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Abstract

Bio-optical models are based on relationships between the spectral remote sensing reflectance and

optical properties of in-water constituents. The wavelength range where this information can be

exploited changes depending on the water characteristics. In low chlorophyll-a waters, the blue/

green region of the spectrum is more sensitive to changes in chlorophyll-a concentration, whereas

the red/NIR region becomes more important in turbid and/or eutrophic waters. In this work we

present an approach to manage the shift from blue/green ratios to red/NIR-based chlorophyll-a

algorithms for optically complex waters. Based on a combined in situ data set of coastal and

inland waters, measures of overall algorithm uncertainty were roughly equal for two chlorophyll-a

algorithms—the standard NASA OC4 algorithm based on blue/green bands and a MERIS 3-band

algorithm based on red/NIR bands—with RMS error of 0.416 and 0.437 for each in log

chlorophyll-a units, respectively. However, it is clear that each algorithm performs better at

different chlorophyll-a ranges. When a blending approach is used based on an optical water type

classification, the overall RMS error was reduced to 0.320. Bias and relative error were also

reduced when evaluating the blended chlorophyll-a product compared to either of the single

algorithm products. As a demonstration for ocean color applications, the algorithm blending

approach was applied to MERIS imagery over Lake Erie. We also examined the use of this

approach in several coastal marine environments, and examined the long-term frequency of the

OWTs to MODIS-Aqua imagery over Lake Erie.
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1. Introduction

Water quality properties are used as primary indicators for assessing lake and coastal water

environmental viability by agencies to guide resource management and public safety

decisions. These water quality properties include chlorophyll-a concentration, total

suspended matter, Secchi depth, and nutrient concentrations, as well as the plant and animal

species that inhabit these environments. Of these, chlorophyll-a concentration is arguably

the most comprehensive environmental descriptor as it a measure of algal biomass and

indicator of water clarity. In situ sampling remains the most accurate way of determining

chlorophyll-a concentration, yet the use of satellite remote sensing for routine and synoptic

chlorophyll-a monitoring has been increasing in the last decade in these types of

environments (e.g., Binding, Jerome, Bukata, & Booty, 2010; Hunter, Tyler, Carvalho,

Codd, & Maberly, 2010; Kloiber, Brezonik, Olmanson, & Bauer, 2002; Kutser, 2004;

Olmanson, Brezonik, & Bauer, 2013; Yacobi et al., 2011).

Historically, the main applications of ocean color satellites and bio-optical algorithms have

been directed towards open-ocean conditions. The optical properties of these environments

are largely dictated by the concentration of phytoplankton and covarying material in the

water, and have been referred to as ‘case 1’ waters (Morel & Prieur, 1977). Optical models

designed to retrieve geophysical properties (e.g., chlorophyll-a concentration) in case 1

water have been modeled using the spectral light field in the blue-green part of the spectrum

(e.g., Maritorena, Siegel, & Peterson, 2002; O'Reilly et al., 1998). These models begin to

break down in environments where the optical properties are governed by materials other

than phytoplankton—the so-called ‘case 2’ waters. Coastal regions and inland waters are

highly susceptible to case 2 conditions from land effects (e.g., runoff of sediments, nutrients

and organic matter) and re-suspension of sediments from shallow bottoms. In addition, the

concentrations of particles including phytoplankton can be much higher compared to open

ocean environments. As a consequence, bio-optical algorithms developed for the open ocean

are less effective in more optically-complex waters found in coastal and inland waters

(Melin et al., 2011; Moore, Campbell, & Dowell, 2009).

The development of bio-optical algorithms for eutrophic conditions more common to lakes

and coastal regions has focused on wavelengths in the red and near-infrared (NIR) region of

the light spectrum (Gitelson, Gurlin, Moses, & Yacobi, 2011; Gower, King, Borstad, &

Brown, 2005; Hu et al., 2010; Matthews, Bernard, & Robertson, 2012; Yacobi et al., 2011).

These algorithms achieve higher performance in highly eutrophic conditions compared to

the open ocean case 1 algorithms (Gilerson et al., 2010), but often times it is not known

which algorithm is best suited for a particular place or time in ocean color image scenes that

contain both types of optical cases. The iconic case 1/case 2 system view that has

predominated the view of aquatic optical classification for the last several decades is

actually not an objective classification system, but a way to think about where and when

algorithms are appropriate. If, as the evidence suggests, bio-optical algorithms perform

better under certain situations and worse at times under different conditions, then a

classification scheme is needed that can differentiate the environment and choose the more

appropriate algorithm for the given environmental conditions.
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Previous studies focused on optical classification of coastal and inland waters for bio-optical

algorithm development/selection have been tested in a variety of environments. Melin et al.

