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Abstract

A number of statistical models have been successfully developed for the analysis of high-

throughput data from a single source, but few methods are available for integrating data from

different sources. Here we focus on integrating gene expression levels with comparative genomic

hybridization (CGH) array measurements collected on the same subjects. We specify a

measurement error model that relates the gene expression levels to latent copy number states

which, in turn, are related to the observed surrogate CGH measurements via a hidden Markov

model. We employ selection priors that exploit the dependencies across adjacent copy number

states and investigate MCMC stochastic search techniques for posterior inference. Our approach

results in a unified modeling framework for simultaneously inferring copy number variants (CNV)

and identifying their significant associations with mRNA transcripts abundance. We show

performance on simulated data and illustrate an application to data from a genomic study on

human cancer cell lines.
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1. Introduction

Our understanding of cancer biology and the mechanisms underlying cancer cell growth has

progressed tremendously over the past decade. Cancer is the consequence of a dynamic

interplay at different molecular levels (DNA, mRNA and protein). Elucidating the

association between two or more of these levels would enable the identification of biological

relationships that could lead to improvements in cancer diagnosis and treatment.

Consequently, studies that integrate different types of high-throughput data are of great

interest. This paper is concerned with the integration of gene expression and copy number

variant data.

Gene expression levels correspond to the relative abundance of mRNA transcripts. These

expression levels can be altered by chromosomal aberrations, such as copy number variants

(CNV). CNVs are variations in the copy number of DNA segments due to cytogenetic

events, in which the DNA replication process is disrupted and the DNA segment is either

replicated (once or several times) or deleted in newly generated cells, leading to local

chromosomal amplifications/deletions (Sebat et al. (2004)). Several experimental techniques

are available for CNV detection. The most widely used high-throughput technologies

include comparative genomic hybridization (CGH) arrays and single nucleotide

polymorphism (SNP) arrays. In this paper, we focus on the former, which generates data as

reads on thousands or millions of genomic hybridization targets (probes) spotted on a glass

surface. Regions of relative gains or losses are identified by measuring the fluorescence ratio

of differentially labeled test and reference DNA samples hybridized onto the array. The

reference DNA is assumed to have two copies of each chromosome. If the test sample has

no copy number aberrations the log2 of the intensity ratio is theoretically equal to zero.

A number of statistical methods have been developed to infer CNVs from high-throughput

array-based technologies. The most widely used rely on hidden Markov models (HMM)

(Colella et al. (2007); Wang et al. (2007)) and circular binary segmentation (Venkatraman

and Olshen (2007)). Other methods based on clustering have been proposed, including a

combination of segmentation and model-based clustering (Picard et al. (2007)) and a

Bayesian hierarchical mixture model (Cardin et al. (2011)). These methods process each

sample one at a time and require postprocessing of the inferred CNV calls to resolve CNV

boundary variations.

In addition to CNV detection, there is often interest in identifying variants associated with

specific phenotypes or biological functions. Most of the available methods either directly

use the normalized continuous intensity measurements without inferring copy numbers or

use the estimated copy numbers as true states, then assess the associations using univariate

tests or by performing simple linear regression models with multiple testing correction

(Stranger et al. (2007), Wang et al. (2007)). When using the raw measurements, the

aggregation of a large number of tests with low p-values in close genetic proximity is

considered evidence of copy number-phenotype association. Although this approach has the

advantage of circumventing the need to infer copy number, the high noise in the signal

intensities leads to the identification of a large number of false positives (Breheny et al.

(2012)). On the other hand, using the copy number calls as if they were the true states
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ignores the uncertainty in the estimation process and can inroduce bias. Several methods

have been proposed to incorporate the uncertainty in copy number estimation into the

association tests (Barnes et al. (2008), Subirana et al. (2011)).

In the past few years, there has been a growing interest in relating gene expression and CNV

data. Indeed, locating CNVs that affect gene dosage is an important step in understanding

biological processes underlying various diseases. In cancer, for example, where

chromosomal aberrations are widespread due to genomic instability, discovering

amplification of oncogenes or deletion of tumor suppressors are important steps in

elucidating tumorigenesis. Earlier attempts in this area have used Pearson correlation

coefficients to evaluate associations between raw CGH intensities and gene expression

levels mapping to the same genomic region (Bussey et al. (2006), Chin et al. (2006)). Choi

et al. (2010) developed a double-layered mixture model to simultaneously estimate copy

numbers and evaluate the association between each copy number probability score and the

expression level of the corresponding gene. These models perform univariate associations

between CNVs and gene expression levels on the same chromosomal region. However, it

would be expected that multiple CNVs mapping to different genomic regions may be

associated to gene regulation, a mechanism that is part of epistasis, see Cordell (2002).

Several multivariate statistical methods for integrating genomic data sets have been

proposed in recent years. Monni and Tadesse (2009) proposed a stochastic partitioning

method to identify sets of correlated gene expression levels and select sets of chromosomal

abberations that jointly modulate mRNA transcript abundance in the co-expressed genes.

Other authors have proposed variable selection methods in multivariate linear regression

models in the context of eQTL (expression quantitative trait loci) analysis. Among those,

Richardson et al. (2010) proposed mixture priors that enforce sparsity while enhancing the

detection of predictors that are associated with many responses. Similar priors have also

been studied by Scott-Boyer et al. (2012) for eQTL analysis.

