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Abstract

Advances in biotechnology have resulted in large-scale studies of DNA methylation. A differentially methylated region
(DMR) is a genomic region with multiple adjacent CpG sites that exhibit different methylation statuses among multiple
samples. Many so-called ‘‘supervised’’ methods have been established to identify DMRs between two or more comparison
groups. Methods for the identification of DMRs without reference to phenotypic information are, however, less well studied.
An alternative ‘‘unsupervised’’ approach was proposed, in which DMRs in studied samples were identified with
consideration of nature dependence structure of methylation measurements between neighboring probes from tiling
arrays. Through simulation study, we investigated effects of dependencies between neighboring probes on determining
DMRs where a lot of spurious signals would be produced if the methylation data were analyzed independently of the probe.
In contrast, our newly proposed method could successfully correct for this effect with a well-controlled false positive rate
and a comparable sensitivity. By applying to two real datasets, we demonstrated that our method could provide a global
picture of methylation variation in studied samples. R source codes to implement the proposed method were freely
available at http://www.csjfann.ibms.sinica.edu.tw/eag/programlist/ICDMR/ICDMR.html.
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Introduction

DNA methylation, one of the most important epigenetic factors,

has been intensively investigated, and its influence in a variety of

human diseases, most notably cancer, has been firmly established

[1,2]. In contrast to sequence variation, DNA methylation of

cytosine residues at the C5 position has an effect on gene

regulation without changing the DNA sequence [3], and this

mechanism may therefore make a significant contribution to the

missing heritability of complex traits [4]. Advances in biotechnol-

ogy have led investigators to undertake methylation studies on a

genome-wide or whole-genome scale using array- or sequencing-

based technologies [5,6]. Extensively profiling methylation varia-

tion either in or between populations—such as in case-control

studies or in different tissue types— is crucial for furthering our

understanding of the role of DNA methylation in pathogenesis and

carcinogenesis.

Variations in DNA methylation exist at various DNA sites,

including differential methylation at a CpG site, allele-specific

methylation, and haplotype-specific methylation [1]. A differen-

tially methylated region (DMR) refers to a genomic region with

multiple adjacent CpG sites that exhibit different methylation

statuses among multiple samples and provides the most well-

analyzed example of methylation variation. The objectives of

DMR studies can be broadly divided into two types: (i)

identification of DMRs across populations and (ii) identification

of DMRs within a population. Many studies have been

undertaken of the former type, in which differences in methylation

levels have been explored in individuals with different phenotypic

labels, such as diseased and healthy tissues. In such cases, the

traditional Student’s t-test and Wilcoxon Rank Sum Test (WRST)

[7,8] can be used to find DMRs, using normalized methylation

levels between two groups; this has been done using the

conventional univariate test for differential expression analysis.

In addition, an analysis of variance (ANOVA) model, relying on

raw intensity data, has been developed to identify aberrant

methylation patterns for oligodendroglioma and breast cancer

samples, respectively [9], and ‘‘sliding window’’ approaches, in

which various window sizes are used, have also been proposed for

methylation segment analyses [10].

The isolation of DMRs across samples in the same population

has attracted much recent attention, and biologically distinct

subtypes of a disease that may cause molecular or clinicopatho-

logical heterogeneity have been recognized as a result [11].

Indeed, DMRs associated not only with different tissue types [12]

but also with different disease subtypes, including breast cancer

[13], large B-cell lymphoma [14], and acute myeloid leukemia

[15], have been identified. Thus, success in the identification of

DMRs in a type of cancer may help to discover possible subtypes

and could provide new insights into disease progression, which

could be used to identify specific drug targets and pharmacoge-

nomics biomarkers [16]. An alternative unsupervised approach

can be used to identify DMRs without reference to phenotypic

information and can assist investigators in determining methyla-

tion variation in the studied samples.

The feature selection method that filters CpGs based on their

variability, where features with higher variances are thought to be
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differential in samples and more likely to be DMRs [17].

Unfortunately, this method lacks the statistic test for determining

the significance. A quantitative approach for DMR identification

and characterization (QDMR) has been proposed recently using

Shannon entropy which measures variation or change in a series

of events and has been applied to the study of differential

expression genes [18]. In the QDMR, a pointwise method is used

in which a weighted entropy score is calculated for each probe to

represent the extent of methylation differences across multiple

samples. Unlike ranking-based feature selection method, the

QDMR provides a statistic for each probe to test the divergence

of methylation levels with respect to average methylation level

across samples. The methylation statuses of neighboring CpG sites

are not independent of each another [7], and it is possible to have

positive correlations of methylation intensities in nearby probes

across the genome, especially in tiling arrays or from data using

sequencing technologies that generate dense data in a specific

region of the genome [19,20]. Aggregating information from

neighboring probes, however, cannot be taken into account using

the pointwise approach, although appropriately incorporating this

information into the analysis of DMRs may reduce false positives,

because the methylated fragments are always longer than the

probe length used in the array. Here, Identification of Consistently

Differentially Methylated Regions (ICDMR), an unsupervised

approach, is proposed to directly analyze methylation intensity

data generated from tiling arrays to locate DMRs across a large set

of samples simultaneously. This method considers all correlations

of signals between nearby probes, i.e., those that are biologically

significant and those that are not. The former correlation arises

from changes in DNA methylation status, whereas the latter arises

from the intrinsic correlation of probes, such as the linear

correlation arising from overlapping probes or from the hybridized

DNA fragments spanning multiple probes on the array [21,22].

The proposed method provides a way to calculate the concor-

dance between adjacent probes, where concordance measures the

consistency of methylation status between two probes among

individuals. A population-based distribution is also used to assess

the significance of the concordance. Thus, contiguous probes with

significant concordance can then be integrated to form a

consistently DMR. In other words, the proposed method searches

for the region(s) showing different methylation statuses among

individuals in a population, where these differences are consistent

across the probes in the region.