(2011) utilized a classification scheme that could select and blend type-specific bio-optical

algorithms between two water types in the Adriatic Sea. Based on cluster analysis of remote

sensing reflectance data, Vantrepotte, Loisel, Dessailly, and Meriaux (2012) showed that

optical classes developed from coastal in situ data could identify the types in ocean color

imagery. In addition, these optical classes could sufficiently represent other coastal areas not

included in their data set. Le et al. (2011) developed a bio-optical classification scheme

based on data from several lakes in China which could all be considered case 2 waters. Their

results showed that optical classes were successful in selecting the best performing

algorithm for given optical case 2 conditions. Lubac and Loisel (2007) and Feng, Campbell,

Dowell, and Moore (2005) developed optical classes for case 2 waters in the English

Channel and Tokyo Bay, respectively. These studies support the emerging view that optical

classes and algorithms vary within coastal and lake environments for waters that could

collectively be termed as case 2, and not just between case 1 and case 2 waters.

Observed reflectance spectra from different case 2 waters share common features, as their

optics are governed by similar factors including eutrophic/hypereutrophic trophic

conditions, high loads of suspended sediments and colored dissolved organic matter

(CDOM). Thus, coastal and lake environments may benefit from a common classification

scheme using aggregate data that avoids specific regions or separation of fresh and marine

waters. We have previously proposed a classification and blending scheme based on optical

water types (OWTs) for oceanic regional and global scales (Moore, Campbell, & Feng,

2001; Moore et al., 2009). This global OWT system was based on open ocean and coastal

waters with low to moderate levels of chlorophyll-a, and is not designed for lakes with

moderate to extreme values of chlorophyll-a. Therefore, we are interested in adapting the

application of the OWT method to inland lakes formed from a new data set representative of

these types of waters. However, our interest is also to generalize complex optical water

types across both coastal and inland water bodies to provide continuity from freshwaters to

marine environments.

Our main objective is to 1) describe optical water types for coastal and lake environments

which share similar levels of optical complexities, and to provide transition along the

continuum of optical conditions between optical environments. Furthermore, we aim 2) to

assess the feasibility of an optical classification system for blending the retrievals from

multiple bio-optical algorithms for these optically-complex waters. The goal was not to

advocate or promote any single algorithm, but to use two existing algorithms as case studies

for the proposed classification framework.

2. Methods

To achieve the main goal, we sought to implement a classification system through defining

optical water types from in situ remote sensing reflectance (Rrs) measurements covering a

wide range of optical conditions in coastal and inland lake waters. This involves identifying

the water types, sorting the data into respective subsets, and developing membership

functions for the water types. The membership functions are the heart of the classification
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method, and the class memberships produced are used as the basis of weighting factors for

blending algorithm retrievals into a single product when applied to satellite imagery. This

process will be detailed in the following Sections.

2.1. Data sets

We assembled an aggregate data set from multiple sources with two requirements: 1) the

reflectance measurements must have hyperspectral resolution collected from an above-water

or near-surface radiometer, and 2) have co-measured chlorophyll-a measurements. These

requirements were needed for two reasons: first, we are focused on capturing spectral

features throughout the visible spectrum and into the NIR, and therefore need hyperspectral

resolution. This also provides flexibility in adapting the derived OWT spectral reflectance

characteristics to any satellite-specific band configuration and accommodates the use of

existing and planned algorithms. Secondly, the need for reflectances in the red/NIR limits

the use of profiling sensors that may not be sensitive enough to resolve the light field when

descending through the water column. Additionally, our main interest was in evaluating

chlorophyll-a products, although the conceptual approach applies to other bio-optical

products from other types of algorithms (e.g., semi-analytical).

Several data sets from numerous freshwater lakes and coastal marine sites were combined.

They comprise three main sources: a data set collected by the University of New Hampshire

(UNH) in various northeastern US lakes as well as the Great Salt Lake in Utah (Bradt,

2012); a data set from Spain covering many lakes and trophic conditions (Ruiz-Verdu,

Simis, deHoyos, Gons,&Pena-Martinez, 2008); and a data set obtained from NASA's

SeaBASS archive primarily from U.S. coastal marine sites (Werdell et al., 2003). All

reflectance data were collected with hyperspectral instruments, which were binned at 3 nm

intervals from 400 to 800 nm. The reflectance data were visually examined individually, and

obvious erroneous spectra were not included in the final data set. The total number of

reflectance data that passed our inspection with co-measured chlorophyll-a data was 488

points (Table 1).

