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Introduction

We have seen the increased use of computational approaches to predict drug interactions

with human transporters that affect drug disposition and may lead to toxicity. These

predominantly ligand-based methods use limited experimental data but provide new insights

into structure activity relationships (SARs). The promiscuity of ligand interaction with

transporters represents a challenge to computational methods. Development of models

capable of identifying new transport substrates and unwanted drug-drug interactions requires

novel applications of current computational methods.

The clinical importance of efflux and uptake transporters in drug disposition is widely

acknowledged [1–5] and membrane transporter anomalies are the basis for certain clinical

disorders. Consequently, increasing attention is being paid to the potential for transport-

based toxicity in vivo, and to unwanted drug-drug interactions [6–9] and consequences from

polymorphic transport activity [10]. Furthermore, with hundreds of transporters yet to be

characterized, the potential exists for many new drug targets to be discovered [8].

Computational models could therefore enable repurposing of already approved drugs [11] as

well as predict the potential for, and ultimately preempt undesirable effects [12–14] that are

based on drug-transporter interactions.

Where are we now?

Application of computational methods to the study of transporters has typically involved

determining the extent to which test compounds inhibit in vitro uptake of a prototypical

probe substrate. The test compounds might include a small number of well-characterized

model compounds or, in some recent studies, some tens or hundreds of compounds [7, 9, 15,

Corresponding Author: Sean Ekins, Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay Varina, NC 27526, U.S.A.
ekinssean@yahoo.com, Tel. 215-687-1320.

NIH Public Access
Author Manuscript
Clin Pharmacol Ther. Author manuscript; available in PMC 2014 May 12.

Published in final edited form as:
Clin Pharmacol Ther. 2012 November ; 92(5): 661–665. doi:10.1038/clpt.2012.164.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



16]. These data have been used occasionally to generate quantitative structure activity

relationships (QSARs) [17, 18], pharmacophores [19–21] or other types of statistical models

[8, 16, 22]. Such computational (or in silico) models have also been used for prospective

prediction subsequently validated by in vitro testing [7, 9, 15, 23–29] or the use of additional

data from literature case reports [6, 30]. However, the application of computational methods

to generate models and SARs for transporters is at least a decade behind that of drug

metabolizing enzymes, which has much larger datasets available both inside the

pharmaceutical industry [31] and outside [32] (e.g. ChEMBL [33] and PubChem [34]). We

have proposed through our transporter studies that if transporter research is to achieve parity

with that of drug metabolizing enzymes, it will be through the judicious use of these in vitro

and in silico (IVIS) approaches as a combined system.

The prevailing axiom for robust QSAR studies is ‘more is better.’ Accurate insight into the

molecular determinants that define ligand-transporter relationship is likely to arise from

analyses that employ large and structurally rich groups of test ligands (100’s of compounds).

To that end, it would be helpful if data from different studies could be effectively combined.

Unfortunately, results in different studies are frequently reported in different kinetic forms

(e.g., Ki vs. IC50 vs. percent inhibition), so laboratories with an interest in even the same

transporter may have difficulty in quantitatively using one another’s data. But an even

greater issue is the variability of results obtained by different groups using similar methods.

The bases of such differences are not clear, but differences in reported IC50 values for the

inhibition of the same substrate by the same compound using the same experimental system

frequently vary by as much as 10 to 100-fold [35], which makes pooling of data virtually

impossible. Similarly Kt values (and other kinetic values) for the same compound can differ

depending on the expression system used (Table 1). Although our own experience with

OCT2 and MATE1 transport in both CHO and HEK293 cells has found no substantive

difference in kinetics or selectivity for the same compound, a systematic study of this issue

is lacking.

What will it take to expand modeling of ligand-transporter interaction?

We suggest that scaling up the current transporter research paradigm will involve a two-

pronged approach. First is the development of high-throughput protocols that can interrogate

the effect on activity of a target transporter of structurally rich cohorts of test compounds,

thereby producing large, ‘internally consistent’ (i.e., comparable) data sets. We also suggest

that, from a practical point of view, the efficiency of this approach will benefit from initial

studies that use relatively small numbers of compounds to build an initial computational

model that is then used to prioritize additional compounds for testing (Figure 1). This

‘bootstrapping’ approach described above can scale but it will need the modeling software to

be available and require efforts for sharing QSAR models in a standardized fashion [36].