Methods

Two different measurements, M and b, are frequently used to

assess the methylation level [23]. The b, varying between 0 and 1,

is reported as a ratio of methylated intensity to the sum of

methylated and unmethylated intensities. Although b provides an

absolute measure of DNA methylation level and is easily

interpreted, it imposes serious challenges when applying to many

statistic models with a heteroscedasticity in the low and high

methylation levels [24]. The M, ranging over all real numbers, is

calculated as a log-ratio of the methylated and unmethylated

intensities. The M value is more statistically valid to common

statistical tests used in gene expression study, and has been

suggested to be related with b by a log2 logistic transformation

[17],

M~log2

b

1{b

� �

CpG island methylation data from human astrocytomas
The dataset of CpG island hypermethylation in human

astrocytomas [25] was obtained from the National Center for

Biotechnology Information’s Gene Expression Omnibus (GEO),

accession number GSE19391. It consisted of six normal tissues

and 30 astrocytomas. The Human DNA Methylation 385 K

Promoter Plus CpG Island Array (Roche NimbleGen, Madison,

WI) had been used for assaying methylation levels in 36 samples

for 28,000 CpG islands and 18,000 promoters, using nearly

385,000 probes spread over the genome. The astrocytoma data

included samples belonging to all four grades of the World Health

Organization’s tumor classification system: 6 grade I (or T1)

samples, 7 grade II (or T2) samples, 9 grade III (or T3) samples,

and 8 grade IV (or T4) samples. The normalized log2 ratio data

were used directly, and only the autosomal probes were considered

in the analysis of the DMRs

DNA methylation data from human tissues
The DNA methylation data from human liver, frontal cortex,

spleen and colon [26] were obtained from GEO (accession

number GSE23841). The dataset was generated by genome tiling

array, using genomic DNA hybridized to custom-designed

NimbleGen microarrays (CHARM human array v 1), and

consisted of five samples each of normal liver, frontal cortex,

spleen, and colon and five samples of colon cancer tumors. These

data were first used to identify a large number of tissue-specific

DMRs and cancer-specific hypermethylation and hypomethyla-

tion in CpG island shores in colon cancer tumors using a

supervised approach. Because the normalized data represent the

fraction of methylation (represented as a decimal value ranging

from 0 to 1), the logistic link function was applied to convert the

data into the form of a log2 ratio [17]. These transformed data

were then used to examine the ability of ICDMR to identify

DMRs across different human organs, and/or between health and

diseased tissue.

ICDMR: Clustering methylation data by a normal mixture
model

In order to better estimate methylation status in studied

samples, we propose to exploit the bimodal distribution of M.

For a probe, say d, we first estimate the probabilities of each

individual’s methylation status by using relative methylation

intensities across samples. Consider n methylation intensities,

observed for a probe, d, denoted as md = (md,1, md,2,…, md,j,…,

md,n)
T, where md,j is the log2 ratio of the intensities of treated versus

untreated DNA for the jth sample. In gene expression studies, the

model-based clustering method is a frequently used technique to

identify groups of cohesive observations, and it assumes that the

data arise from a normal mixture model [27]. In contrast to gene

expression data, methylation data follow a bimodal distribution,

corresponding to methylated and unmethylated regions [28]. In

view of this, we propose a separation of methylation intensities, md,

if methylation statuses are different between two groups of

individuals. A traditional normal mixture model with the number

of components fixed at two was therefore implemented to describe

the pattern of methylation intensity in the samples. Under a

univariate normal mixture model, with component number equal

to two, the likelihood, Ld, of observing the methylation intensities,

md, can be expressed as

Ld Hd ,pd jmdð Þ~ P
n

j~1
1{pdð Þw md,j jmum

d ,s2
d

� �
zpdw md,j jmm

d ,s2
d

� �� �
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where w(:) and H are the density function and parameters of the

normal distributions, and pd is the prior probability of samples

arising from the methylation group. The parameters mum
d and mm

d

are the mean intensities for unmethylated and methylated groups,

respectively, and s2
d is the common variance between groups. This

mixture model can easily be fitted by the expectation-maximiza-

tion algorithm, resulting in maximum likelihood estimates, m̂mum
d ,

m̂mm
d , ŝs2

d and p̂pd , of the model parameters [29]. Thus, using Bayes

theorem, the estimated posterior probability, pd,j, that the jth

individual is methylated is given by

pd,j~
p̂pd| md,j jm̂mm

d ,ŝs2
d

� �
1{p̂pdð Þ| md,j jm̂mum

d ,ŝs2
d

� �
zp̂pd| md,j jm̂mm

d ,ŝs2
d

� �

This process is carried out for each probe in the array to

produce a posterior probability matrix, Pi|j , where the rows

i = 1,…,d,…,t are sorted according to their physical positions on

the chromosome. The value of t is the total number of probes in

the array. The posterior probabilities are then utilized as the

estimated methylation status to quantify concordance of methyl-

ation status in samples between probes.

ICDMR: Scoring concordance between probes in
clustered samples

To quantify the similarity of posterior probabilities between two

neighboring probes, a simple score of concordance, cd, is utilized as

cd~
Xn

j~1
pd,j|pdz1,jz 1{pd,j

� �
| 1{pdz1,j

� �� �.
n

where d = 1,…, (t 2 1). The cd ranges from 0 to 1; a larger value

represents higher concordance and is more likely to arise from

probes located at a DMR. The cd reaches a maximum of 1 if for

each individual, j, the following conditions are met: (i) the

estimated probabilities of methylation, pd,j and p(d+1),j, are either 1

or 0 and (ii) the estimations are the same between adjacent probes,

i.e., pd,j = p(d+1),j. In other words, the methylation statuses across

samples are consistent between probe d and (d+1), and the

posterior probability for each individual is equal to 1 for either the

unmethylated or methylated state. If the methylation intensities

are similar across samples, i.e., the region is not a DMR, the

posterior probabilities would be near pd for most of the samples. In

a fair-coin-tossing setup for a non-DMR probe, the distribution of

cd would be symmetric and centered on the value 0.5. Hence, the

concordance could be used to represent the degree of agreement

in separating methylated and unmethylated individuals between

probes.