In all cases, we are basing our analysis on the remote sensing reflectance denoted as the

vector Rrs, which is defined as the ratio of the upwelling spectral light field to the

downwelling spectral irradiance. All of our in situ data are in the above-water form Rrs(0+);

that is, it is the remote sensing reflectance just above the air–water interface. In our analyses

with optical water types, we have converted the above-water form to below-water form,

Rrs(0−); that is, the remote sensing reflectance just below the air–sea interface. These two

quantities are directly related, and we use the standard NASA conversion from above-water

to below-water:

(1)

For clarity, the Rrs(0+) form is used for all chlorophyll algorithm input.
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2.1.1. Spanish lake data—The data set from Spain comprises 179 stations from over 60

lakes in a variety of trophic conditions, ranging from clear waters to those with

monospecific blooms of cyanobacteria. The data were collected between 2001 and 2005 in

several field campaigns conducted by the Spanish Centre for Hydrographic Studies

(CEDEX). Measurements included above-water hyperspectral radiometry with an ASD-FR

instrument, and chlorophyll concentration measured by HPLC techniques. The details of the

sites and other measuring techniques/specifications are contained in Simis et al. (2007) and

Ruiz-Verdu et al. (2008).

2.1.2. UNH lake data—The data set from UNH comprises 140 stations from over 60 lakes

in the six New England states as well as the Great Salt Lake representing a variety of trophic

conditions. These lakes were generally less eutrophic than those found in the Spanish data

set. These data were collected between 2005 and 2009. The spectral measurements were

based on methods adapted from Dall'Olmo and Gitelson (2005) and Doxoran et al. (2006); a

profile of near-surface under-water light conditions was collected in each lake using with a

dual radiometer system, and the profile data used to calculate remote sensing reflectance.

Note, these data were not collected above water but near the surface; measurements were

taken at 3–5 depths between the surface and 1 m for each profile, including one near-surface

measurement at either 0.05 m or 0.10 m. The profile were used to estimate Rrs(0−), which

was converted to Rrs(0+). Chlorophyll-a concentration was measured by spectrophotometric

techniques. Further details of the sites and methods are contained in Bradt (2012).

2.1.3. SeaBASS coastal marine data—The NASA archive of bio-optical data—the

SeaWiFS Bio-optical Archive and Storage System (SeaBASS)—was mined to acquire

coastal marine data (Werdell et al., 2003). This archive was searched with restriction to 1)

above-water hyperspectral Rrs and 2) co-measured chlorophyll. This search resulted in a data

set that was assembled from multiple sources, but all were primarily from coastal waters

around the continental United States. Specifically, data sets were combined from these

SeaBASS sources: NOAA_CCMA, NORTHSEA, NRL, UCSB, and USF. Data were

downloaded and re-assembled to coincide with the spectral range and wavelength intervals

previously mentioned. Chlorophyll-a data were separately downloaded, and then matched to

their respective radiometric measurements. A total of 169 matched points were obtained.

These data were combined with the freshwater lake data.

2.2. Bio-optical algorithms under evaluation

Several recent published reports have described and compared the accuracy and use of

chlorophyll-a algorithms for application in lake environments (Gitelson et al., 2011;

Matthews et al., 2012; Odermatt, Gitelson, Brando, & Schaepman, 2012; Yacobi et al.,

2011). These reports cover a wide variety of algorithms, including the traditional open-

ocean empirical blue/green band-ratio algorithms and multiple-band red/NIR approaches. In

this study, we examined two of the leading algorithms that showed good performance from

the aforementioned studies—the standard NASA case 1 blue/green band-ratio algorithm

OC4 (O'Reilly et al., 1998) and a 3-band MERIS algorithm (Gitelson et al., 2011), termed

Mer-3B hereafter.
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The NASA OC4 algorithm (version 6) uses a band-ratio in a 4th order polynomial

exponential form defined as:

(2)

where X is the log10 of the maximum ratio of the triplet Rrs443, Rrs490, Rrs510 to Rrs555.

The Mer-3B algorithm as taken fromGitelson et al. (2011) is defined as follows:

(3)

We note that we used these two algorithms on the in situ data and MERIS image retrievals.