In this paper we develop an innovative statistical model that integrates gene expression and

copy number variant data. The proposed approach provides a unified framework to

simultaneously infer CNVs across all samples and identify significant associations between

copy number states and gene expression changes. To achieve this goal we first specify a

joint distribution of the observed gene expression and CGH data across all samples. Using a

measurement error model formulation, we factor this joint distribution into the product of

conditionally independent submodels: an outcome model that relates the gene expression

levels to latent copy number states, and a measurement model that relates these latent states

to the observed surrogate CGH measurements using a first order hidden Markov model

(HMM). We identify CNVs associated with gene expression changes by incorporating a

latent indicator for variable selection into the outcome model and specifying selection priors

that account for spatial dependences between adjacent DNA segments. Our strategy for

posterior inference uses MCMC algorithms and stochastic search methods and results in the

estimation of copy number states across all samples, as well as the selection of groups of

CNVs associated with gene expression. The model we propose allows the identification of

the joint effect of multiple CNVs on mRNA transcript abundance, rather than assuming

univariate associations. In addition, the simultaneous evaluation of multiple gene expression
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levels reduces the detection of false positive associations by borrowing information across

co-expressed genes. We show the performance of our proposed model on simulated data.

We also analyze a case study on human cancer cell lines. Findings support the hypothesis

that our approach has the potential to discover important linkages between gene expression

and cancer.

The rest of the paper is organized as follows: Section 2 introduces the modeling framework

and its major components and Section 3 describes the posterior inference and prediction.

Results on simulated data are reported in Section 4 while Section 5 is devoted to our case

study. Section 6 contains some final remarks.

2. Hierarchical Model

We propose a hierarchical model that integrates gene expression levels with copy number

variant data and that accounts for the measurement error in the observed CGH intensities via

a hidden Markov model (HMM). The model further incorporates a variable selection

procedure and utilizes prior distributions that exploit the dependencies across adjacent DNA

segments. Our modeling strategy provides a unified approach for simultaneously inferring

copy number states for all samples and identifying associations between sets of copy number

variants and gene expression levels. The graphical formulation of the model is illustrated in

Figure 1 and its major components are described below. We also summarize the hierarchical

formulation of our full model in Figure 2.

Let Yig denote the expression measurement for gene g (g = 1, …, G) and Xim the observed

CGH measurement, i.e., the normalized log2 ratio, for the m-th CGH probe (m = 1, …, M),

in sample i (i = 1, …, n). We assume the M CGH probes ordered according to their

chromosomal location and refer to probes m and m+1 as adjacent. In our modeling approach

we treat the observed CGH intensities, Xim, as surrogates for unobserved copy number

states, which we indicate with ξim. Failure to account for the measurement error, by treating

the surrogates as the latent copy number states, may lead to biased results. Here we define

four copy number states corresponding to:

ξim = 1 for copy number loss (less than two copies of the fragment);

ξim = 2 for copy-neutral state (exactly two copies of the fragment);

ξim = 3 for a single copy gain (exactly three copies of the fragment);

ξim = 4 for multiple copy gains (more than three copies of the fragment).

Let Z = [Y, X] denote the (n × (G + M)) matrix of observed gene expression measurements

and let ξ = [ξ1, · · ·, ξM] be the (n × M) matrix of latent copy number states. We consider a

nondifferential measurement error, which assumes that, conditional on the latent state ξ, the

observed surrogate X contains no additional information on the response Y (Richardson and

Gilks (1993)), i.e., f(Y |ξ, X) = f(Y |ξ). The joint distribution of Z can thus be decomposed

into conditionally independent submodels, that correspond to an outcome model relating Y
to the latent state ξ and a measurement model relating the surrogate X to ξ, as f(Z|ξ) = f(Y |

ξ)f(X|ξ). We further assume conditional independence of the gene expression

measurements, given the copy number states (that is, Yi ⊥ Yj|ξ1, …, ξM) and conditional
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independence of the CGH measurements, given their states (that is, Xi ⊥ Xj|ξ1, …, ξM) and

write

(1)

Even though we make these assumptions, we still borrow strength across genes via our

hierarchical prior specification, as described in Section 2.3

2.1. Measurement Error Model via HMM

For the outcome model in (1) we follow Monni and Tadesse (2009) and Richardson et al.

(2010) who have suggested linear regression models that integrate gene expression levels

with genetic data. For gene g we therefore specify a linear regression model of the type

(2)

for g = 1, …, G and with μ1, …, μG gene-specific intercepts. We also assume 

with  a gene specific variance.

We then define the measurement model in (1) in terms of the emission probabilities of a

Hidden Markov Model (HMM). CGH data are “state persistent”, meaning that copy number

gains or losses at a region are often associated to an increased probability of gains and losses

at a neighboring region. Here, we adapt the model proposed by Guha et al. (2008), that uses

hidden Markov models with four copy number states. Methods that consider the number of

possible states as a random variable, such as those of Fox et al. (2011), Du et al. (2010) and

Costa et al. (2013), may be similarly incorporated into our model. Conditional on the latent

copy number states, we assume the observed CGH measurements independent and normally

distributed, defining the emission distributions of the HMM as

(3)

with ηj and  representing the expected log2 ratio and the variance of all CGH probes in

state j (j = 1, …, 4). The dependence between the states at adjacent probes is captured by a

first order Markov model, which assumes that the probability of being in a particular copy

number state at chromosomal location m + 1 depends only on the state at location m,

with A = (ahj) forming the matrix of transition probabilities with strictly positive elements

(h, j = 1, …, 4). This matrix has a unique stationary distribution πA. The initial probabilities

of being in each of the states at m = 1 are also assumed to be given by πA.
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2.2. Prior Models for Spatial Dependence