While there are efforts to standardize how data and models are stored, queried and

exchanged, sharing of ‘open source’ transporter models that are created represents a

challenge but appears feasible [37] and should be pursued.

We have previously described how computational transporter models tend to evolve [38] as

the amount of inhibition data increases. Such evolution nominally follows the pathway of
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simple molecule alignments, pharmacophore, QSAR, machine learning models, protein

simulation, homology (comparative) modeling, docking and ultimately X-ray

crystallography. We are not suggesting that a crystal structure represents, by itself the final

static conformation of a transporter due to the complexities of binding/ protein flexibility. P-

gp required two decades to traverse this route. Clearly, we cannot afford this time span for

every human transporter to be characterized. Especially when computational models for

transporter substrates may have the added benefit of assisting in probe substrate

identification and selection, in directing mutagenesis studies and in facilitating protein

modeling efforts that, in combination, will accelerate our progress.

What can we do to predict transporter substrates?

As noted above, the current modeling approach typically involves assessing the degree of

inhibition, produced by a set of test compounds, of substrate uptake by a target transporter.

The focus on ‘inhibition’ reflects the fact that (i) it is easy to measure, and (ii) there are

comparatively few substrates in which the uptake can be conveniently measured (e.g. via

scintillation counting). There are few examples where both substrate and inhibitor models

have been generated for a single transporter (e.g., [6, 39, 40]). Our early work on P-gp is

perhaps an exception [20] and these models have continued to be used by us to make

predictions [25, 41]. Can we differentiate between inhibitors and substrates for transporters

using such models? The answer (in at least some cases) appears to be yes. An example is our

recent work on hOCTN2 inhibitor pharmacophores [7, 23]; all had at least one hydrophobic

feature, whereas the separately developed hOCTN2 substrate pharmacophore has none [6].

These differences between OCTN2 substrate and inhibitor pharmacophores may point to

important interactions on the protein that differentiate substrates and inhibitors. In turn,

these models may be useful for targeting transporters, for example, by defining which L-

carnitine mimics are transported and with what affinity. Currently, the database of human

OCTN2 substrates is very small [6] so an exhaustive SAR analysis is not possible. But these

early stage models could enable us to search small molecule databases such as virtual

compounds or L-carnitine mimic libraries to identify additional compounds for testing, and

hence expand our knowledge of the SAR and test hypotheses. The excluded volumes in the

substrate pharmacophore [6] could also help to limit the range of molecules that can map the

three key features on L-carnitine.

Promiscuity of Ligand Binding – what do the models mean?

During more than a decade of constructing computational models for drug transporters we

have made several observations. Initially we suggested there was considerable promiscuity

of ligand interaction with some proteins, especially those like P-gp that have affinity for a

diverse range of hydrophobic molecules [42]. There is a growing understanding that ligand

interaction with multidrug binding proteins is unlikely to be restricted to classical

competition between substrates/inhibitors for a single common binding site [43]. Instead, the

interaction of multidrug transporters with their structurally diverse cohort of substrates/

inhibitors may involve what is more accurately viewed as a binding surface containing

multiple, potentially overlapping, binding sites [43]. Consequently, structurally distinct

transport probes may well display different inhibitory profiles for the same battery of test
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compounds. Evidence for this view is found in a recent review that listed an extensive

literature analysis of hOCT2 inhibitors and their substrate probes (Table 2) [35]. For

example, cimetidine shows consistently different IC50 values depending on the identity of

the transported probe (e.g., ASP vs. MPP+).

In this light, pharmacophores may represent a ‘statistical average’ of ligand interaction and

the use of different substrate probes may result in different inhibition pharmacophores for

the same transporter. We have provided some preliminary evidence to support this using

published data for 6 inhibitors of MATE1-mediated ASP transport [44] to create a

pharmacophore that differed markedly with one generated based on inhibition of MPP+

transport [15]. While this dataset is small it immediately brought to mind the situation with

the enzyme CYP3A4 which requires the use of multiple distinct substrates in order to obtain

a reliable measure of potential for a compound to cause drug-drug interactions [45, 46].

