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Abstract

Purpose—We found that heart-rate (HR) complexity metrics, such as sample entropy (SampEn),

identified trauma patients receiving lifesaving interventions (LSIs). We now aimed: 1) to test a

new multiscale entropy (MSE) index; 2) to compare it to single-scale measures including SampEn;

and 3) to assess different parameter values for calculation of SampEn and MSE.

Methods—This was a study of combat casualties in an Emergency Department (ED) in Iraq.

ECGs of 70 acutely injured adults were recorded. Twelve underwent LSIs and 58 did not. LSIs

included endotracheal intubation (9); tube thoracostomy (9); and emergency transfusion (4). From

each ECG, a segment of 800 consecutive beats was selected. Off-line, R waves were detected and

R-to-R (RR) interval time series were generated. SampEn, MSE, and time-domain measures of

HR variability (mean HR, standard deviation, pNN20, pNN50, rMSSD) were computed.

Results—Differences in mean HR (LSI=111±33, NonLSI=90±17) were not significant. Systolic

arterial pressure was statistically but not clinically different (LSI=123±19, NonLSI=135±19).

SampEn (LSI=0.90±0.42, NonLSI=1.19±0.35, p<0.05) and MSE index (LSI = 2.58±2.55,

NonLSI=5.67±2.48, p<0.001) differed significantly.

Conclusions—Complexity of HR dynamics over a range of time scales was lower in high-risk

than in low-risk combat casualties and outperformed traditional vital signs.
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1. Introduction

This study was motivated by the need for enhanced vital-sign monitoring in emergency

combat casualty care. In 2009 Martin and colleagues analyzed 151 deaths at a Combat

Support Hospital in Iraq; most occurred within one hour of admission, either from head

injury or hemorrhage. Opportunities for improving risk assessment were noted in almost half

of the cases, related to delays in hemorrhage control during transportation or in resuscitation

efforts [1]. Earlier detection of hemorrhagic shock implies a need for improvements in the

timely use and diagnostic accuracy of vital-sign monitors [2]. To improve current vital-sign

monitors, without adding new sensors or boxes to the medic’s kit, we are examining the

utility of computational tools that characterize and quantify the variability of beat-to-beat

fluctuations in HR time series for risk stratification. Our underlying hypothesis is that

information about the integrity of the body’s neuroautonomic control mechanisms is

encoded in the way that the HR spontaneously changes over time, and that illness or injury

impair these mechanisms in ways that can be measured.

Specifically, we have applied measures of irregularity such as approximate entropy (ApEn)

[3] and sample entropy (SampEn) [4], to the analysis of time series comprising between 100

and 800 heart beats [5–7]. We have referred to these as measures of heart-rate (HR)

complexity. HR complexity was lower in civilian trauma patients from the Trauma Vitals

USA database who received prehospital lifesaving interventions (LSIs), than in those who

did not [8]. HR complexity was also lower in trauma patients who went on to die, than in

survivors [9]. Quantification of the degree of complexity, using SampEn and/or ApEn,

consistently outperformed traditional vital signs--such as the mean HR, blood pressure (BP),

or peripheral saturation of oxygen (SpO2)--in identifying critically injured trauma patients

[8–9].

In the present study, we applied a more recently described method for quantifying HR

complexity tool, multiscale entropy (MSE). The rationale for MSE is as follows. Complex

time series are typically highly irregular, but not all irregular time series are complex. For

example, random signals, such as those obtained by shuffling any sequence of numbers, may

be very variable but carry, by construction, no information. Thus, these shuffled sequences

are not complex. Truly complex signals such as those produced by healthy physiologic

systems are far from random; instead, they exhibit complex patterns on multiple time scales.

The information encoded on these multiple time scales is not adequately captured by ApEn

or SampEn. To help obviate this limitation, a more generalized method called multiscale

entropy (MSE) was introduced [10–11]. As the name implies, MSE quantifies entropy over

multiple time scales. In this study, we computed both SampEn and MSE along with

traditional HR variability metrics (described below). We also computed quadratic sample
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entropy (QSampEn), a refinement of the original SampEn statistic, as described in the

Appendix.