The NASA OC3 algorithm is the OC4 algorithm adapted to MODIS wave lengths without

the 510 nm channel. Currently, MODIS-Aqua data lack the necessary channels to implement

theMer-3B algorithm. Thus, we did not apply chlorophyll-a algorithms to MODIS-Aqua

imagery, although we classified MODIS-Aqua images.

2.3. Error definitions

One goal of the study was to assess the performance of select chlorophyll-a algorithms

across the different optical water types. The metrics we used as performance indicators were

the root-mean-square error (RMSE), bias (the average difference) and the median absolute

relative error (MARE). The RMSE is the more comprehensive metric because it combines

the mean and variance of the error distribution into a single term (Szeto, Campbell, Moore,

& Werdell, 2011). The bias should be considered as well, as it speaks to systematic offsets

that can reveal other sources of error. We also use the MARE in evaluating of chlorophyll-a

performance.

We define RMSE as:

(4)

the bias as:

(5)

and the MARE expressed as a percentage:

(6)

where Chlmeas is the in situ chlorophyll-a measurement and Chlmod is the algorithm-derived

chlorophyll-a concentration. We note that the calculations of bias and RMSE were

performed on log-transformed chlorophyll-a data. It has long been known that in the ocean,

the chlorophyll-a distribution is lognormal (Campbell, 1995). Our data set spanned 3–4

orders of magnitude in terms of chlorophyll-a concentration, and exhibits a lognormal
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distribution for chlorophyll-a (Fig. 1). Thus, for balanced error assessment across this

dynamic range, log-transformation of chlorophyll-a is preferred for RMSE and bias.

2.4. Data clustering

Our choice for cluster analysis was the fuzzy c-means (FCM) algorithm (Bezdek, 1981)

which has been used in many classification studies from medical image processing to remote

sensing. A suite of cluster validity functions for deriving metrics was used to guide the

choice of the optimal number of clusters. We note that the k-means clustering algorithm

gives similar results and also could have been used in our application.

The FCM algorithm was applied to the in situ Rrs data. The FCM algorithm produces a

fuzzy clustering of the data into a specified number of clusters (herein denoted as c). The

basic function of this algorithm is to choose clusters that minimize the distance between the

data points and the prototype cluster centers (or cluster means). Cluster centers are

iteratively adjusted until optimization criteria are met (e.g., maximum number of iterations

or minimum change residual). The clustering routine then returns the mean reflectance

vectors for the c classes, and a matrix containing the memberships of each point to each

class.

The number of clusters, c, was an input to the FCM clustering routine, but the optimum

number was not known in advance. We experimented with values of c ranging from2 to 20,

and evaluated the results with the aid of the cluster validity measures (Bezdek, Li,

Attikiouzel, &Windham, 1997). Ten primary validity measures were used to objectively

assess the optimal number of clusters, and the details are contained in Moore et al. (2009).

Ideally, the validity measures should indicate the same optimum choice. This occurred in the

present case, and we arrived at c = 7 as a best choice for our data set. The issue of the

number of clusters is discussed later.

Once the clusters were identified, the reflectance spectra were sorted according to the

highest membership value, and the mean Rrs and covariance matrix were calculated for each

cluster. These statistics now define our optical water types, and are subsequently used in the

membership function (defined below).

2.5. Algorithm blending using a fuzzy membership function

Our classification and blending scheme is based on the concept of fuzzy logic (Zadeh,

1965), and assigns class memberships for an observation to specified optical classes. The

advantages of using a fuzzy logic approach are that 1) ambiguous boundaries between

different classes can be captured with graded memberships and 2) the memberships can be

used as weighted coefficients for class-specific bio-optical algorithms. This allows the

blending of retrieved chlorophyll-a values from multiple algorithms without step-wise

discontinuities that might arise under a ‘this class or that class’ approach.

The heart of the classification approach is the membership function. We defined our

membership function using the Mahalanobis distance between the observation and the class

mean vector, which is then input into a chi-square probability function. [The details of this

membership function are contained in Moore et al. (2009), and will not be repeated here to
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the same detail.] The output is a number between 0 and 1, and represents the degree of

‘closeness’ of the observation to the mean. A value of 1 indicates the mean and the

observation are identical. Values of zero indicate observations very far away from the mean.

