaluated. The tests include complete blood cell count

with differentials and immunoglobulin concentrations

and are routinely performed as part of the initial patient

evaluation. These tests determine the status of the

cellular and humoral immune systems and can detect

immune deficiencies underlying the malignant process.

In addition, based on the accumulating knowledge of the

role of immunosuppressive types of cells (MDSCs,

Tregs, etc.), flow cytometric analysis is performed to

detect the initial levels of these cells in the peripheral

blood or bone marrow (Table 2). Functional immuno-

logic tests can be performed to assess immunosuppres-

sive activity of these cells [130]. As was discussed

above, the quantity and quality of immunosuppressive

cells depends significantly on the stage of the malignant

disease, determines the patient’s prognosis, and predicts

the response to treatment.

Step four In patients with resectable tumors, the primary

tumor mass should be excised and undergo a complete

pathologic evaluation. At this point all of the character-

istics of the malignant tumor and of the tumor-infiltrat-

ing leukocytes can be determined.

Evaluation of tumor-infiltrating leukocytes can be per-

formed by two major methodological approaches: micro-

scopic examination of tumor sections (either fresh or fixed)

and flow cytometric analysis of the fresh tumor tissue. Each

of these methods has strength and weakness, and the best

results can be achieved through a combination of both

approaches. Microscopic analysis is performed by a qual-

ified pathologist. Upon this analysis, pathologists notice the

presence or absence of a specific type of tumor-infiltrating

leukocytes in a tumor tissue. As discussed above, there is a
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significant variation in the density of immune cells in dif-

ferent kinds of tumors. Quite often there is a predilection of

a specific type of leukocytes to a specific type of cancer.

Also, microscopic analysis can determine a spatial distri-

bution of immune cells in the tumor mass. Tumor-infil-

trating leukocytes can be located within cancer cell nests

(intratumoral distribution), in the central cancer stroma

(stromal distribution), and along the invasive tumor mar-

gins (peritumoral distribution). Since immune cells can

have a dissimilar effect on malignant cells and stromal

cells, the exact location of leukocytes is very important in

the evaluation of their role. At the same time, the effect of

leukocytes on the tumor depends on their functional status

and the level of maturation. These parameters can also be

tested for some of the cell types.

Next, density of tumor-infiltrating leukocytes can be

correlated with the stage of a tumor. The process of tumor

development, especially for epithelial tumors (carcino-

mas), includes steps such as cellular dysplasia, carcinoma

in situ (non-invasive), locally invasive neoplasm and

metastatic dissemination. Several studies describe the

correlation between tumor-infiltrating leukocyte density

and the tumor stage, which helps elucidate the involve-

ment of immune cells in the tumor progression. Another

correlation that is frequently performed during pathologic

examination is that of leukocytes density with the tumor

grade, proliferation index and HLA expression. Depend-

ing on the level of morphologic atypia, malignant tumors

are classified as well differentiated, moderately differen-

tiated, or poorly differentiated. Consistent correlations are

found between tumor-infiltrating leukocytes density and

tumor grade for many neoplasms. Finally, tumor-infil-

trating leukocyte density can be correlated with the dis-

ease progression, clinical course, outcome and response to

treatment.

From the technical standpoint, some of the tumor-infil-

trating leukocytes, like neutrophils and lymphocytes, can

be easily recognized by routine histochemical stains (e.g.,

H & E). However, these histochemical stains do not allow

recognition of tumor-infiltrating leukocytes with certainty.

In addition, they cannot discriminate between different

subpopulations of cells or determine their state of matu-

ration. Thus, evaluation of tumor-infiltrating leukocyte

frequently requires utilization of methods that can deter-

mine not only morphology of the cells, but also their

molecular phenotype. In pathology practice this is usually

accomplished by immunohistochemistry that detects spe-

cific protein expression in the cells of interest (Table 1).

Immunohistochemistry can be performed on fresh or

fixed tissue. Stained cells are counted under high magni-

fication (usually, 4009 or 1,0009), and the results are

presented in a quantitative manner (e.g., number of cells

per high power field) or in a semiquantitative manner (e.g.,

absent, weak, moderate, brisk infiltration). An excellent

example of this approach is the study by Galon et al. of

human colon cancer [45, 131, 132]. The authors proposed

to classify colon tumors on the basis of an immune score

for CD45RO memory T cells and cytotoxic CD8? T cells

in two tumor regions (central tumor and invasive margin).

Using this immune score, five groups were defined (Im0,

Im1, Im2, Im3, Im4). Patients with low densities of

CD45RO and CD8 in both tumor regions were classified as

Im0. Patients with one high density for one marker were

classified as Im1. Patients with two, three, or four high

densities among these markers were classified as Im2, Im3

and Im4, respectively. Statistical analysis showed a

remarkable correlation of the immune score with clinical

outcome; patients with Im4 had a 5-year disease-free sur-

vival of 85.4 %, whereas patients with Im0 had a 5-year

disease-free survival of 31.6 %. These studies show that

even a limited number of immunologic parameters can

provide valuable diagnostic information. However, since

different malignant tumors have different populations of

tumor-infiltrating leukocytes, it is conceivable that other

cell populations need to be included in the immune score.