The goals of this study were two-fold. First, we sought to test the hypothesis that MSE

would be lower in combat casualties who undergo a LSI upon arrival to the Combat Support

Hospital Emergency Department, than in those who do not. Second, we sought to elucidate

the implications of selecting different parameter values for the calculation of SampEn and

MSE, using very short segments of data obtained under conditions of battlefield trauma

where extreme variations in HR dynamics are observed.

2. Materials and Methods

Subjects

This study was conducted under a protocol reviewed and approved by the Brooke Army

Medical Center Institutional Review Board, in accordance with the approved protocol, and

in compliance with the Helsinki Declaration. The study was performed under provisions of

waived consent. We acquired continuous electrocardiogram (ECG) recordings from a

convenience sample of combat casualties arriving at the U.S. Army Combat Support

Hospital (CSH) located at Ibn Sina Hospital, Baghdad, Iraq, during the recent conflict. The

ECGs were obtained based on the availability of a Deployed Research Team (DRT) at this

hospital. Data were collected on a total of 325 patients. Of these, 40 patients’ ECGs were too

short; 25 were too noisy; 96 had an excessive amount of ectopy; and 94 had insufficient

demographic data. These exclusions left 70 complete datasets. Of these 70 casualties, 12

patients underwent LSIs in the CSH ED (LSI group) and 58 (non-LSI group) did not. Only

LSIs performed in the emergency department were considered in this study. The list of

potential LSIs included cardiopulmonary resuscitation, cricothyroidotomy, endotracheal

intubation, needle decompression of pneumothorax, pericardiocentesis, emergency

transfusion, tube thoracostomy, and cardioversion.

Data acquisition and analysis

Upon admission to the Emergency Department (ED), casualties were placed on a PIC 50™

vital signs monitor (Welch Allyn, Skaneateles Falls, NY). These monitors had an analog-to-

digital data acquisition rate of 375 Hz. Previous work by Voss et al. confirmed that a

sampling rate of 128 Hz or greater was sufficient for nonlinear measures of HR variability

[12]. ECG data were recorded on standard digital memory cards. Other patient data were

retrospectively recorded on paper by the DRT. The memory cards, and the case report

forms, were then mailed to the U.S. Army Institute of Surgical Research, Fort Sam Houston,

TX for analysis. WinCPRS software (Absolute Aliens OY, Turku, Finland) was used to

process the ECGs and to identify the R waves. A trained analyst then reviewed every R

wave detected and made corrections as needed, selecting 800 beats of clean ECG from each

dataset. WinCPRS software then outputted the RR interval time series. In these 800- beat

datasets, each R waves represented a normal sinus (N) rhythm beat. (Therefore, the RR

interval time series are identical to the NN interval series.) We wrote custom software in

Java and C++ to perform all subsequent HR dynamics calculations.
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Measures

We calculated standard time-domain metrics of HRV: mean HR, standard deviation of the

normal to normal beats (SDNN), the square root of the mean squared differences of

consecutive NN intervals (rMSSD), and the proportion of pairs of consecutive NN intervals

that differ by more than 20 ms (pNN20), and 50 ms (pNN50) [13–15]. We calculated single-

scale (SampEn, QSampEn) and multiscale (MSE) entropies as detailed in the Appendix.

Statistical Analysis

Statistical analysis was done using SAS v. 9.1 (SAS Institute, Cary, NC). T tests or

Wilcoxon tests were performed to analyze continuous variables, and chi square tests were

used to analyze categorical variables, as appropriate. Significance was accepted at p<0.05.

3. Results

LSIs performed included endotracheal intubation (9); tube thoracostomy (9); and emergency

transfusion (“Code Red”) (4). There was one death in the LSI group and none in the non-LSI

group. Basic clinical information for the LSI and non-LSI patients are presented in Table 1.

HRV time-domain measures are presented in Table 2. The average time between

consecutive NN intervals (AVNN) trended lower for the LSI group, i.e., the HR was faster,

compared to the non-LSI group. However, this difference was not statistically significant

(p=0.07). All standard time domain measures of HRV were significantly lower for the LSI

than for the non-LSI group.

SampEn, QSampEn and MSE index values are presented in Table 3.