For each gene we wish to find a parsimonious set of CGH aberrations that affect the gene

expression levels with high confidence. This is equivalent to inferring which elements of the

vector βg in (2) are non-zero, i.e. a classical variable selection problem. The resulting

“network” of gene-CGH associations can be encoded by a (G × M) matrix R of binary

elements. Specifically, for gene expression g and CGH probe m, the value rgm = 1 indicates

that the corresponding coefficient βgm is significant, and should therefore be included in the

regression model for gene g. Otherwise, rgm = 0 indicates that the corresponding regression

coefficient is zero. Given R, the regression coefficient parameters are then stochastically

independent and have the following mixture prior distribution,

(4)

with δ0(·) a point mass at zero and cβ > 0 a hyperparameter to be chosen (see Section 4). The

prior model is completed with a Gamma prior on the error precision, , and a

Normal distribution on the intercepts, , with δ, d and cμ hyperparameters

to be chosen.

Priors of type (4) are known as spike-and-slab priors in the Bayesian variable selection

literature, see George and McCulloch (1997) for linear regression models and Brown et al.

(1998) and Sha et al. (2004) for multivariate models, and have been employed to infer

biological networks of high dimensionality, see for example Jones et al. (2005), Richardson

et al. (2010) and Stingo et al. (2010). We adopt the formulation of Stingo et al. (2010) which

allows to select different covariates (CNV aberrations) for different responses (genes). See

also Monni and Tadesse (2009) for an approach based on partition models.

We now describe our prior choice for the elements rgm’s of this matrix R that encodes the

association network. Since contiguous regions of copy number changes correspond to the

same DNA aberration, they are more likely to jointly affect the expression level of a gene.

Accordingly, in our prior distribution we explicitly assume that the probability of selection

at location m depends on the copy number states and the selection of the probes at positions

{m − 1, m + 1}. Hence, CNVs located in regions of persistent state aberrations may be more

likely to be jointly associated with the expression levels of each gene. We represent this

dependent association structure as a conditional mixture prior distribution

(5)

where γm ∈ [0, 1] and . According to (5), with probability γm we have

that rgm ~ Bern(π1), independently of the neighboring values, whereas, with probability (1 −

γm), rgm coincides with either one (or both) of the adjacent values in R. We note that

equation (5) reduces to the typical independence assumption, rgm ~ Bern(π1), in the case γm

= 1.
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In this paper we assume that the parameters γm,  and  are probe-specific, capturing

information on the physical distance between CGH probes and their unobserved copy

number states. More specifically, let dm be the distance between the adjacent probes {m−1,

m} and let D be the total length of the DNA fragment (e.g the length of the chromosome)

under consideration. We define

(6)

to capture the frequency of change points at position m in copy number states across all

samples. Similar quantities have been used for example by Wang et al. (2008, 2007) and

Marioni et al. (2006) to model spatial dependency in copy number detection. Here, instead,

we use them to elicit the association between each gene expression and stretches of CNVs in

the following sense. If two CGH probes are physically close state persistence might be more

likely and the same association pattern would be expected compared to a situation where the

two probes are located farther apart on the genome. Accordingly, we define

(7)

with α set to a positive real value. In the applications we set  and  to zero for the first

and last chromosomal locations, i.e., m = 1 and m = M. We note that, if s(m−1)m = sm(m+1) = 0

equation (5) reduces to the independent case, whereas larger values of either s(m−1)m or

sm(m+1) imply smaller γm and, respectively, larger  or , i.e. stronger spatial

dependency. The prior probability of rgm = 1 therefore increases if rg(m−1) (or rg(m+1)) is

equal to one and if there are more samples with no change between the copy number states

at locations m and m − 1 (or m + 1). Finally, we complete prior (5) by further imposing a

Beta hyperprior, π1 ~ Beta(e, f). Integrating π1 out we obtain

(8)

It is immediate to show that this prior is proper since it is non negative and has finite

support.

As for the prior specification of the HMM of equation (3), we assume independent Dirichlet

priors across the rows of the transition matrix A, that is, ah = (ah1, ah2, ah3, ah4) ~ Dir(ϕ1, ϕ2,

ϕ3, ϕ4), for h = 1, …, 4. For ηj and  in the emission distributions (3) we follow Guha et al.

(2008) and assume  and ,

for j = 1, …, 4. Here lowη1 = − ∞, uppη4 = ∞, while all other hyperparameters are defined

by the user on the base of the platform (see Section 4).
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Figure 2 summarizes the full hierarchical formulation of our model.

2.3. Choice of the α Parameter

The parameter α in (7) captures the relative strength of the dependence. In particular, α = 0

implies γm = 0 (for m = 1, …, M), whereas α → ∞ leads to γm = 1, that is the independent

prior. In our applications, we found that a poor choice of α can have undesirable effects on

the prior probability. To elucidate this further, let us arbitrarily fix s(m−1)m = sm(m+1) = .65.

Figure 3 shows plots of the prior probabilities (5) for a grid of values of α in [1, 100], for π1

= .001 and π1 = .1. These plots show that strong dependence assumptions, i.e. relatively low

values of α, may have a differential effect on the probabilities, at the expense of model

sparsity. We notice also that the effect of α is stronger when the probability of success of the

Bernoulli prior is lower. We discuss sensitivity to α in the simulation studies below.

3. Posterior inference

Our primary interest lies in the estimation of the association matrix R and the matrix of copy

number states ξ. Given that the posterior distribution is not available in closed form, we

design a Markov chain Monte Carlo algorithm, based on stochastic search variable selection

algorithms. Once we integrate out μ, βg and , the marginal likelihood reduces to

(9)

where  and ,

with kg indicating the number of selected regressors for the gth regression function. We give

full details of our MCMC algorithm in the supplementary material (Cassese et al. (2013)).