ICDMR: Determining the threshold for DMRs
When the concordances are observed for all probes in the array,

an objective threshold is required to determine which region on

the chromosome exhibits a cluster of unusually high concordant

scores, i.e., which region is a DMR. The distribution of the scores

is a mixture of DMRs and non-DMRs, and the proportions of the

components are difficult to estimate without any prior knowledge,

such as the distribution of cd for DMRs. One of the practicable

approaches in studies of Chip-enriched region is adopted in the

present study [30]. In brief, the cd originated from the probes

resided in DMR is stochastically larger than that from non-DMR

and the mode of cd calculated from non-DMR would be nearing

0.5 under a fair-coin-tossing setup. Thus, scores ,0.5 were used to

estimate the distribution of non-DMRs, by mirroring its distribu-

tion over 0.5 to generate a symmetrical distribution, ranging from

0 to 1 with a mode at 0.5. This strategy neglects possibility of

extension of alternative distribution to the left of 0.5 and might

result in more conservative results. Whereas the null distribution

was estimated, the DMR threshold was directly computed using

the sample percentile. For instance, given a type I error rate equal

to a, the threshold, Ta, will be the (1 2 a)th percentile of the

estimated null distribution, and contiguous probes with concor-

dance scores larger than Ta will then be aggregated to form a

consistently DMR.

ICDMR: Correction of non–biologically relevant
correlations between probes

It has been demonstrated that methylation data observed from

array based methylation platforms display a positive nature

dependence structure between neighboring probes [30]. This

dependency is a spatial correlation among nearby CpG loci and

could be due to experiment factors such as probe affinity, PCR

amplification and DNA fragment size [31], etc. Previously, the

nature dependencies among neighboring probes were proposed by

an autocorrelation model [30,32]. In a study of DMR with

multiple samples, the correlation of methylation intensity between

neighboring probes is contributed both from the spatial correlation

and methylation status within samples. Therefore, in this study,

the methylation intensity correlation was decomposed into two

parts, namely continuous and discrete, the former referred to the

nature correlation inherent in the experiment, and the latter was

for the correlation due to changes of methylation status in samples

between probes (Figure S1).

In a methylation study with n samples, the methylation

intensities of a sample j, mi,j for i = 1,…,t, vary greatly between

neighboring probes and intuitively the average methylation

intensity of a probe d,�mmd~
Pn

j~1 md,j

�
n, could be sensitive to

the sample ratio between methylated and unmethylated groups. In

the normal mixture model, both proportions and distributions of

methylation intensities for methylated and unmethylated groups

are estimated. Therefore, for a pair of neighboring probes,

d and (d+1), the weighted averages, p̂pd m̂mum
d z 1{p̂pdð Þm̂mm

d and

p̂pdz1m̂mum
dz1z 1{p̂pdz1ð Þm̂mm

dz1, of methylation intensities estimated

from the mixture model are subtracted from the methylation

intensities, md and md+1, respectively, to obtain the centralized

intensities m�d and m�dz1. The process of weighted mean shift is a

way to normalize methylation intensities between probes, and

takes the difference in the proportion of samples being methylated

between probes into account. Such normalization has no effect on

the clustering results or the posterior probability matrix, P.

To remove only the continuous correlation, a weighted least

square regression model is performed

m�dz1~b0,dzb1,d|rdz"dz1

with weight, wd, where b0,d and b1,d are the coefficients of the

regression model and e is the error term. The residuals, "̂"dz1,

where "̂"dz1~m�dz1{m̂m�dz1, are calculated to represent the first-

order correction of methylation intensity, m�dz1. A value of pd is

used for the weight, (wd = pd), if p̂pd is .0.5; otherwise, a

value of (12pd) is used. The independent variable rd, where

rd = (rd,1,rd,2,…,rd,n)
T, gives the methylation intensity of m�d after

adjusting for the variations caused by the different methylation

status of probe d, where

Identification of Differentially Methylated Region
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rd~m�d{wd

wT
d m�d

wT
d pd

~m�d{wd

Pn
j~1 wd,jm

�
d,jPn

j~1 w2
d,j

 !

.

The adjustment constant calculated in the parenthesis (on the

right side of the equation) is equal to the coefficient estimated in a

linear model, by regressing wd on m�d without including an

intercept term. Such estimation takes the uncertainty of clustering

into account by using posterior probability when methylation

intensities are not segregated with certainty to unmethylated and

methylated samples. In case of complete separation, e.g., all

elements in pd are equal to 0 or 1, the adjustment constant will be

the arithmetic average of the methylation intensity of methylated

groups. Pretreatment of the methylation intensities of probe d by

consideration of the potential variation of methylation in the

samples avoids any discrete correlation between probe d and d+1,

thereby diminishing its effect on the model by removing this from

the continuous correlation component. The corrected methylation

intensity, "̂"i, for i = 2,…d,…t, is then used to recalculate the

mixture model and compute the corrected posterior probability, p�i
and score of concordance, c�i{1.

Simulations
To justify the efficiency of this method, several log2 intensity

ratio data matrices, consisting of 50 rows (samples) and 30,000

columns (probes), were simulated using the autoregressive model

used by Kuan et al. [21], by considering only the first-order

correlation in the present study, i.e., AR(1),

Yi~NizEi, Ni~rNi{1z"i, for i~2, � � � ,30000:

Ni is the autoregressive background. The result of the tiling

array experiment is a series of intensity measurements along the

genome and these measurements are positively correlated [21,22].