SampEn, calculated using the most widely employed parameter values (m=2, and r=20% of

the SD of the time series), showed reduced RR interval irregularity for the LSI group

compared to the non-LSI group. Statistically, even more robust separation between the two

groups was seen when SampEn was computed for a fixed r value of 6 ms and m=2. The

MSE index, which incorporates the SampEn values for scales 1 to 4, was significantly lower

for the LSI than the non-LSI group. The MSE index also provided more robust separation

between groups than SampEn used as a single scale measure.

Of note, comparable results were obtained for SampEn calculated with fixed r values

ranging from 3 to 10 ms, for m=1, and for m=3 In addition, comparable results were

obtained with the QSampEn measurement.

4. Discussion

The principal finding in this study was that combat casualties who underwent LSIs in the

Emergency Department of a Combat Support Hospital in Iraq had lower HR complexity

than those who did not. This difference held across multiple time scales, as quantified by the

MSE method. We have previously reported lower HR complexity in seriously injured

patients and animals by use of two closely-related, single-scale measures: sample entropy

(SampEn) and approximate entropy (ApEn). To our knowledge, this study is the first in
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which MSE has been applied to acutely injured patients, and the first specific application of

these techniques to combat casualties in a theater of operations.

The rationale for using MSE is as follows. The entropy of a time series is a measure of its

degree of randomness or unpredictability. Real-world time series that are very variable tend

to have high entropy. However, there are variable time series with entropy close to (or

equal) zero. Consider, for example, the time series of a sequence of sine wave oscillations

varying between -100 and 100 in arbitrary units (signal A). Consider now that the data

points from signal A are randomly shuffled to create signal B. Signals A and B have the

same mean and standard deviation because the shuffling procedure does not change the

values of the data points but only the order in which they appear. While signal A is regular

and predictable, signal B has a random (uncorrelated) structure. Therefore, signal A has

(theoretically) zero entropy, and signal B is maximally entropic. The temporal sequence in

which the data points occur is what determines the entropy of the signal (http://

physionet.org/tutorials/cv/).

Sample entropy (SampEn) is an algorithm designed for quantifying the entropy of relatively

short and noisy signals. Multiscale entropy (MSE) generalizes SampEn to multiple time

scales. One major advantage of using MSE over SampEn, especially for the study of

physiology, is that SampEn only quantifies how random a signal is. It may fail to distinguish

between complex and random signals. MSE probes a signal on multiple time scales, i.e., at

various levels of resolution (http://www.physionet.org/physiotools/mse/tutorial/). By doing

so, MSE can discriminate between truly complex signals, i.e., those containing information

on multiple scales, from those that are just variable. MSE has been applied to a wide class of

physiologic and biologic signals, including HR time series, intracranial pressure signals,

magnetoelectroencephalographic recordings, red-blood-cell flickering motions, etc., to help

quantify the output of systems controlled by regulatory mechanisms operating on multiple

time scales [16–19].

When applied to the cardiovascular system, MSE integrates information about the processes

underlying the control of the HR. High MSE values are consistent with the notion that the

processes controlling the HR in healthy subjects operate over multiple time scales. For

example, loss of HR complexity has been reported in a number of settings with altered

(dysregulated) neuroautonomic control, including chronic heart failure, aging, and acute

major depressive disorder [11, 20]

What is the rationale for developing complexity-based vital signs for injured patients? Vital-

sign measurement is a core practice in prehospital, emergency, and critical care. The Centers

for Disease Control’s (CDC) 2011 Guidelines for Field Triage of Injured Patients is a

revision of the American College of Surgeons Committee on Trauma’s (ASCOT) Decision

Scheme. It states that the first step in triage is to measure vital signs and level of

consciousness. Injured patients with a Glasgow Coma Scale score (GCS) ≤ 13, a systolic

blood pressure < 90 mmHg, or a respiratory rate < 10/min or > 29/min (or a requirement for

ventilator support) are triaged to a trauma center, irrespective of anatomic findings or

mechanism of injury [21].
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Several large studies, however, have led to a reappraisal of these standard vital-sign-based

triage criteria. Several studies have criticized established vital-sign-based triage criteria such

as these [22–27]. These studies have found that: (i) vital-sign-based trauma triage, alone, is

associated with a significant undertriage rate; (ii) undertriage is associated with increased

mortality; (iii) vital-sign ranges previously considered “normal” may actually be associated

with increased mortality; (iv) predictive equations based on multiple variables outperform

single vital signs in the prediction of mortality, and (v) continuous vital-sign data

outperform single vital signs.