The updates at a generic iteration can be described as follows:

• Update R via a Metropolis step. We first select ng genes at random using a

geometric distribution with parameter pR. Then, for each selected gene, with

probability ρ we choose between an Add/Delete or Swap moves; for the Add/

Delete move we select at random one of the elements in the corresponding row of

R and change its value (from 0 to 1, or viceversa); for the Swap move we select

two elements with different inclusion status and swap their values. In updating R,

we do not consider CGH probes called in copy neutral state in more than n × pMC

samples at the current MCMC iteration (with pMC set by the user), since these

would not be expected to be associated with changes in mRNA transcript

abundance. The proposed move is then accepted with probability

Since all moves are symmetric, the proposal distribution does not appear in the

previous ratio.
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• Update ξ via a Metropolis step. This step consists of choosing at random a column

of ξ, say m, and updating the values of nm of its elements, selected at random using

a geometric distribution with parameter pξ. For each element, a candidate state is

sampled using the current transition matrix A (i.e., we propose  based on

) and the proposal is accepted with probability

• Update ηj, for j = 1, …, 4, via a Gibbs step. We sample

, with precisions  and

weighted means , with  and

.

• Update σj, for j = 1, …, 4, via a Gibbs step. We sample

, where  and

Vj = (Xim − ηj)2I{εim=j}.

• Update A via a Metropolis step. We generate a new vector for each row of A as

, where

, and accept it with probability

Given the MCMC output, we first perform inference on R by calculating the marginal

posterior probability of inclusion (PPI) for each element, estimated by counting the number

of iterations that element was set to 1, after burn-in. A selection is then made by looking at

those elements of R that have marginal PPI greater than a value that guarantees an expected

rate of false detection (Bayesian FDR) smaller than a fixed threshold, which we set at .05.

We follow Newton et al. (2004) and calculate the Bayesian FDR as

, where k is the threshold on the PPI and Ik is an indicator

function such that Ik = 1 if (1 − PPIgm) ≤ k. We then estimate ε by calculating, for each

position, the most frequent state value. The MCMC output also allows us to make inference

on the HMM parameters, that is, the transition matrix A and the means and variances of the

emission distributions in (3).

4. Simulation Studies

We study the performance of our model on a set of simulated scenarios. The normal human

genome is diploid. However, recent studies have reported that as much as 12% of the human

genome is variable in copy numbers (Redon et al. (2006)). When copy number changes
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occur, they affect segments of DNA, so neighboring chromosomal regions are expected to

have similar copy numbers. Furthermore, transitions from copy number variants to the

diploid state are expected to be more likely than transitions between different copy number

variants (e.g., from one-copy deletion to one-copy duplication). Taking those considerations

into account, we generated a synthetic n × M matrix of copy numbers, ξ, as follows:

• We initialized the matrix ξ with all elements set to 2.

• We randomly selected L < M columns (including some stretches of adjacent

columns) and generated their values using the following transition matrix,

• We randomly selected additional  columns. For each column, we generated

10% of its values according to the transition matrix above.

Following Guha et al. (2008), we sampled the copy number state for the first CGH probe

from the initial probability vector πA, obtained as the normalized left eigenvector associated

with the eigenvalue 1. Given the resulting states, we generated the matrix X as in (3), where

we fixed η1 = −.65, η2 = 0, η3 = .65, η4 = 1.5 and σ1 = .1, σ2 = .1, σ3 = .1, σ4 = .2. We

simulated the association network R as follows. First we set all the M − L columns equal to

0. From the remaining columns we selected a total of l elements and set those to 1. We set

all the remaining elements to 0. We then generated the regression coefficients corresponding

to the l selected associations by sampling from normal distributions, as , where

β0, σ0 were fixed as detailed in the next sections and the signs were assigned randomly.

Finally, we generated the gene expression outcomes, Yig (g = 1, …, G) as Yig = μg + ξiβg +

εig with , σμg = .1, and . Unless otherwise specified, in the

following we set n = 100, G = 100, M = 1, 000, L = 250, l = 20 and σε = .1. We also

considered simulated scenarios with a different σε value for each gene g and found similar

performances to those we report below (Cassese et al. (2013)).

As for hyperparameters setting, those in (4) and (5) determine the amount of shrinkage in

the model. We followed the guidelines provided by Sha et al. (2004) and chose cβ in the

range of variability of the data so as to control the ratio of prior to posterior precision.

Specifically, we set cβ = 10, in all simulations. Furthermore, we specified vague priors on

the intercept term, by setting cμ = 10−6, and on the error variance , by setting δ = 3 and

choosing d such that the expected value of  represents a fraction of the observed variance

of the standardized responses (5% for the results reported here). For all scenarios, we

considered the dependent prior model (8) with e = .001 and f = .999 and assessed sensitivity

for varying α in (7) in the set {5, 10, 50, 100, ∞}. The notation α = ∞ succinctly indicates

the independent prior. For the HMM model, similarly to Guha et al. (2008), we set

 with bj = 1, lj = 1, j = 1, …, 4,
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and the other hyperparameters specified as in Table 1. The lower bound for η4, lowη4 was

set to avoid that a large number of single copy gains be erroneously classified as multiple

copy gains. The choice of the truncation  is a mild assumption, and it is equivalent to

setting σj < .41. Finally, we assumed each row of the transition matrix as independently

distributed according to Dir(1, 1, 1, 1).