In this study, to take into account this nature dependency, the

value of r was set at 0, 0.3, 0.5 and 0.7, to represent zero, low,

moderate, and high correlation of background intensity measure-

ments among neighboring probes, respectively. In order to

compare with supervised methods, the 50 samples were parti-

tioned into 25 cases and 25 controls, and the change of

methylation status was randomly assigned to cases only, i.e. 25

controls were all unmethylated. E was the real signal for

methylation intensity and it determined differences of intensities

between methylated and unmethylated groups. The distribution of

M was studied previously by Du, et al., [24], and results showed

that M ranged within (2‘, ‘) with one negative mode

(unmethylated mode) and one positive mode (methylated mode)

located within (2‘, 22) and (2, ‘), respectively. Accordingly, we

used E = 0 for unmethylated group and E = 2 and 4 for methylated

group in this study. The size of a DMR was fixed at 10 probes, and

start sites for the region were arranged randomly to satisfy

scenarios where the proportion of probes residing in the DMRs

equaled 0.05 or 0.2 for 30,000 probes [21]. The methylation

frequency (MF) was the proportion of methylated cases in the

entire case samples as defined previously [33,34]. In our study, the

effect of MF on performance (sensitivity, specificity) was studied by

considering MFs of 0.1, 0.2, 0.4, 0.6, 0.8 and 1, respectively. For

example, MF = 0.2 meant 20% (5 out of 25 cases) were simulated

from the AR(1) model with E = 2 (methylated group) and 80% (20

out of 25 cases) were from E = 0 (unmethylated group). In reality,

MFƒ0.4 was often found in previous methylation studies [34,35].

When the simulation data consisted of both DMRs and non-

DMRs, sensitivity and specificity were estimated as the perfor-

mance for identifying DMRs and non-DMRs, respectively. For

each simulation, 30,000 observed test statistics were analyzed

independently for each of the QDMR, t-test and WRST, where

29,999 observed concordance scores were used for ICDMR. For

each method, the false positive rate (FPR) expressed as

1{specificity was calculated as the probability that the test

statistics observed from probes resided in non-DMRs been

detected with statistical significance. The sensitivity was calculated

as the probability that the test statistics observed from probes

resided in DMRs, also identified with statistical significance.

Results

Distribution of concordance of probes found in non-
DMRs

The simulation study was first carried out under the null

hypothesis, i.e., there is no DMR among the samples, using data

generated from the AR(1) model and with r values set at 0, 0.3,

0.5, and 0.7. Ten repeats were performed, and 30,000 probes with

29,999 concordance scores were produced in each simulation for

each value of r. The expected trend that score of concordance

approached 1 with increasing correlation between probes was

found for the raw data (without correction for the intrinsic

correlation between probes), but the bias was largely eliminated

after implementing the correction procedure. After correction, the

distributions were all nearly symmetrical around a concordance

value of 0.5, although a slight shift of mode is apparent for the high

correlation values (Figure S2A). The variation of concordance

between different correlations prevented determination of the

significant threshold for the raw data, e.g., thresholds of

uncorrelated probes (r= 0) differed greatly from those of

correlated probes (r= 0.3, 0.5, and 0.7). In contrast, thresholds

were in the range of 0.725 to 0.735 after correction, giving more

consistent values across repeats or among different correlation

structures (Figure S2B). In other words, the observed properties of

concordances estimated from the corrected data, i.e., their

approximate symmetry and independence of the correlation

structure, make it possible to find a universal threshold for

determining DMRs in a whole-genome study. Thus, only the

method that incorporated the correction of correlations was

considered for subsequent analyses.

Efficiency of ICDMR in distinguishing between DMRs and
non-DMRs

Some of the commonly used supervised methods in studying

DMRs between two comparison groups were t-test and WRST

[7,8]. To compare performances of supervised and unsupervised

methods for determining DMRs and non-DMRs, the sensitivity

and FPR were calculated given the level of significance a= 0.05.

All of the four comparative methods showed satisfactory results for

preserving a FPR of approximately a= 0.05 when methylation

intensities were independent across probes (Figure 1, r= 0). With

the same FPR, the sensitivities were lower for the two supervised

methods when MFƒ0.4 whereas the sensitivities were similar to

those of the two unsupervised methods.

In the dependent scenarios, i.e. rw0, the supervised methods

showed similar results comparing with those from independent

scenario (Figure 1). Given the same r, the results showed that MF

had a strong and positive impact on the performance of supervised

methods in identifying DMRs. For unsupervised methods, the

sensitivities of QDMR were almost one regardless of the value of

r, however, the FPR increased dramatically with higher values of

Identification of Differentially Methylated Region
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r. For example, for QDMR, the FPRs were 0.09, 0.25, and 0.73

for low (r= 0.3), moderate (r= 0.5), and high (r= 0.7) correla-

tions, where, for ICDMR, they were 0.052, 0.055 and 0.063,

respectively (Figure 1; Table S1). The sensitivities of ICDMR were

similar to those of QDMR across all scenarios, except for r= 0.7

and MF = 0.1 (90.3%) or MF = 1 (95.6%).

With the level of significance a= 0.05, these results suggested

that, for supervised methods, the performances of identifying non-

DMRs were always better than those of unsupervised methods,

but the performances of identifying DMRs declined when MF

values were smaller (MF,0.4) regardless of the value of r. For the

unsupervised methods, the performance of QDMR to identify

DMRs was high even when methylation aberration was only

present in minor cases, however, performance for identifying non-

DMRs dropped when the correlations between neighboring

probes increased. In contrast, for ICDMR, the performances of

determining DMRs and non-DMRs were more robust across

different values of r and MF (Table S1).