Given these findings, some authors have introduced new devices into emergency care, e.g.

to measure lactate levels [28–30]. In the present study we took a different approach to the

diagnostic problem in trauma. We applied new mathematical methods of analysis to the

beat-to-beat variability inherent in the HR. This approach takes advantage of the fact that the

ECG is already acquired (but under-utilized) in severely injured patients. Therefore, we

sought to obtain more information from an existing sensor, rather than to add new sensors to

our patients.

Our previous work included studies in animal models, and in prehospital and ICU patients.

In anesthetized sheep, severe hemorrhagic shock caused a decrease in the high frequency

(HF) power of HR variability, as well as a decrease in the ApEn and the fractal dimension of

the HR [6]. We saw similar changes in anesthetized swine with hemorrhage [5], and with

chest trauma followed by hemorrhage [7]. In prehospital trauma patients, ApEn was an

independent predictor of mortality, even when GCS and ISS were taken into account [9]. In

the same database, there was no difference in HR or BP between patients undergoing an LSI

and those not; but patients differed on SampEn and GCS (motor component) [8]. Low

SampEn and ApEn were features of patients upon admission to the Burn ICU, and were

restored to normal values with fluid resuscitation [31]. On further analysis, we found that

SampEn retained its ability to discriminate survivors from non-survivors in prehospital

trauma patients, even as we moved from large datasets (800 heart beats) down to much

smaller datasets (100 heart beats) [32].

In the present study, we again note lower SampEn in patients undergoing LSIs. In addition,

we extend these findings by detecting lower HR complexity at multiple time scales as

documented by MSE. In trauma patients, there are at least two physiologically based

explanations for this finding. One is that hypovolemia causes a loss of HR complexity

through a vagally-mediated process, related to compensatory withdrawal of parasympathetic

tone to the heart. This mechanism would explain, for example, the decrease in high-

frequency and short-term time-domain HR variability measures, which often accompany the

decrease in HR complexity. The other explanation is that brain injury or ischemia may cause

a loss of HR complexity through central-nervous-system-mediated processes. The latter

mechanism would explain the lower mean Glasgow Coma Scale score observed in the LSI

vs. non-LSI patients in this study. Of note, HR complexity has been proposed as an indicator

of the overall adaptiveness and plasticity of the HR control system, rather than as a

diagnostic test for any specific type of injury.
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In this study, we also extended previous analyses by exploring different methodological

approaches for choosing the parameter r for calculation of SampEn and the MSE index.

Specifically, we compared the results using a fixed r value (based on the sampling frequency

of the original ECG data) with those obtained using the “standard” implementation (based

on an arbitrary percent (e.g., 15–20%) of each time series’ standard deviation. We found that

for HR analysis the use of the fixed r value provided better discrimination for group

comparisons using either single or multiscale measures. Furthermore, we found that in cases

of very low time-series variance, sole reliance on the standard deviation-based method could

lead to spuriously high values of SampEn or MSE due to “pseudo-fluctuations” generated by

discretization errors (Fig. 1). This problem is particularly relevant in trauma conditions, in

which low HR variance is most prevalent. Finally, we note that the computation of MSE, not

just traditional SampEn (equivalent to Scale 1 of MSE), provides a more general assessment

of HR complexity, and allows discrimination of irregularity due to random variations with

low information content (e.g., R-R fluctuations with atrial fibrillation) vs. R-R fluctuations

with intrinsically higher information content (e.g., sinus-rhythm dynamics in healthy

subjects with intact neuroautonomic control) [10–11, 20].

Several other groups have contributed to the study of complex HR variability in critical

illness. Norris et al. reported an increase “cardiac uncoupling” (defined by a higher

percentage of 5-minute intervals within 24 hours for which the HR standard deviation fell

within the range 0.3 to 0.6 bpm) in trauma patients who died in the ICU, regardless of

etiology of death [33]. Seely and colleagues at the University of Ottawa have developed a

multi-parameter HR variability system. In a pilot study in bone-marrow-transplant patients,

both SampEn and MSE (as well as other HR variability metrics) decreased prior to the

clinical diagnosis of sepsis [34].