When running the MCMC chains, we sampled initial values for ηj and σj from their

respective priors, and initialized ξ as ξim = j (j = 1, …, 4) if Xim > Tj with T = [−∞, −.5, .

29, .79]. We derived the initial value of A from the initial ξ, based on the proportion of

transitions. We set the initial R as a matrix with all elements equal to zero. All results

reported here were obtained with MCMC chains with 500,000 iterations and a burn-in of

350,000, fixing pR = .4, pξ = .6, pMC = .9 and ρ = .5. We assessed convergence by inspecting

the MCMC sample traces for all parameters, see Figure 4 for an example of typical plots.

Moreover, we applied the diagnostic test of Geweke (1992) for the equality of the means,

based on the first 10% and the last 50% of the chain. We also used the Heidelberger and

Welch (1981) test on the stationarity of the distribution to determine a suitable burn-in.

4.1. Inference on the association network (R)

We present results from two simulated scenarios. The first scenario assumes no particular

(spatial) dependence structure in the association between markers and genes. For this

scenario, we generated l regression coefficients as β ~ N(2, .32), except for 6 values which

we drew from N(.5, .32), to take into account a lower signal to noise ratio. In the second

scenario we explicitly assumed dependence among the regression coefficients. In particular

we selected two clusters of adjacent CGH probes and assumed they affect the expression of

the same gene. The corresponding coefficients were sampled as β ~ N(.5, .32). In both

scenarios, we simulated data for two values of the error standard deviation, that is, σε = .1

and σε = .5.

We start by analyzing the results for the first scenario. Figure 5 shows marginal PPIs of the

elements rgm of R, for the case σε = .1. The model recovers well the true gene-CNVs

associations (vertical lines), although it is evident that relatively small values of α, implying

greater a priori dependence structure, result in an increased number of erroneous decisions

when such structure is indeed not present in the data. A selection of the significant

associations is made by considering at those elements of R that have marginal PPI greater

than a value that guarantees a pre-specified FDR. For example, the first panel of Table 2

reports results in terms of specificity, sensitivity, false positives (FP), false negatives (FN)

and number of detections, obtained with an upper bound on the FDR set to .05. Sensitivity is

calculated as the ratio of true positive (TP) counts over l and specificity as the ratio of true

negatives (TN) over (G×M − l). In the same Table we also report the realised Bayesian q-

value, calculated as min{(1 − PPI)≤k} FDRB(k), see for example Broet et al. (2004) and Morris

et al. (2008). Results show that a lower α leads to less FN calls but increased FP counts.

However, due to the large number of TNs, such effect translates in much improved

sensitivity at the expense of only a minimal decrease in specificity. Results are similar for σε
= .5, although, as expected, the model performance improves when the error variance is

smaller (see lower panel of each scenario in Table 2).
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In order to investigate the effect of the threshold on the PPIs on the selection results, in

Figure 6(a) we report ROC-type curves displaying FP counts versus FN counts calculated at

a grid of equispaced thresholds in the interval [.07, 1]. The plots clearly show that dependent

priors obtained for lower values of α generally outperform the independent case, regardless

of the threshold.

Our results are confirmed by the second simulated scenario. As expected, dependent priors

improve the FP counts, see the last two panels of Table 2, since the spatial dependence in the

gene-CNVs association structure is now explicitly taken into account. Indeed, the

independent prior shows worse performance, due to its inability to use information gathered

from adjacent probes. As in the first simulated scenario, we again notice that lower values of

α lead to less FN calls but increased FP counts, see Table 2 and Figure 6(b). As a general

guideline regarding the choice of this parameter, our results indicate that moderate values of

α give an appropriate compromise between false positives and false negatives. See Section 6

for additional discussion.

4.2. Inference on the CNV states (ξ) and the HMM parameters

We now turn to the inference on the CGH states, encoded by the matrix ξ. Table 3 reports

the misclassification counts and corresponding percent rates. In order to compute these

summary statistics, for each element we considered the modal state attained at each genomic

location over all MCMC iterations (after burn-in). The misclassification rates appear to be

consistent over the different values of α and of the error standard deviation σε A close look

at the distribution of the misclassifications over the four states showed that most errors occur

between adjacent classes (results not shown).

Our model allows also to conduct inference on the parameters of the HMM, i.e. the

transition matrix A and the means and variances of the emission distributions in model (3).

As an example, scenario 1 (σε = .1) using the independent prior gave the following

estimates: η̂ = [−0.64963, 0.00044, 0.64936, 1.50717] and σ̂ = [0.10206, 0.09994, 0.10069,

0.21187], which appear to be all very close to the simulated values, with the exception of σ4

which is slightly overestimated. This is the standard deviation of the amplification state, that

collects all copy number gains larger than 1, so some overestimation might be expected. We

obtained similar results in all other simulations we considered. As for the transition matrix

across CGH states, the estimates appeared close to the truth (result reported in Cassese et al.

(2013)).

4.3. Comparison with single stage approaches

We compare the results based on our unified method, which performs simultaneous CNV

detection and selection of significant associations, to single stage approaches that focus

solely on CNV detection or solely on association analysis using the raw measurements.

Using the CNV detection method of Guha et al. (2008), which analyzes each sample

separately, and specifying the same prior settings as our model, there were respectively 2695

and 8349 misclassified CNV calls for the two scenarios with σε = .1 (instead of 78 and 62 as

reported for the independent case in Table 3). This result demonstrates that the integration of
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multiple samples and the joint modeling of gene expression data offer improved estimation

of copy number states.