When the methylation intensity difference between methylated

and unmethylated samples became larger as E increased from 2 to

4, higher value of E had no influence on the FPRs of the

supervised methods. When MF was low, the sensitivities of

supervised methods were always lower than those obtained from

unsupervised methods regardless of the E value (Figure S3). For

Figure 1. Sensitivity and false positive rate. The figure summarizes mean sensitivity (red solid line, left axis) and false positive rate (blue dash
line, right axis) for ICDMR, QDMR, t-test and WRST. The mean difference of methylation intensities between methylated and unmethylated groups is 2
(i.e., E = 2). The proportion of probes residing in the DMRs is 0.2. At the indicated MF, mean sensitivity and false positive rate are calculated given the
correlation between neighboring probes being 0 (r= 0), 0.3 (r= 0.3), 0.5 (r= 0.5) and 0.7 (r= 0.7), respectively. Different MF values are indicated on
the x-axis.
doi:10.1371/journal.pone.0097513.g001
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unsupervised methods, the FPRs of QDMR were high (.0.7 given

r= 0.7) regardless of the E value, while the FPRs of ICDMR

remained low (ƒ 0.065 given r= 0.7). The results showed that the

sensitivities of QDMR were close to 1 regardless of the E value.

For ICDMR, the increases in sensitivities were larger as E

increased given r= 0.7, e.g. the sensitivity ranged in (0.90, 0.99)

and (0.99, 1.00) for E = 2 and 4 given r= 0.7, respectively. These

results suggested that, when r= 0.7, the slightly lower sensitivity

observed from ICDMR may be due to that the discrete correlation

might had been mistaken as continuous, and the difference in

methylation intensities between methylated and unmethylated

groups was then removed in the process of correlation correction

as a result of the expansion of overlap between methylated and

unmethylated samples.

In this simulation study, we also assessed whether the

proportion of differentially methylated probes affected perfor-

mance. Results observed for a proportion of 0.20 were in

agreement with those for a proportion of 0.05 (data not shown).

This finding suggested that the distributions of sensitivity and FPR

were independent of the proportion of DMR in the data.

Human astrocytomas
To identify potential DMRs, a dataset comprising methylation

profiles of normal and cancerous cells, each of which covered

32,239 CpG islands and RefSeq promoter regions included at least

two probes per island and region, was analyzed. The analysis

showed 336,963 concordance scores, spread over the autosomes;

,16% of these (54,257) had significant threshold values of 0.786

or greater (a= 0.05; Figure S4). Significant concordances were

found in 31,015 non-overlapping DMRs. Of these DMRs, .60%

had only two probes. To reduce the false-positive rate of DMR

detection, only regions with at least three contiguously significant

concordances were pursued. Thus 5,208 DMRs, located in 4,684

CpG islands, were identified, and these ranged in length from 275

to 20,000 bps (base-pairs), with a mean length of 440 bps.

For each DMR, the mean frequency of samples belonging to a

methylated group and the mean posterior probability of each

individual belonging to a methylated group were estimated in the

mixture model and calculated across probes residing in the

consistently DMRs. The vast majority of DMRs were identified by

some specific and high methylation intensities in minor samples,

e.g., the distribution of the mean frequency was shifted toward

,0.5, whereas most proportions were ,0.2 (Figure S5).

To visualize the correlation between DMRs and samples,

DMRs were divided into two groups: those with the mean

frequency of methylation lying inside the range of 0.15–0.85, and

those lying outside of this range (Figure S5). There were 2,556

DMRs (49%) and 2,652 DMRs (51%) in each respective group,

corresponding to DMRs with a high and low degree of

differentiation, respectively. The clustering patterns of the

posterior probabilities across the samples showed that DMRs

with a low degree of differentiation were largely due to

hypermethylation in a small number of cancerous samples that

had disorderly methylation profiles within their DMRs (Figure 2A).

For sample clustering, only the six normal cell samples were

organized as a distinct group. In contrast, clustering patterns of

DMRs with a higher degree of differentiation were more clearly

visible either across samples or DMRs (Figure 2B).

The methylation status of the normal cells was relatively

consistent as compared with that of the tumors. All normal cells

were tightly clustered together and were distinct from cancerous

cells. In addition, grade 1 tumors (T1) were separated completely

from other higher-grade tumors, as can be seen in the vertically

clustered tree shown in Figure 2B. In addition, three major clusters

were formed by tumors having a tumor classification of .1: a

mixture of one T2, three T3, and two T4 tumor types; one T2-

and T3-specific cluster with four T2 and two T3 tumor types; and

the largest group, which consisted of two T2, four T3, and six T4

tumor types. For the DMRs, two major groups were observed for

tumor hypermethylation (836 out of 2,556 DMRs) and hypo-

methylation (1,720 out of 2,556 DMRs) and are respectively

indicated by the upper and lower branches visible in the horizontal

cluster tree shown in Figure 2B.

To localize tumor hyper- and hypomethylation regions within

the genome that are related to specific genes, the distance from

each DMR to its nearest gene was calculated using the software

ChIPpeakAnno, an R package [36]. 43.3% (362 of 836) of

hypermethylation regions and 19.2% (331 of 1720) of hypomethy-

lation regions fell within 1,000 bp upstream of transcription start

sites for 350 and 304 unique genes, respectively. Because changes

in methylation status within this putative promoter region are

crucial for regulating gene expression [37], we performed

functional analyses of these genes using the Functional Annotation

Clustering Tool, part of the Database for Annotation, Visualiza-

tion and Integrated Discovery (DAVID) software suite [38]. We

found that the 350 genes that were close to hypermethylation

regions were mostly related to transcription regulation, embryonic

morphogenesis, and neuronal fate commitment as the top three

enriched clusters (Table S2). The top two clusters for genes

identified as being close to hypomethylation regions were a cluster

of genes involved in spermatogenesis and a group of eleven genes

with ankyrin repeats, which are one of the most common protein-

protein interaction motifs [39].