Finally, Moorman and colleagues [35] studied the impact of information about heart rate

dynamics in the neonatal ICU setting. They have developed a real-time index, termed “heart

rate characteristics” (HRC), which takes into consideration multiple features of the neonatal

RR interval time series [36–37]. Their randomized controlled clinical trial included 3003

very low birth weight infants, a group at increased risk for sepsis [35]. It showed that

physician access to the real-time HRC index was associated with a significant reduction in

infant mortality, from 10.2% to 8.1%. Their finding that measures of heart rate dynamics in

an newborn ICU setting can lead to decreased mortality--presumably by increasing

clinicians’ situational awareness--is an important contribution to the emerging field of

anticipatory medicine.

5. Limitations

Our study’s limitations include the relatively small sample size and the potential

inaccuracies inherent in collecting data in a busy ED in a war zone. Of the 325 patients on

whom some effort was made to collect ECGs under this protocol, only 70 patients had ECG

of sufficient length and quality, as well as accompanying demographic data. Also, the

imbalance in the number of patients in the two groups (12 LSI vs. 58 Non-LSI) may

introduce selection bias. We were unable to determine the relationship between the timing of

LSIs, and the timing of ECG collection. We also did not record whether patients received
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sedative medications during their ED care which could influence HR complexity. The

problem of the timing of interventions is a recurring theme in this type of research, which

must be addressed in future prospective study designs. Decreased mental status is associated

with the performance of LSIs in this study, manifested by differences between LSI and Non-

LSI patients on both GCStotal and GCSmotor. In the present study, the Non-LSI group is

essentially a group with normal GCStotal and GCSmotor scores of 15±0 and 6±0,

respectively. This observation is consistent with our previous findings in prehospital trauma

patients [9]. Prehospital and post-ED data were also lacking. Unfortunately, prehospital data

from the battlefield have been notoriously difficult to obtain. It will be of great interest to

study changes in MSE and other heart rate variability measures over time, in response to

therapy.

Finally, future studies should also employ real-time (as opposed to off-line, post hoc)

calculation of HR complexity. Once a sufficient number of heart beats have been recorded,

the entropy algorithms take only about 1 sec to run. SampEn computation can be performed

as soon as the first 100 beats have been collected. MSE computation can then be added as

soon as the first 800 beats have been collected, serially updating the estimates as more data

become available. Based on work by Moorman, Seely, and others, we are confident that

such real-time computation is technologically quite feasible [34–35].

6. Conclusions

The amount of complex irregularity in beat-to-beat fluctuations in the HR can be quantified

by Sample Entropy (SampEn). Multiscale Entropy (MSE) extends this measure to

progressively longer time scales. In this study, we found that lower Sample Entropy and

Multiscale Entropy index were associated with the performance of lifesaving interventions

in combat casualties arriving at an Emergency Department in a combat zone. We also found

that careful selection of the r parameter based on the ECG sampling rate significantly

improves the ability of both SampEn and MSE index to discriminate such patients.

Prospective studies of these “new vital signs” are needed to establish their potential role in

clinical assessment and management of critically-injured patients.

Acknowledgments

Supported by the Comprehensive Intensive Care Research Task Area, Combat Casualty Care Research Area
Directorate, U.S. Army Medical Research and Materiel Command, Ft. Detrick, MD; the Wyss Institute for
Biologically Inspired Engineering (ALG and MDC); the G. Harold and Leila Y. Mathers Charitable Foundation
(ALG and MDC); the James S. McDonnell Foundation (MDC); and the National Institutes of Health grants
R00AG030677 (MDC) and R01GM104987 (ALG). The authors gratefully acknowledge the members of the
deployed Research Team, and Ms. Annette McClinton, RN, who coordinated activities of the Team. We also
gratefully acknowledge Mr. John A. Jones for statistical analysis, and Dr. Tom Kuusela for important discussions
on signal analysis.