We also looked into the performance of Bayesian variable selection in a regression model

where the predictors are the raw continuous CGH measurements, therefore ignoring the

inference of the latent copy number states. For the prior on the variable selection indicators,

since the copy number states were not estimated, we cannot use prior model (5). Instead, we

assumed the independent prior rgm ~ Bern(π1) and set π1 = .001. For σε = .1, using an FRD

threshold of .05, we obtained specificity = 1 and sensitivity = .7 in the first simulated

scenario and specificity = 1 and sensitivity = .2 in the second scenario. In both cases the

performance of the competing model is worse than that of our model with the independent

prior (see Table 2). In particular, in the second scenario the model with the dependent prior

outperforms both the model with the independent prior and the competing model that uses

the raw continuous CGH measurements.

5. Case Study on Human Cancer Cell Lines

We applied our model to the analysis of the NCI-60 cell line panel, which consists of 60

human cancer cell lines derived from a diverse set of tissues (brain, bone marrow, breast,

colon, kidney, lung, ovary, prostate and skin). We downloaded the normalized aCGH

Agilent 44K data and the Affymetrix HG-U133A RMA gene expressions using CellMiner

(discover.nci.nih.gov/cellminer). In the current analysis, we excluded cell line 40 from the

dataset, since no gene expression measurements were available in the repository. We

imputed the remaining missing values using the k-nearest neighbor algorithm with k = 5.

In performing our analysis we employed pathway-based scores of the gene expression data.

This strategy helped us to reduce the dependence between the outcome variables in model

(2) and also to achieve a dimension reduction of the model space. Methods that employ

pathway-based scores of gene expression data have become quite popular in genomics, see

for example Su et al. (2009); Ovacik et al. (2010); Chen et al. (2010); Drier et al. (2013),

among others. More precisely, we considered the genes that map to each one of the 186

KEGG pathways, using the software Compadre (see Rodriguez et al. (2012)). Then, for each

pathway, we applied principal component analysis (PCA) to the gene expression data and

selected the components that explained at least 80% of the variability. This procedure led us

to the selection of G = 3195 pathway components, which we used as response variables in

model (2). Furthermore, we considered the 1521 CGH probes mapping to chromosome 8

and selected those that showed variability across tissue types via an ANOVA test with

multiplicity correction. This resulted in a set of M = 89 CHG predictors.

For model fitting, we used hyperparameter settings similar to those used in the simulation

scenarios described in Section 4. We ran 100, 000 iterations with a burn-in of 50,000, setting

pR = .1, pξ = .3 and pMC = .9 in the MH proposals. As suggested by the results of the

simulations, we set α to a relatively small value, that is α = 25. For comparisons, we also

looked at the case α → ∞ (that is, the independent prior). As in the simulation study, we

assessed convergence by inspecting the MCMC sample traces for all parameters. Moreover,
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we applied the Geweke diagnostic test for the equality of the means and the Heidelberger

and Welch test on the stationarity of the distribution to determine a suitable burn-in.

We ranked the marginal PPIs of the elements of R in order to identify the most significant

associations. Figure 7(a) shows a heatmap of the pathway-CNV associations with highest

PPI for the case α = 25 (roughly the top 100 associations, which correspond to a threshold

of .07 on the PPIs). Figure 7(b) shows the same selection for the independent prior. Notice

that the latter heatmap is more sparse. In addition, the heatmap for α = 25 shows a stronger

tendency to include groups of adjacent CGH probes as significant for the same pathway

component, which is coherent with how we built our prior probability model.

As for inference on the copy number states, the estimates of the state specific means and

variances were [−.6419, −.0105, .49, 1.0236] and [.2059, .08115, .1287, .27138],

respectively, which are consistent with the theoretical values. Furthermore, the estimated

transition matrix well captured the state persistence of the CGHs (results not shown).We

also notice that the first and the last value of the vector of estimated variances are larger than

those corresponding to neutral and single gain states. This is what we would expect, since

the first and the last class correspond to multiple copy number losses and gains, respectively.

Finally, Figure 8 shows the estimated frequencies of gains (single and multiple) and losses

plotted along the samples for each of the 89 CGH probes considered for analysis.

5.1. Biological interpretation of our findings

Our results identify potential links between genomic mutations, in the form of CNVs, and

the transcriptional activity of target pathways. In this Section, we explore the biological

significance of the identified associations and assess whether they can be used to generate

biologically relevant hypotheses. Figure 9 is a schematic representation of the conceptual

relationships between genes linked to CGHs for a set of 4 target pathway components. The 4

pathway components were selected as those with the highest numbers of associations in

Figure 7. For each of the 4 components we report the top 20% of the genes with highest PC

loadings (subplots A,B,C,D, with bars representing the PC loading values), as those with

highest expression variability. Selected genes with CNVs are also listed, below the pathway

names. Finally, dashed lines point at genes with CNVs that overlap across selected

pathways. These results identify two main molecular pathway blocks. The first (Figure 9A)

represents the connection between six genetic mutations with Arginine metabolism. The

second (Figure 9BCD) represents a partially overlapping set of 18 genomic mutations and

the expression of genes involved in Glycosylphosphatidylinositol (GPI) anchor metabolism

and Porphyrin metabolism.