Human tissues
DNA methylation profiles vary across human tissues from the

same individual, as well as between individuals, and this is known

as tissue-specific methylation [7,40]. The dataset generated by the

CHARM arrays contained more than two million probes located

in 20,588 autosomal regions [41]. ICDMR analysis of the data,

including five distinct tissue types, showed that .230,000

concordance scores (,11% of the 2,084,540 scores) were larger

than the threshold value of 0.785, as determined at a= 0.05

(Figure S6). Using the same criteria that only regions with at least

three contiguously significant concordances be considered, 17,601

DMRs, with mean fragment length of 240 bp, were found in 9,038

unique regions.

To further investigate how different tissue types can be classified

according to methylation profiles, these 17,601 DMRs were

divided into two groups according to their degree of methylation

variation, as described previously. Thus, 11,550 DMRs had a low

degree of methylation variation and 6,051 DMRs had a high

degree of methylation variation. Clustering results indicated that

most of the DMRs with a low variation in methylation arose from

diversity between individuals (interindividual), e.g., there was no

tissue type that could be grouped divergently from all other tissues

(Figure 3A). For DMRs with higher methylation variability, five

distinct sample clusters emerged on the hierarchical structure

corresponding to five different tissue types, as shown in the vertical

tree in Figure 3B. For four different normal tissues, the clustering

branches indicated that the methylation profile for colon tissue was

closest to that of spleen tissue, followed by liver and then brain; this

reflects the similarity of biological functions among these organs.

Interestingly, this clustering pattern is similar to that obtained from

a gene expression study by Son et al. [42], where 19 different

organs from 30 different individuals were analyzed.

Methylation of promoter CpG islands is associated with

silencing of gene expression [43]. A tissue-specific gene expression
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Figure 2. Heatmap of posterior probabilities for human astrocytoma samples. Hierarchical clustering of the posterior probabilities is
displayed as a heatmap for (A) DMRs with a low degree of differentiation (2,652 DMRs) and (B) DMRs with a high degree of differentiation (2,556
DMRs) in 30 tumor (T) and 6 normal (N) samples. The intensity is proportional to the degree of methylation, as indicated in the figure.
doi:10.1371/journal.pone.0097513.g002

Figure 3. Heatmap of posterior probabilities for various human tissue samples. Hierarchical clustering of the posterior probabilities is
displayed for (A) DMRs with a low degree of differentiation (6,051 DMRs) and (B) DMRs with a high degree of differentiation (1,550 DMRs) in 5 liver
(L), 5 frontal cortex (B), 5 spleen (S), 5 colon (C) and 5 colon cancer (T) samples.
doi:10.1371/journal.pone.0097513.g003
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study revealed that liver and brain have a relatively large number

of specifically expressed genes, in contrast to colon and spleen

[42]. This is consistent with our results, where DMRs were

considerably less methylated in liver and brain, as compared with

their levels of methylation in the colon and spleen (Figure 3B). In

addition, many hypermethylation regions were detected for the

colon tumor, whereas most of these regions were methylation free

in the other normal tissue samples. These 6,051 high-variability

DMRs were mapped to the transcription start site of 1,051 unique

genes, and the Benjamini-Hochberg False Discovery Rate multiple

testing correction was used to calculate the adjusted p-values for

these. Genes involved in developmental processes were found to be

over-represented in the annotated cluster (P-value = 1.1610213),

including genes for the homeobox sequence (P-value =

2.1610212), for neuron differentiation (P-value = 6.061028), and

for embryonic organ development (P-value = 2.161025; Table

S3).

Discussion

DMRs, one of the most important methylation variants in

populations, have been described in various contexts, including

imprinting-specific, tissue-specific, reprogramming-specific, can-

cer-specific and aging-specific functions [1]. The differences

between these contexts depend on what types of samples were

collected and which phenotypes were determined in advance of

the comparisons. Recent studies have suggested that many DMRs

associated with diseases only show methylation aberration in a

smaller portion of cases, always in less than 40% of cases [33–35].

We adopted such concept and carried out a comprehensive

comparison. Our results showed that unsupervised methods

always outperform supervised methods in identifying DMRs.

In this study, we proposed a novel DMR identification method,

namely ICDMR, and compared it with a recent method QDMR.

With the need of test statistic for comparisons of performance in

different methods given a type I error, we therefore chose QDMR

as a comparative method in this study. ICDMR is an unsupervised

approach, where there is no need to choose the comparative group

in advance, and is able to identify methylation modifications with

low and high degrees of differentiation in studied samples. It took

about 2 hours to analyze 36 samples with data from 385,000

probes and 12 hours for 25 samples with data from 2.1 million

probes, respectively, using CPU Intel 3.07GHz and 12 GB main

memory running under windows operating system.

M follows a bimodal distribution and seems to be more reliable

for detecting DMRs than b, because of their homogeneity of

variance between methylated and unmethylated regions [24]. A

normal mixture model, comprising two components with a

common variance in M between methylation and methylation-

free groups, is therefore adopted in ICDMR. On the other hand, b
is more widely used than M in experiments of methylation

sequencing. We choose to use M over b because of the

requirement of normal distribution assumption of methylation

intensities across samples in ICDMR. It is possible to replace M by

b, if a conversion by using a logistic link function is carried out

[17]. In this study, E = 0 and 2 which are equivalent to b= 0.5 and

0.8 are utilized to represent methylation level for unmethylated

and methylated groups, respectively. When comparing data

generated with E = 0 to the data with E = 2, the scenario describes

a case of ICDMR in identifying DMRs with a methylation level

difference of 30%. This medium/high methylation patterns occur

frequently to the DMRs in imprinted regions or the intergenic

regions for some cancers.

Detection of regions displaying concordant methylation profiles

in samples between probes is ideally suitable for high-density

methylation data, such as data from tiling arrays. With such dense

probes where the nature of the dependence structure of

methylation measurements between neighboring probes exists

[32], our simulation study demonstrated that many spurious

signals were observed when the probe data were analyzed

independently. In our simulation study, although QDMR yielded

a higher sensitivity in general, the false positive rate could reach up

to 0.7 when the correlations between probes were high. In cases

where difference in methylation signals between methylated and

un-methylated groups was small, i.e. E = 2, the ICDMR might

somewhat lose sensitivity because the edge of signals between

methylated and unmethylated groups were hard to define.