Two key statistics needed for the membership function are the reflectance mean vector and

the covariance matrix, and are particular to each cluster. For any given cluster, the mean

vector describes the basic magnitude and shape of its members. The spread of values at each

wavelength shape the covariance matrix. Clusters with greater point spread will extend

memberships to reflectance vectors further away from the mean compared to clusters with

tighter distributions.

In this study, we used two chlorophyll-a algorithms. Thus, two weighting factors which sum

to one are needed to blend the algorithm retrievals into one product. The choice of which

algorithm is assigned to each water type is governed by the performance of each algorithm

based on our in situ data set. Ultimately, we will end up with several water types assigned to

each algorithm. The class memberships assigned to each of the algorithms are normalized by

the membership sum to arrive at a weighting factor. The weights are given by:

(7)

where wi is the normalized weighting factor for algorithm i, fn is the fuzzy membership to

the nth water type assigned to algorithm i, and fc is the fuzzy membership to water type c.

The blended chlorophyll-a product is then determined by:

(8)

where Chli is the chlorophyll-a product from algorithm i. The underlying assumption is that

the observed reflectance vector belongs to one of the defined water types. However, this is

not always the case, which we will explore in the Discussion section.

2.6. Satellite imagery and test sites

Our main image location is Lake Erie, one of the Great Lakes in North America. It is an

ideal test site—it is a large freshwater body amenable to remote sensing that is optically

complex, and is considered amesotrophic/eutrophic lake (Binding, Greenberg, & Bukata,

2012). It is subject to sediment re-suspension and whitings (Binding, Jerome, Bukata, &

Booty, 2007; Binding et al., 2010), floating harmful algal blooms (Bridgeman, Chaffin, &

Filbrun, 2013; Wynne, Stumpf, Tomlinson, & Dyble, 2010), and influences from colored

dissolved organic matter (CDOM) from river input (Binding et al., 2010). Thus, it

potentially contains a wide variety of optical water types.

Satellite images were obtained over Lake Erie from NASA's Ocean Biology Processing

Group at Goddard Space Flight Center. Individual MODIS-Aqua and MERIS image scenes

were processed at UNH from level-1 to level-2 using the standard default parameters in

SeaDAS version 6.4. MODIS-Aqua images were subsequently remapped to a standard

projection at 500 m resolution using band-interpolation provided by SeaDAS. The processed

MODIS-Aqua daily image series ran from 2002 through 2012. The level-2 MERIS images
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(full resolution with nominal spatial resolution of 300 m) were also remapped to the same

500 m resolution and projection as the MODIS-Aqua imagery. The MERIS image series ran

from 2009 through the end of 2011. Select MERIS scenes from several coastal marine areas

were also processed using SeaDAS from level 1 to 2 for the Chesapeake Bay and the Yellow

Sea.

3. Results

3.1. Cluster results

The cluster analysis separated and differentiated subsets based on both the shape and

magnitude of Rrs and resulted in seven optimal clusters (Fig. 2). This number was deemed

best based on a suite of cluster validity functions. When seven clusters are specified, the

relation of data points to each other and cluster centers (mean vectors) in terms of

compactness and separation aspects are collectively in a better configuration compared to

other cluster choices. However, this number could change with a different input data set—

either by adding to the existing data set or using a different one altogether.

The differences between clusters can be more readily seen when their reflectance means are

plotted together (Fig. 3, Table 2). Collectively, these Rrs means form the coastal/lake optical

water types (OWTs). They are representations of averaged conditions governed by the

optical properties of the water column and ultimately depend on the absorption and

scattering properties of the in-water constituents (e.g., phytoplankton and non-phytoplankton

particles). These conditions are not unique to any particular lake, region, or a result of

differences between freshwater and marine waters. Table 3 shows the distribution of the data

from each data set across the OWTs. While not completely evenly spread, the distributions

of each data set cover multiple OWTs with marine and freshwater stations found in the same

clusters.

The OWTs were organized based on spectral features and ascending chlorophyll-a

concentration system (Table 4). The OWTs show a pattern of increasing absorption in the

blue/green for low red/NIR features (OWTs 1 through 3), followed by increasing peak

magnitude at 555 nm (types 4 through 7). OWTs 1 through 5 show increasing chlorophyll-a

concentration, while OWTs 6 and 7, which have lower mean chlorophyll-a values than

OWT 5. In practice, the order of the OWTs is not important.