There is strong evidence linking Arginine metabolism to cancer in the literature. For

example, arginine metyiltransferases are key enzymes in modulating DNA methylation, a

primary mechanism in neoplastic transformation (Yang and Bedford (2013)). A connection

between Arginine metabolism and suppressor cells in cancer has also been proposed (Raber

et al. (2012)). Our results therefore suggest that the expression of a number of enzymes

involved in Arginine metabolism may be linked to specific mutations. Interestingly several

of these mutations are known cancer genes. For example, it has been shown that mutations

in Nucleoplasmin 2 (NPM2), a core histone chaperone involved in chromatin

Cassese et al. Page 14

Ann Appl Stat. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



reprogramming, are associated to increase resistance in a cancer cell line (Dalenc et al.

(2012)). In the supplementary material (Cassese et al. (2013)) we report details of the

functions of other mutations linked to the target pathways we have identified.

Our results also identify a partially overlapping set of mutations linked to GPI-anchor

metabolism and Porphyrin metabolism (Figure 9BCD). Similarly to the Arginine

metabolism, over-expression of several enzymes in the GPI-anchor metabolism has been

shown to induce tumorigenesis and invasion in human breast cancer (Wu et al. (2006)). On

the other hand no direct link between the expression of Porphyrin metabolism genes and

cancer has been reported, although there is evidence that increased porphyrins may be a

parallel disease in liver cancer models (Kaczynski et al. (2009)).

Having identified possible relationships between genomic mutations and target functional

pathways we wondered whether these might be also linked to already known regulators

involved in cancer. To test this hypothesis, we looked at whether the lists of genes identified

either as genetic mutations or target genes are enriched for targets of known regulators.

More specifically, we searched for putative (directed or indirect) upstream regulators of all

genes involved in the Arginine, GPI-anchor and Porphyrin metabolisms as well as putative

upstream regulators of the genes with CNVs selected by the model. We searched a database

of known targets of transcription factors and other regulators (www.ingenuity.com) and used

a Fisher’s exact test to assess whether there was a statistically significant overlap between

the genes in our lists and the genes regulated by each regulator in the database. In this

analysis we used a high stringency threshold (p < 10−6) to define putative regulators. Figure

10 shows our findings. All 4 putative upstream regulators identified at the high stringency

threshold were genes known to be of primary importance in cancer biology. These were the

well-known oncogenes MYC and p53, the Peroxisome proliferator-activated receptor PPAR

(Belfiore et al. (2009)) and the reactive oxygen species scavenger Superoxide dismutase

SOD1 (Somwar et al. (2011) and Noor et al. (2002)). We found that genes connected to

these regulators were primarily representing enzymes involved in Arginine metabolism

(76% of the total targets, 35/46) representing 50% (35/72) of the genes in that pathway. Of

these, 6 represented genes within the top 20% PC loadings (Figure 9A). Eight genes

connected to the 4 identified regulators (17% of the total targets) were representing enzymes

in the Porphyrin metabolism pathway (representing 17% of the total pathway genes, 8/46).

Interestingly no genes with CNVs selected in the Arginine metabolism model were linked to

the 4 regulators. Instead, 2 of the 3 genes with CNVs included in Figure 10 were in the

Porphyrin metabolism pathway block and 1 in the GPI-anchor metabolism. Overall, these

findings support the hypothesis that the associations we have identified represent genes

highly implicated in cancer.

6. Discussion

In this paper we have developed a hierarchical Bayesian modeling framework for the

integration of high-throughput data from different sources. We have focused in particular on

gene expression levels and CGH array measurements, collected on the same subjects. Our

modelling framework has several innovative features. First, it allows the identification of the

joint effects of multiple CNVs on mRNA transcript abundance. Second, it reduces the bias
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that arises when ignoring the uncertainty in the CNV estimation process (i.e. using copy

number calls as if they were the true states), by allowing the simultaneous inference of

CNVs and their association to gene expression. We have shown in simulations that noise in

the raw measurements leads to the detection of spurious associations and also that it is

advantageous to incorporate the estimation of copy numbers into the analysis, as this

reduces the detection of false positive associations. Findings from an analysis we have

conducted on data from 60 cancer cell lines support the hypothesis that the model we have

developed has the potential to identify important linkages between gene expression and

CNVs. The dataset we have considered spans a large spectrum of tissues and cancer types. It

is expected that the detection power of our approach will be higher with more defined

patient populations. These studies will require dedicated clinical studies.

Our model aims to identify contiguous regions of DNA aberration that jointly affect the

expression of a gene. To accomplish this we have specified selection priors that cleverly

account for spatial dependence across DNA segments. This prior model depends on a

parameter, α, that plays an important role in capturing the dependence structure. We

investigated the option of putting a prior distribution on this parameter. However, with a

Gamma prior, for example, and a Metropolis-Hastings step to sample α, the data only have

an indirect effect on the MH acceptance ratio, via the definition of s(m−1)m and the values of

rgm, and the MH ratio is dominated by the prior probability of rgm. As seen in Figure 3, the

prior probability of inclusion/exclusion increases if the neighbors are included/excluded, and

this effect is particularly dramatic for the prior probability of inclusion under lower values of

α. This causes the sampler to move to regions of the posterior characterized by higher

dependence between contiguous states, accepting a move every time a smaller value of α is

proposed. Such behavior could be prevented by introducing a second parameter in the prior,

in order to penalize for large numbers of included links. The construction of such prior will

need further investigation on our part. We find the single-parameter prior model we have

proposed here rather intuitive and easy to specify. In our simulations we have found values

of α in the range α = [20, 50] to work well, leading to a good balance between the number

of FN and FP. Results shown in Table 2, in fact, are clearly robust to the choice of α in this

range. Values lower than 20 lead to a steady increase in the number of included links, while

values higher than 50 result in priors closer and closer to the independent model. Moreover,

for all the simulated examples and all α values in the suggested range, the top 15 links

identified with highest posterior probability of inclusion are all true associations. In the case

study, as typical with high-throughput genomic data, where there is a high degree of

multicollinearity among the covariates, different MCMC runs might pick different subsets of

the predictors, as variables that are highly correlated act as proxies for each other and would

be picked by different chains. This behavior is, in general, independent of the chosen

specification of the α parameter.