Therefore, for a methylation study with sparser coverage, where

interrogation of a set of known methylated loci is equipped (e.g.

Illumina Infinium HumanMethylation27 BeadChip, Illumina, San

Diego, CA, USA), the point-wise method (e.g. QDMR) may be

more suitable [44]. That is because these probes are always farther

apart from each other with low correlation and therefore could be

considered as independent [45]. However, for situations of dense

probes with high correlation (e.g. CHARM human array, Roche

NimbleGen, Madison, WI), ICDMR performs better than

QDMR in controlling FPR and retains a comparable sensitivity

with QDMR.

The nature of tiling array is that the probes spanning a genomic

region are always at a regular interval, that is, the probes are

nearly evenly spaced. The median interval length between two

spatially consecutive probes are about 50 bps and 37 bps for the

arrays used in the study of human astrocytomas and human

tissues, respectively. Most of the DMRs reported in the literature

ranged from a few hundred to a few thousand bp [23]. Therefore,

it is highly likely to find a few probes within a DMR where these

probes are correlated. For the methylation profiled with compre-

hensive genomic coverage by sequencing technology, such as

bisulphite-sequencing data, the density of data point is with a base-

pair resolution, which is much denser than array based. The

extension of ICDMR to deal with such high density data is

possible because the method has considered the spatial correlation

in its framework. Further study is needed for the extension, since

sequencing depth and correlation of methylation levels between

nearby CpG sites may affect performance of statistical methods in

quantifying methylation levels [46].

A simulation study demonstrates the effects of non–biologically

relevant probe signals in determining DMRs, because a lot of

spurious signals will be produced if the methylation data are

analyzed independently of the probe. With ICDMR, although the

estimated FPR is consistent for a given value of a, it is still possible

to generate a large number of false positives when analyzing on a

genome-wide scale. For methylation studies, a sliding window

approach has been frequently used for tiling arrays [19,47,48]; the

efficiency of detection of this method is clearly dependent on

window size, i.e., the sensitivity is higher when the methylation

fragment length is perfectly covered by the window size. In the

approach described here, ICDMR was used to measure the

concordance between adjacent probes, and then contiguously

significant probes were grouped to yield consistent and unbiased

identification of DMRs. This enabled DMRs of any length to be

detected in a single screen and further filtered the resulting DMRs

based on the number of probes in the region. For example, from

the simulation study, limiting a DMR to a region comprising at

least three and at least four probes reduced the estimated FPR to

0.007 and 0.001, respectively, for a given a= 0.05 (data not

shown). In other words, an appropriate threshold of extent of
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contiguously significant concordance in determining DMRs can

help to mitigate the effect of false positives in a large-scale study. A

serious concern of using the alternative strategy of microarrays is

in determining an optimal cut-off point, which needs to be

determined for each dataset.

By using QDMR to identify DMRS for the two real datasets,

the results have shown that 176,789 (48%) and 1,448,166 (78%) of

the studied probes suggested significant low entropy values (p-

value,0.05) in human astrocytomas and human tissue dataset,

respectively. When applying hierarchical clustering among sam-

ples in human astrocytomas with 176,789 DMRs, the clustering

diagram shows a heterogeneous clustering pattern where no one

group is consisted of samples with only one histological grade

(Figure S7). For clustering analysis among samples in human

tissues with the 1,448,166 DMRs, the clustering pattern is not well

correlated in a biologically-relevant manner (Figure S8). It seems

that the ambiguous clustering results might be due to a large

number of false positive DMRs identified by QDMR as suggested

by the results of our simulation study.

For the study of human astrocytomas, the methylation pattern

of tumor cells is more variable than for normal brain tissues, for

DMRs with either low or high variability. This is consistent with a

study of prostate cancer [49] and colon cancer [26], where greater

heterogeneity in the methylation profiles is found among tumor

samples, as compared with benign adjacent samples, and adds

support to the idea that tumors, in general, have highly

heterogeneous DNA methylation patterns. Hierarchical clustering

showed that the methylation profiles of the DMRs in astrocytomas

fell into four distinct groups. This segregation of the analyzed

tumor samples was partially correlated to the histological grade,

especially for the tumors labeled T1, which are all grouped

together. Once a DMR is identified using an unsupervised

approach, this could help in discovering cancer subtypes

associated with clinical or molecular characteristics, similar to

the identification of molecular subtypes by gene expression

profiling [50,51]. This type of methylation signature needs further

investigation and has the potential to be adopted for cancer

diagnosis, prediction of treatment outcome, and therapy selection

[52].

In addition, results from functional analyses indicate that the

hypermethylated DMRs of astrocytomas located in the promoter

region of genes are highly related to DNA binding factors and

transcription; this is particularly true for homeobox genes. These

genes are functionally important, and their aberrant methylation

may give rise to the modulation of transcription levels for many

genes, including those involved in cancer development [53].

Interestingly, in addition to finding hypomethylated DMRs near

genes involved in spermatogenesis, we found 12 hypomethylated

DMRs near the start sites of 11 other transcripts: the POTE gene

family of POTEA, POTEB, POTED, POTEE, POTEG, and POTEH

and ANKRD30A, ASZ1, Fem1a, FANK1, and TRPC7, all of which

include a cluster of ankyrin repeats. The expression pattern of

POTE has been examined in a wide range of human cancers and

normal tissue and is considered a member of the cancer-testis

antigen class [54]. Recently, hypomethylation of POTEH has been

proposed as a new epigenetic biomarker for glioma prognosis [55].