Further evidence for differences in pharmacophores might be seen based on other factors,

such as different training set size, stereoselectivity and different cell lines expressing the

transporter. All of these parameters may further compound comparing models, as suggested

by pharmacophores for hOCT1 from 3 different groups (Supplemental Table 1).

The future

So far much of the modeling we have described is ligand-based but there have been efforts

to generate protein homology models for different transporters (reviewed earlier [38, 47–

49]). How can we expand these efforts too? Certainly there is a wealth of comparative

protein structure prediction software like I-Tasser [50] (and many others). These could be

used to build transporter models de novo that could then be validated experimentally by site-

directed mutagenesis, or in vitro testing. Such protein models could be used to dock known

substrates and inhibitors (Figure 1) which, in turn, might help in validation (e.g., MRP4

[51]). Simple software scripting of transporter (and potential mutant) sequences to run them

through such protein modeling resources would be a viable option. This approach in turn

could be used to create a database of transporter models that could be used for docking by

any researcher. Such an approach in parallel with ligand-based efforts [30] would provide

some insight as to whether a new drug was likely to be a substrate or inhibitor for a

transporter (the principal goal of such studies). It may be possible to create a simple to use

software interface for the program, whereby the scientist could submit a small molecule

structure or file with multiple structures, and this would be run against selected proteins and

the results returned upon completion. With recent efforts to develop mobile applications for

drug discovery [52] it might be possible to do this on a mobile device (such as a smartphone,

or tablet computer) accessing the models on the cloud, and retrieve a score for potential

interactions with different transporters. We expect in the future an increased use of structural

models in combination with ligand-based methods to rationalize SAR. To get to this point

will require investment to develop the ligand and protein models and make them accessible

to all. We need to obtain more efficiently information on human drug transporters so we can

reliably predict drug interactions and it is imperative that we fund such IVIS studies.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Using in vitro and in silico (IVIS) methods to predict whether a compound is a substrate or

inhibitor of a human transporter.

Ekins et al. Page 8

Clin Pharmacol Ther. Author manuscript; available in PMC 2014 May 12.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Ekins et al. Page 9

Table 1

Variability of Kt values for hOCT2 with transfection system (data from [35] and our laboratories).

Compound
Kt

(µM)
Transfection

system Reference

Dopamine 1400 cc [53]

390 oo [54]

Histamine 940 cc [53]

1300 oo [54]

MPP 19 oo [55]

7.8 cc [56]

12 cc Unpublished

3.1 cc [57]

12.3 Unpublished

19.5 cc [58]

Norepinephrine 1500 cc [53]

1900 oo [54]

Serotonin 290 cc [53]

80 oo [54]

TEA 27 cc [59]

76 oo [55]

109 cc [60]

20 cc [61]

46 cc [17]

cc = cultured cell (HEK293 or CHO), oo = oocyte, MPP = 1-methyl-4-phenylpyridinium, TEA = tetraethylammonium.
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Table 2

Substrate-dependent IC50 or Ki values for inhibition of hOCT2 by cimetidine (data from [35] and our

laboratories).

Cimetidine
Ki/IC50 (µM)

Substrate Substrate concentration
(µM)

Reference

14 Amil 1 [62]

36 ASP 1 [63]

23 ASP 20 [44]

26 ASP 1 [62]

27 Crea 5 [64]

1380 Et 1 [57]

510 Met 10 [65]

110 MPP 0.01 Unpublished

142 MPP 15 Unpublished

120 MPP 0.01 [58]

70.4 NBD-MTMA 10 Unpublished

70 TEA 5 [17]

Amil = Amiloride, ASP = 4-(4-(dimethylamino)styryl)-N-methylpyridinium, Crea = Creatinine, Et = ethidium, Met = metformin, MPP = 1-
methyl-4-phenylpyridinium, NBD-MTMA = [2-(4-nitro-2,1,3-benzoxadiazol-7-yl)aminoethyl]trimethylammonium, TEA = tetraethylammonium.
Bold = molecules highlighted to show for the same probe substrate the comparable IC50 or Ki
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