In general, the OWT Rrs spectra contain unique and separate characteristics. OWTs one

through three have low overall spectral magnitude, and show relatively flat features from

600 nm onward compared to the other OWTs. Low particle concentration combined with

water absorption could result in these types of reflectance spectra. Conversely, OWTs 4

through 7 show higher overall magnitudes and more features especially in the red/NIR

region. These OWTs all show peaks around 700 nm, but are different from each other in

magnitude. OWT 5 shows a strong peak at 700 nm compared to its overall magnitude in the

green part of the spectrum. This peak is characteristic of strong particle backscattering and

has been associated with high algal particle concentration (Gower et al., 2005; Zimba &

Gitelson, 2006; Gilerson et al., 2007).
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All of the OWTs show a reflectance peak to some degree at or near 555 nm, and is most

pronounced in OWTs 4, 5, 6 and 7. The peak at 555 nm can be attributed to enhanced

particle scattering from living (e.g., phytoplankton) and non-living (e.g., sediments) sources

(Ahn, Bricaud, & Morel, 1992; Kutser, 2004). Other secondary peaks are seen at or near 650

nm in these OWTs. There are also spectral regions of similarity or overlap between several

types. OWT 1 and 6 overlap in the blue region from 400 to 500 nm, but clearly separate

afterwards. OWTs 3 and 4 share similar magnitude and shape from 400 to 700 nm, but are

separated by the peak height at 709 nm. While it is not possible to definitely associate these

features to unique constituents without more complete optical information, phytoplankton

are playing a significant role in the shape of the reflectance spectrum.

3.2. Chlorophyll-a properties and algorithm performance

Values for the mean and median of the chlorophyll-a concentration increased from OWT 1

to OWT 5 (Table 4). OWT 6 and 7, while still having high mean chlorophyll-a levels, are

lower than OWT 5 but comparable to OWTs 3 and 4 in terms of concentration values. It

should be noted that with the exception of OWTs 5 and 7, all the OWTs contain station data

with minimum chlorophyll-a levels at or below 1 mg/m3. In addition, all types contain

station data with maximums that exceed 10 mg/m3. Chlorophyll-a values between 1 and 10

mg/m3 are an important range, as it is the region where the OC4 and Mer-3B algorithms

transition in terms of performance (Fig. 4). In the case of OC4, when chlorophyll-a exceeds

10 mg/m3 there is an increase in algorithm uncertainty. The opposite is true of Mer-3B,

which exhibits better performance at higher chlorophyll-a values. This is reflected in the

error statistics.

It is important to note that there were a significant number of negative chlorophyll-a

retrievals when using this algorithm (N = 186 out of 488). This arises when Rrs665 is

smaller than Rrs709 (Eq. (3)), and typically occurs when the chlorophyll-a concentration is

less than 10 mg/m3. These points were excluded for the bias and RMSE calculations because

of the log transformation. These were present in OWTs 1, 2, 3, 4 and 6. However, they were

included in the calculations for the MARE. However, the RMSE and MARE reveal the same

overall performance patterns.

The results of the RMSE, MARE and bias for each chlorophyll-a algorithm are shown in

Tables 5, 6 and 7, and graphically shown in Fig. 4. The RMSE for both algorithms based on

the entire data set are similar (RMSE of 0.416 and 0.437 for OC4 and Mer-3B, respectively),

while the MARE is higher overall for Mer-3B (66.1% and 146.1% for OC4 and Mer-3B,

respectively). Considering the whole data set, the overall RMSE does not reflect the

performance of the algorithms for individual water types. For both OC4 and Mer-3B, lower

RMSE's for some OWTs are compensated by higher RMSE's in environments where the

algorithm performs poorly. Thus, overall RMSE is not particularly informative regarding

each algorithm's effectiveness in certain environmental conditions.

However, algorithm errors derived for individual OWTs reveal the performance for a

narrower range of optical and environmental conditions. Regarding OC4, RMSE generally

increases progressing from OWT 1 to OWT 7. In contrast, RMSE for Mer-3B generally

decreases over the same progression of OWTs. The OC4 algorithm has lower RMSE to
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Mer-3B in OWTs 1 through 3, ranging from 0.295 to 0.330. From OWTs 4 to 7, Mer-3B has

lower RMSE with the exception of OWT 6, ranging from 0.194 to 0.357. OWT 6 shows

better performance with OC4, with an RMSE of 0.345 compared to 0.438 for Mer-3B.

These patterns also hold for the MARE over the same OWTs. OWTs 1, 2, 3 and 6 have

lower MARE for OC4 compared to Mer-3B, and OWTs 4, 5 and 7 have lower MARE for

Mer-3B compared to OC4.