References

1. Martin M, Oh J, Currier H, Tai N, Beekley A, Eckert M, et al. An analysis of in-hospital deaths at a
modern combat support hospital. J Trauma. 2009; 66:S51–S60. [PubMed: 19359971]

2. Butler FK. Tactical combat casualty care: update 2009. J Trauma. 2010; 69:S10–S13. [PubMed:
20622602]

Cancio et al. Page 8

J Crit Care. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



3. Pincus SM, Goldberger AL. Physiological time-series analysis: what does regularity quantify? Am J
Physiol. 1994; 266:H1643–H1656. [PubMed: 8184944]

4. Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and
sample entropy. American Journal of Physiology - Heart & Circulatory Physiology. 2000;
278:H2039–H2049. [PubMed: 10843903]

5. Batchinsky AI, Cooke WH, Kuusela T, Cancio LC. Loss of complexity characterizes the heart rate
response to experimental hemorrhagic shock in swine. Crit Care Med. 2007; 35:519–525. [PubMed:
17205017]

6. Batchinsky AI, Cooke WH, Kuusela TA, Jordan BS, Wang JJ, Cancio LC. Sympathetic nerve
activity and heart rate variability during severe hemorrhagic shock in sheep. Autonomic
Neuroscience-Basic & Clinical. 2007; 136:43–51. [PubMed: 17482525]

7. Batchinsky AI, Skinner JE, Necsoiu C, Jordan BS, Weiss D, Cancio LC. New measures of heart-rate
complexity: effect of chest trauma and hemorrhage. J Trauma. 2010; 68:1178–1185. [PubMed:
20173662]

8. Cancio LC, Batchinsky AI, Salinas J, Kuusela T, Convertino VA, Wade CE, et al. Heart-rate
complexity for prediction of prehospital lifesaving interventions in trauma patients. J Trauma. 2008;
65:813–819. [PubMed: 18849796]

9. Batchinsky AI, Cancio LC, Salinas J, Kuusela T, Cooke WH, Wang JJ, et al. Prehospital loss of R-
to-R interval complexity is associated with mortality in trauma patients. J Trauma. 2007; 63:512–
518. [PubMed: 18073594]

10. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time
series. Physical Review Letters. 2002; 89:068102. [PubMed: 12190613]

11. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Physical
Review E Statistical, Nonlinear, & Soft Matter Physics. 2005; 71:021906.

12. Voss A, Wessel N, Sander A, Malberg H, Dietz R. Influence of low sampling rate on heart rate
variability analysis based on non-linear dynamics. Computers in Cardiology. 1995:689–692. IEEE,
1995.

13. Crawford MH, Bernstein SJ, Deedwania PC, DiMarco JP, Ferrick KJ, Garson A Jr, et al.
ACC/AHA Guidelines for Ambulatory Electrocardiography. A report of the American College of
Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise
the Guidelines for Ambulatory Electrocardiography). Developed in collaboration with the North
American Society for Pacing and Electrophysiology. J Am Coll Cardiol. 1999; 34:912–948.
[PubMed: 10483977]

14. Anonymous. Heart rate variability: standards of measurement, physiological interpretation and
clinical use. Task Force of the European Society of Cardiology and the North American Society of
Pacing and Electrophysiology. Circulation. 1996; 93:1043–1065. [PubMed: 8598068]

15. Mietus JE, Peng CK, Henry I, Goldsmith RL, Goldberger AL. The pNNx files: re-examining a
widely used heart rate variability measure. Heart. 2002; 88:378–380. [PubMed: 12231596]

16. Norris PR, Anderson SM, Jenkins JM, Williams AE, Morris JA Jr. Heart rate multiscale entropy at
three hours predicts hospital mortality in 3,154 trauma patients. Shock. 2008; 30:17–22. [PubMed:
18323736]

17. Lu CW, Czosnyka M, Shieh JS, Smielewska A, Pickard JD, Smielewski P. Complexity of
intracranial pressure correlates with outcome after traumatic brain injury. Brain. 2012; 135:2399–
2408. [PubMed: 22734128]

18. Raja Beharelle A, Kovačević N, McIntosh AR, Levine BA. Brain signal variability relates to
stability of behavior after recovery from diffuse brain injury. Neuroimage. 2012; 60:1528–1537.
[PubMed: 22261371]

19. Costa M, Ghiran I, Peng C-K, Nicholson-Weller A, Goldberger AL. Complex dynamics of human
red blood cell flickering: alterations with in vivo aging. Physical Review E. 2008; 78:020901.