Specifically, the cells with pro-tumor and immunosup-

pressive effects (M2 macrophages, MDSCs, etc.) should be

considered in the final analysis.

Although microscopic examination of tumor tissues is a

powerful tool, it has several important limitations. First, it

cannot evaluate the presence of tumor-infiltrating leuko-

cytes for which there is no reliable histochemical or

immunohistochemical marker. One such type of cells is

MDSCs. Second, it cannot determine the functional state of

tumor-infiltrating leukocytes. Both of these limitations can

be overcome by flow cytometry analysis of fresh tumor

tissue (Table 2). For example, in a recent study of Pore-

mbka et al., resected human pancreatic carcinoma speci-

mens were analyzed by flow cytometry and showed a

significant increase in MDSCs compared with normal

pancreas tissue [133]. This approach is especially valuable

in the analysis of tumor-infiltrating MDSCs, Treg cells,

DCs and macrophages. However, flow cytometry has its

own limitations. Preparation of single cell suspensions

prevents determination of the spatial distribution of tumor-

infiltrating leukocytes, and the need for a fresh tissue sig-

nificantly limits the use of archival material.

In the majority of cases, there is a sufficient amount of

tumor tissue for multiple immunohistochemical stains and

flow cytometry. The limiting factor in a clinical setting is

the availability of technical expertise and resources to

perform these tests. At this time, there are no universally

recommended test panels, specifically designed to analyze

tumor-infiltrating leukocytes. This leaves the extent of

testing to the discretion of a pathologist performing tissue

examination. Ideally, the density and the spatial
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distribution of both anti-tumor and pro-tumor immune cells

should be evaluated.

In summary, when studying tumor-infiltrating leuko-

cytes in a resected tumor, the following questions can be

answered by a combination of microscopic and flow

cytometric analyses:

1. Are these cells present in the tumor tissue and in what

numbers?

2. What is their functional status and level of maturation?

3. What is the spatial distribution of leukocytes in

correlation with tumor cell features (e.g., proliferation,

apoptosis and necrosis) and stromal features (e.g.,

angiogenesis)?

4. Is there a correlation of density, state of maturation or

spatial distribution of tumor-infiltrating leukocytes

with tumor grade, stage and prognosis?

If the primary tumor can be successfully resected and

there are no detectable metastases, the patient is considered

‘‘disease-free,’’ although in the majority of cases, meta-

static malignant cells would be present in lymph nodes and

other body sites. This means that the clinical outcome of

the disease depends on the interaction of these malignant

cells with the factors of the metastatic microenvironment,

particularly, the status of immune cells [134, 135]. This

concept is based on numerous studies showing strong

correlations between immune contexture of the primary

tumor, immune status after surgical resection of tumors and

patients’ disease-free survival. We also have to consider

that removal of the primary tumor may significantly

influence the immune status of the patient. For example,

research has shown that resection of colon cancer caused a

significant decrease in circulating CD4? CD25? Foxp3?

Tregs [136]. Furthermore, after primary tumor resections,

patients may receive adjuvant chemo- and radiotherapy.

Chemotherapeutic agents have a substantial effect on dif-

ferent types of immune cells, altering their number and

functionality and thus changing the overall immune profile

of the patient [137, 138]. At the same time, patient’s

immune status, especially the number and activity of

immunosuppressive cells, can influence the response to

chemotherapy.

Therefore, there is a step five of evaluation: post-resection

immunomonitoring. The tests that can be utilized are similar

to those used in step three and include complete blood cell

count with differentials, immunoglobulin concentrations,

flow cytometry analysis of immune cell populations and

functional immunologic studies. Commonly used functional

assays (e.g., IFN-c ELISPOT assay) have recently been

comprehensively reviewed [130]. The results of these tests

have high prognostic and predictive value and help stratify

patients to high- and low-risk groups, which makes them a

valuable tool for making adjuvant therapy decisions.

Conclusion

Significant advances in experimental and clinical oncoim-

munology achieved in the last decade have opened an

opportunity for the use of modern morphologic, flow

cytometric and functional tests in everyday clinical prac-

tice. Although inclusion of these test in routine evaluation

of cancer patients comes with a significant increase in

workload and expense, their prognostic and predictive value

definitely justifies their use. Stratification of patients

according to their immune status in the course of the disease

will help to identify high-risk patient populations that need

close follow-up and aggressive treatment. Identification of

the most prevalent and functionally active immune cell

populations (i.e., MDSCs, Treg cells, M1/M2 macrophages,

etc.) both at the local and systemic levels can lead to the use

of novel specific types of personalized immunotherapy.

There is no consensus yet regarding the types of immune

cells that need to be evaluated and the modes of laboratory

tests most appropriate for this process, but the extensive

ongoing clinical work suggests that a major breakthrough in

the field of tumor immunology is forthcoming.
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