The OC4 algorithm showed a systematic underestimation or negative bias (Table 7) in

OWTs 3 through 7 (except OWT 6) and an overestimation (positive bias) for the lower

range (OWTs 1 and 2). In contrast, theMer-3B algorithm showed a large positive bias in the

OWTs 1 and 2 (chlorophyll-a values under 10 mg/m3), and a smaller bias in the higher

OWTs and chlorophyll range.

3.3. Algorithm blending

Memberships to the OWTs are the key for selecting and blending algorithm retrievals. By

assigning the best performing algorithm (i.e., lowest RMSE) to a particular water type, the

memberships can be used to weight chlorophyll-a retrievals into a blended product. To

arrive at a blended chlorophyll-a product, the memberships need to be converted to

normalized weights per Eq. (6). For the present algorithm assessment, the weighting factor

for the OC4 product is the sum of the normalized memberships for OWTs 1, 2, 3 and 6, and

the weighting factor for the Mer-3B products is the sum of the normalized memberships for

OWTs 4, 5 and 7.

The blending method (Section 2.5) was applied to the in situ data set using Rrs as input to

the classification algorithm and the chlorophyll-a algorithms to derive a blended

chlorophyll-a product. The overall RMSE improved for the blended chlorophyll-a product,

reducing to 0.320 from 0.416 to 0.437 for the OC4 and Mer-3B algorithms, respectively

(Table 5). The overall MARE also improved to 47.9% compared to 66.1% and 146.1% for

OC4 andMer-3B, respectively (Table 6). In addition to lower RMSE and MARE, the

blended chlorophyll-a product shows improvement in the bias, and while not eliminated

completely it is reduced with the blended product (Table 7).

3.4. Satellite image application

The OWTs can be mapped from ocean color imagery using the membership functions with

image spectral reflectance as input. Since the OWT base statistics were formed from

hyperspectral data, the spectral channels from any given satellite can be matched and used to

select the necessary wavelengths from the OWT base vectors to form satellite-specific

membership functions. We will show two examples using a MERIS and MODIS-Aqua

image over Lake Erie for our test application.

Fig. 5 shows the raw unnormalized membership maps for a MERIS image from September

3, 2011 over Lake Erie. For this case, the Rrs bands used in the classification were 443 nm,

490 nm, 510 nm, 560 nm, 620 nm, 667 nm, 680 nm, 709 nm, and 748 nm. The 412 nm

channel was available but not used because of questionable accuracy in this image. This

particular image shows a complex optical environment across the lake, with a large plume
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containing a known cyanobacteria bloom entering and developing in the lake from the

southwestern corner, while the central and eastern basins were optically and

environmentally different. The membership maps shown in Fig. 5 portray the degree to

which pixels are identified to each of the OWTs (OWTs 5 and 7 are not shown as there were

very few pixels with any membership to either of these OWTs). The membership map for

OWT 1 shows strong membership in a spatially coherent region which dominates the central

part of the lake, intertwined with patches that are shades of blue (intermediate membership)

to black (no or low membership). The fuzzy membership map for OWT 3 shows a spatially

coherent feature stretching from the southwest corner of the lake across the central portion

to the northern shore, and weaker but significant membership in the far eastern basin.

Similarly, the dark regions are areas where there is no membership to this OWT (i.e., the

image spectra are not similar to the characteristic mean vector of OWT 3). The ‘hard’ image

is the expression of the dominant OWT (i.e., the OWT with the maximum membership) for

the image and shows these two OWT dominating much of the lake.

Fig. 6 shows the OWT membership maps for the same-day MODIS-Aqua image as in Fig.

5. For this case, the Rrs bands used in the classification were 443 nm, 489 nm, 531 nm, 547

nm, 665 nm, 678 nm, 681 nm, and 748 nm (the 412 nm channel was left out).While the band

sets used to derive the memberships were different between MODIS-Aqua and MERIS, the

maps are very similar. A key difference is the lack of the 620 nm and 709 nm channels in

MODIS-Aqua. This leads to some differences between the mapped OWT distributions. The

overall degree of difference depends on satellite band differences and the quality of image

reflectance data. For this particular image, omitting these bands (620 nm and 709 nm) had

minor influence on the OWT maps. This occurs because the information contained in the

OWTs and their membership functions are still distinct with the reduced bands (i.e., the

MODIS-Aqua bands). Since the membership functions are based on collective shape and

magnitude of reflectance, the role of any single band—while important—is tempered.