In the case study we have applied a heavy filtering of the CGH probes. Filtering and/or

dimension reduction methods are often used in applications of HMM models to CGH data,

see for instance Du et al. (2010); Fox et al. (2011); Guha et al. (2008); Costa et al. (2013).

Caution is necessary when applying such preprocessing steps, as they may result in large

gaps between probes, thus decreasing the dependence between adjacent probes and/or
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inducing heterogeneity in the gap size. In order to assess whether the HMM approach is

indeed beneficial we looked at results on the estimation of ξ without the HMM formulation.

For this we considered the counts across the four different states as arising from a

multinomial distribution and assumed a Dirichlet hyperprior. As we did with the HMM

setting, we set all hyperparameters of the Dirichlet to 1. We obtained state specific means

[−0.25, −0.03, 0.14, 3.54] and variance estimates [0.41, 0.19, 0.41, 0.78]. The HMM

formulation instead resulted in estimated means that were closer to the theoretical values as

well as in lower variance estimates (results reported on page 25). In addition, looking at the

distributions of the estimated states, the HMM approach resulted in a larger number of

neutral states, whereas the no-HMM model classified many of these as single copy number

gains. Given the biological evidence that neutral states should be more common, we believe

this suggests that the performance of the HMM formulation is superior despite the heavy

filtering applied to the data. A possible improvement of our HMM model could be to

incorporate the distances between adjacent probes in the evaluation of the transition matrix,

to account for possible heterogeneity in the gap size, as done in Colella et al. (2007) and

Wang et al. (2007).

Other improvements of our model include the use of indicator variables to model the CNV

effects, in order to relax the assumption of a linear association of the ξ categories on the Y s.

This would lead to a 2-fold increase (with four categories) in the dimension of the matrix of

predictors, therefore increasing computational times. Finally, although we have focused on

array CGH data, the proposed method can easily be extended to CNV detection using

genome-wide SNP arrays. This can be done by modifying the emission distributions in the

HMM and modeling the log-intensity ratios in equation (3) as a mixture of uniform and

normal distributions, as in Wang et al. (2007) and Colella et al. (2007).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig 1.
Graphical formulation of the probabilistic model described in Section 2.
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Fig 2.
Hierarchical formulation of the proposed probabilistic model.

Cassese et al. Page 22

Ann Appl Stat. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 3.
Effect of α on the prior probabilities of inclusion (5) for (a) π1 = .001 and (b) π1 = .1.
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Fig 4.
Simulation study: Trace plots for: (a) R, number of ones in the association matrix, (b) ξ4,

number of positions estimated as multiple gains, (c) η4, mean value of the positions

estimated as multiple gains and (d) σ4, standard deviation of the positions estimated as

multiple gains, for one MCMC run on simulated scenario 1. We note that state four has the

smallest number of observations, thus more variance and less stationarity is expected.
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Fig 5.
Simulated data: Simulated scenario 1 with σε = .1: Marginal posterior probabilities of

inclusion of the elements rgm of the association matrix R. Plots refer to prior model (8) with

(a) α = 20, (b) α = 100, (c) α = ∞ (independent prior). Vertical lines indicate the true gene-

CNVs associations.

Cassese et al. Page 25

Ann Appl Stat. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig 6.
Simulated scenario 1(a) and 2(b) with σε = .1: Numbers of FP and FN obtained by

considering different thresholds on the marginal probabilities of inclusion of Figure 5.

Threshold values are calculated as a grid of equispaced points in the range [.07, 1]. Plots

refer to prior model (8) with different values of α.
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Fig 7.
Case study: Heatmaps of PPIs of pathway-CNV associations using the dependent prior with

α = 25 (a) and the independent prior (b).
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Fig 8.
Case study: Proportion of estimated gains and losses among the 59 samples for the 89 CGH

probes considered.
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Fig 9.
Case study: Schematic representation of selected associations, showing the selected genes

with CNVs and the transcriptional predicted target genes (top 20% of the absolute value of

the PC loadings). Bars represent the PC loading values. Dashed lines point at genes with

CNVs that overlap across pathways.
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Fig 10.
Case study: Potential upstream regulators of the selected genes with CNVs and target genes.

The plot shows the top 4 most likely regulators (p < 10−7), that is, PPAR, the oncogenes

MYC and p53 and the ROS scavenger SOD1. These are upstream to many of the Arginine

metabolism genes (represented by the red circles), including a large number of those in the

top 20% of the PC loadings (filled red circles). Some Porphyrin metabolism transcriptional

targets are also included (green circles and filled green circles). Furthermore, 3 of the

selected genes with CNVs are linked to the 4 regulators (yellow filled green and red circles)

Cassese et al. Page 30

Ann Appl Stat. Author manuscript; available in PMC 2015 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Cassese et al. Page 31

Table 1

Simulation study: specification of the HMM hyperparameters.

HMM parameters State 1 State 2 State 3 State 4

δj −1 0 .58 1

τj 1 1 1 2

lowηj −∞ −.1 .1 η3 + σ3

uppηj −.1 .1 .73 ∞

uppσj .41 .41 .41 1
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