20. Leistedt SJ, Linkowski P, Lanquart JP, Mietus JE, Davis RB, Goldberger AL, et al. Decreased
neuroautonomic complexity in men during an acute major depressive episode: analysis of heart
rate dynamics. Transl Psychiatry. 2011; 1:e27. [PubMed: 22832529]

Cancio et al. Page 9

J Crit Care. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



21. Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, et al. Guidelines for field triage
of injured patients: recommendations of the National Expert Panel on Field Triage, 2011. MMWR
Morb Mortal Wkly Rep. 2012 Recommendations & Reports.

22. Newgard CD, Zive D, Holmes JF, Bulger EM, Staudenmayer K, Liao M, et al. A multisite
assessment of the American College of Surgeons Committee on Trauma field triage decision
scheme for identifying seriously injured children and adults. J Am Coll Surg. 2011; 213:709–721.
[PubMed: 22107917]

23. Haas B, Gomez D, Zagorski B, Stukel TA, Rubenfeld GD, Nathens AB. Survival of the fittest: the
hidden cost of undertriage of major trauma. J Am Coll Surg. 2010; 211:804–811. [PubMed:
21036070]

24. Eastridge BJ, Salinas J, McManus JG, Blackburn L, Bugler EM, Cooke WH, et al. Hypotension
begins at 110 mm Hg: redefining "hypotension" with data. J Trauma. 2007; 63:291–297.
[PubMed: 17693826]

25. Ley EJ, Singer MB, Clond MA, Ley HC, Mirocha J, Bukur M, et al. Admission heart rate is a
predictor of mortality. The Journal of Trauma and Acute Care Surgery. 2012; 72:943–947.
[PubMed: 22491609]

26. Perel P, Prieto-Merino D, Shakur H, Clayton T, Lecky F, Bouamra O, et al. Predicting early death
in patients with traumatic bleeding: development and validation of prognostic model. BMJ.
2012:345.

27. Woodford MR, Mackenzie CF, DuBose J, Hu P, Kufera J, Hu EZ, et al. Continuously recorded
oxygen saturation and heart rate during prehospital transport outperform initial measurement in
prediction of mortality after trauma. J Trauma. 2012; 72:1006–1011.

28. Ouellet JF, Roberts DJ, Tiruta C, Kirkpatrick AW, Mercado M, Trottier V, et al. Admission base
deficit and lactate levels in Canadian patients with blunt trauma: are they useful markers of
mortality? J Trauma. 2012; 72:1532–1535.

29. Vandromme MJ, Griffin RL, Weinberg JA, Rue LW 3rd, Kerby JD. Lactate is a better predictor
than systolic blood pressure for determining blood requirement and mortality: could prehospital
measures improve trauma triage? J Am Coll Surg. 2010; 210:861–867. [PubMed: 20421067]

30. Guyette F, Suffoletto B, Castillo JL, Quintero J, Callaway C, Puyana JC. Prehospital serum lactate
as a predictor of outcomes in trauma patients: a retrospective observational study. Journal of
Trauma Injury Infection & Critical Care. 2011; 70:782–786.

31. Batchinsky AI, Wolf SE, Molter N, Kuusela T, Jones JA, Moraru C, et al. Assessment of
cardiovascular regulation after burns by nonlinear analysis of the electrocardiogram. J Burn Care
Res. 2008; 29:56–63. [PubMed: 18182898]

32. Batchinsky AI, Salinas J, Kuusela T, Necsoiu C, Jones J, Cancio LC. Rapid prediction of trauma
patient survival by analysis of heart rate complexity: impact of reducing data set size. Shock.
2009; 32:565–571. [PubMed: 19487984]

33. Norris PR, Ozdas A, Cao H, Williams AE, Harrell FE, Jenkins JM, et al. Cardiac uncoupling and
heart rate variability stratify ICU patients by mortality: a study of 2088 trauma patients. Ann Surg.
2006; 243:804–812. [PubMed: 16772784]

34. Ahmad S, Ramsay T, Huebsch L, Flanagan S, McDiarmid S, Batkin I, et al. Continuous multi-
parameter heart rate variability analysis heralds onset of sepsis in adults. PLoS ONE [Electronic
Resource]. 2009:4.