However, from an analysis of the methylation signals in the

normalized data, we found the vast majority to give a positive

result in the DMRs both for normal cells and tumors (Figure S9).

Thus, if the decision rule is based on an absolute value of 0, instead

of a positive value representing methylation and negative values

indicating the absence of methylation, this would lead to most

samples being deemed methylated. This may be why the cluster of

ankyrin repeats was not found in the tumor-normal DMR group

in the original study of astrocytomas [25]. Finding an absolute cut-

off point of methylation intensity for identifying methylation across

an entire set of probes is quite difficult, because the distribution of

methylation signals for a particular probe is subject to the CpG

density and amplification [56]. Instead, ICDMR emphasizes the

relative methylation signal among samples and is therefore better

at correctly identifying DMRs.

In the study of human tissues by using ICDMR, our results have

shown to be similar to that obtained from the original study which

used a supervised method. Both methods found 5 distinct groups

purely matched with tissue types [26]. For samples in a studied

population, DMRs occur because of the hypermethylation or

hypomethylation of any combination of samples as compared with

the remaining samples. Likewise, DMRs identified in different

tissues in this study were not specifically hypermethylated or

hypomethylated in any particular tissue; some had mixed

methylation statuses. This leads to the possibility of using an

unsupervised approach to search for different patterns of tissue-

specific methylation simultaneously. In addition, our results

provide a more global picture of the variation of methylation

across tissues and individuals. Comparative studies have identified

many genomic regions with tissue-specific methylation and

expression that are conserved across different species, such as for

the human genome as compared with the mouse [57] and

chimpanzee [58] genome. In this study, we found about 6,000

DMRs with consistent methylation statuses across samples for a

given tissue. These highly conserved DMRs are of great interest

because they suggest an essential role for DNA methylation in

regulating differentiation and development of tissues and may

reflect tissue-specific patterns of gene expression levels [59].

Among DMRs identified by the ICDMR, nearly 40% were

resided in the gene body and might be irrelevant to gene silencing.

The mechanistic or functional investigations of these DMRs

should be further studied, especially for the regulated mechanism

of gene expression level.

Supporting Information

Figure S1 Four different instances of correlation be-
tween contiguous probes. (A) Neither continuous nor discrete

correlation; (B) continuous correlation only; (C) discrete correla-

tion only, and (D) both continuous and discrete correlation. The

plots show the log2 ratio of methylation intensities observed from

the GEO dataset of CpG island hypermethylation in human

astrocytomas (accession number GSE19391). Probes are identified

by their probe ID. The ellipses indicate the multivariate analogs of

the s.d. for each mixture component, estimated using the R

package mclust.

(PDF)

Figure S2 Distribution and threshold of concordance.
The figure depicts distributions of (A) concordance and (B)

significant threshold, for a= 0.05, before and after non-biologi-

cally relevant correlation correction. The density of concordance is

estimated for each r value from combined data from 10 simulation

repeats. The boxplots depict the variation of threshold across 10

repeats and among different correlations.

(PDF)

Figure S3 Mean sensitivity and false positive rate given
E = 4. The figure summarizes mean sensitivity (red solid line, left

axis) and false positive rate (blue dash line, right axis) for ICDMR,

QDMR, t-test and WRST. The mean difference of methylation

intensities between methylated and unmethylated groups is 4 (i.e.,

E = 4). The proportion of probes residing in the DMRs is 0.2. At
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the indicated MF, mean sensitivity and false positive rate are

calculated given the correlation between neighboring probes being

0 (r= 0), 0.3 (r= 0.3), 0.5 (r= 0.5) and 0.7 (r= 0.7), respectively.

Different MF values are indicated on the x-axis.

(PDF)

Figure S4 Distribution of concordance for human
astrocytomas (GSE19391). The estimated distributions of

concordance scores arising from non-DMRs and DMRs are

shown in dark and light gray, respectively. The estimated DMR

threshold of 0.786 is indicated by a dashed line.

(PDF)

Figure S5 Distribution of methylation frequency for
5,208 consistently DMRs. The figure summarizes distribution

of methylation frequency for 5,208 consistently DMRs in human

astrocytomas. Methylation frequencies of 0.15 and 0.85 are

indicated by red dashed lines.

(PDF)

Figure S6 Distribution of concordance in human tissues.
The estimated distributions of concordance scores arising from non-

DMRs and DMRs are shown in dark and light gray, respectively.

The estimated DMR threshold of 0.785 is indicated by a dashed line.

(PDF)

Figure S7 Hierarchical clustering diagram of samples
in human astrocytomas. The diagram shows hierarchical

clustering results of samples in human astrocytomas with 176,789

DMRs. The clustering is carried out with pearson distance and

complete linkage method.

(PDF)

Figure S8 Hierarchical clustering diagram of samples
in human tissues. The diagram shows hierarchical clustering

results of samples in human tissues with 1,448,166 DMRs. The

clustering is carried out with pearson distance and complete

linkage method.

(PDF)

Figure S9 Ankyrin repeat genes. The graph depicts

normalized methylation intensity data for regions near the

transcription start site of the eleven ankyrin repeat genes. The

tick marks on the genomic coordinate axis indicate genomic

positions of the probes designed for the microarray. Blue boxes

mark the positions of the genes. The lines represent methylation

signals for tumors (red) and normal tissue (blue). The dashed

horizontal line indicates methylation intensity at 0. The gray boxes

indicate contiguous DMRs identified by ICDMR.

(PDF)

Table S1 False positive rate and sensitivity given E = 2.

(PDF)

Table S2 DAVID annotation in Human astrocytomas.
DAVID Functional Annotation Cluster Analysis of 350 and 304

genes that were close to hyper- and hypomethylation regions in

human astrocytomas.

(XLSX)

Table S3 DAVID annotation in human tissues. DAVID

Functional Annotation Cluster Analysis of 1,051 genes that were

close to DMRs found in human tissues.

(XLSX)
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