35. Moorman JR, Carlo WA, Kattwinkel J, Schelonka RL, Porcelli PJ, Navarrete CT, et al. Mortality
reduction by heart rate characteristic monitoring in very low birth weight neonates: a randomized
trial. J Pediatr. 2011; 159:900–906. [PubMed: 21864846]

36. Griffin MP, Moorman JR. Toward the early diagnosis of neonatal sepsis and sepsis-like illness
using novel heart rate analysis. Pediatrics. 2001; 107:97–104. [PubMed: 11134441]

37. Griffin MP, Lake DE, Bissonette EA, Harrell FE Jr, O'Shea TM, Moorman JR. Heart rate
characteristics: novel physiomarkers to predict neonatal infection and death. Pediatrics. 2005;
116:1070–1074. [PubMed: 16263991]

38. Lake DE, Moorman JR. Accurate estimation of entropy in very short physiological time series: the
problem of atrial fibrillation detection in implanted ventricular devices. Am J Physiol Heart Circ
Physiol. 2011:300.

Cancio et al. Page 10

J Crit Care. Author manuscript; available in PMC 2014 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1.
Time series of the RR intervals for a patient who underwent a life saving-intervention. The

discretization interval Δ = 1/375 ~ 2.7 ms is the inverse of the sampling frequency of 375

Hz. Note that the RR intervals are multiples of Δ: 488, 490.7, 493.3, 496, 498.7, 501.3, 504,

506.7 ms. The time series standard deviation (SD) is 3.6 ms. Note that in this case 20% of

the SD is 0.72 ms < Δ. Therefore, the number of matches obtained with r=20% of the SD is

the same as with r = 0 ms.
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Table 1

Basic Patient Data

Variable LSI (n=12) Non-LSI (n=58)

Age, y 23±15 27±10

Sex (male) 12 (100%) 52 (89%)

Blunt or explosive mechanism 1 (8.3%) 19 (32%)

HR 111±33 90±17

SAP 123±19* 135±19

GCStotal 12±5** 15±0

GCSmotor 5±2** 6±0

LSI, patients who did receive lifesaving interventions; Non-LSI, patients who did not receive lifesaving interventions; Blunt/explosive mechanism,
number of patients in each group injured by a blunt or explosive mechanism; HR, heart rate; SAP, systolic arterial pressure; GCStotal, total

Glasgow Coma Scale score; GCSmotor, motor component of the Glasgow Coma Scale score. Data are means ± SD.

*
p<0.05;

**
p<0.001.
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Table 2

HRV time-domain measures

Variables LSI Non-LSI p value

AVNN 0.589 ± 0.185 0.694 ± 0.135 0.067

SDNN 0.023 ± 0.013 0.038 ± 0.020 0.022

rMSSD 0.009 ± 0.008 0.019 ± 0.014 0.005

pNN20 7.13 ± 13.71 22.20 ± 22.77 0.006

pNN50 0.91 ± 2.84 5.42 ± 10.83 0.018

Values of heart rate variability (HRV) time-domain measures for the LSI and non LSI groups. AVNN: average of all normal-to-normal (NN)
intervals, in seconds. SDNN: standard deviation of all NN intervals, in seconds. rMSSD: Square root of the mean of the squares of differences
between adjacent NN intervals, in seconds. pNN20 and pNN50: percentage of differences between adjacent NN intervals that are greater than 20
and 50 seconds, respectively.
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Table 3

Single and Multiscale Entropy Measures

Measures LSI Non-LSI p value

Single Scale

  SampEn (r=20%) 0.90 ± 0.42 1.19 ± 0.35 0.035

  SampEn (r=6 ms) 0.58 ± 0.56 1.17 ± 0.59 0.003

  QSampEn 8.73 ± 3.40 12.58 ± 2.78 0.002

Multiscale

  MSE index (scales 1 to 4) 2.80 ± 2.60 5.78 ± 2.45 0.001

Results for entropy-based measures. Values of sample entropy (SampEn) are presented for r = 20% of the time series' standard deviation and for r =
6 ms. Values of quadratic sample entropy (QSampEn; see appendix) are presented for a minimum number of matches (M) of 30. The multiscale
entropy (MSE) index, defined as the summation of SampEn values for scales 1 to 4 is presented. In all cases, the parameter m was set to 2. See text
for details.
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