We applied the blending scheme to the same MERIS image over Lake Erie (Fig. 7). In this

image, most of the central and eastern part of Lake Erie is weighted towards the OC4

algorithm, while the western part is weighted towards the Mer-3B algorithm. The Mer-3B

retrievals for the central and eastern region were either zero or below a noise threshold for

the 753 nm channel. We used a value of 0.00025 sr−1 as a noise cutoff value based on the

global standard deviation for eutrophic water from a recent NASA analysis (http://

oceancolor.gsfc.nasa.gov/ANALYSIS/global/ar2013.0m_ar2013.0m/tables/).

4. Discussion

4.1. The nature of optical water types

The notion of optical water types has existed in the literature since Jerlov (1951) introduced

the term to describe marine environments that had different optical characteristics based on

light attenuation. Light attenuation is directly linked to the absorption and scattering

properties of the water column, and influences the spectral reflectance at the surface of the

water. Our use of reflectance as the basis for optical water types is analogous to land cover

classification schemes. An important difference is that land cover classification bases land

classes on true end-members, whereas in our application the aquatic water types are
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representations of average optical conditions, and do not necessarily describe true end-

member classes.

In our scheme, we have adopted a fuzzy classification approach towards assigning pixels or

observations to the optical water type classes. The fuzzy memberships do not represent the

proportion of each water type within the pixel, as is the case with land remote sensing. This

implies that end-member classes within a pixel can be resolved with increased spatial

resolution. Since mixing occurs at the microscopic scale in aquatic environments, such

differentiation is not possible. A pure end member class that could be described is that of

pure water, and that condition does not exist in freshwater or marine environments. The

optical water types themselves are representations of optical conditions that are snapshots of

a continuum. However, we have identified water types with clearly different reflectance

characteristics and by association optical properties, and the functional use of the water

types is equivalent to an end-member in the membership function.

4.2. How representative are the OWTs?

Currently, we do not know whether all ‘possible’ optical classes in coastal and lake systems

are represented in this scheme. We are limited by the data used in this study. While we

sought to generalize the variety of optical types from coastal to lake systems, it is possible

and even likely that the data collected do not represent all conditions. It is likely that

different systems may only express a subset of the OWTs for their range of optical

variability, and would not indicate either way how representative the OWTs relate to all

conditions. Conversely, it is also likely that a system or region may express low affinity to

any of the OWTs, and could signify that certain optical conditions are not represented in our

scheme.

To gain insight into this question, we examined long-term patterns of the dominance of each

OWT (or the lack of) in Lake Erie from MODIS-Aqua data. The dominant OWT for each

pixel was based on the OWT with the maximum membership. The frequency of dominant

OWT expression was generated by counting the dominant OWT for each pixel for

individual daily scenes over the entire mission time period (2002–2012), and normalizing by

the total count of valid water pixels (i.e., passed atmospheric correction). Dominant OWT

pixels (numerator) were counted if the sum of the un-weighted membership exceeded a

threshold. In our study, we used a threshold value of 0.10. This value is adopted from

Vantrepotte et al. (2012) and Melin et al. (2011)—two studies that also used the

Mahalanobis distance for classifying ocean color pixels. These threshold levels are

subjective and arbitrary, as the Mahalanobis distance is subject to the choice and accuracies

of the particular wavelengths used in the calculation. Pixels that did not meet this criterion

were counted towards ‘missing’ cases (cloud/ice and pixels without radiance were

excluded). In the case of the MERIS Sep. 3, 2011 image, 78.6% of the pixels had

membership sums greater than a sum threshold of 0.10. In comparison, 87.7% of the pixels

were valid when the threshold was reduced to 0.01.

The frequency maps show the persistence of dominant OWTs over time (Fig. 8). Red colors

indicate regions that are dominated by a water type for a majority of the time. Whereas long-

term chlorophyll-a distributions reveal patterns related to the ratio of blue to green
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reflectance, OWT persistence maps in effect show the long-term distribution of the overall

spectral character (shape and magnitude) of remote sensing reflectance. This information

reveals important characteristics of the overall spatial distribution of radiance patterns, and

the use of potential chlorophyll-a algorithms for this region.

Much of central and eastern basins of Lake Erie are dominated by OWT 3. In our analysis,

OC4 had better performance in OWT 3 than Mer-3B. The chlorophyll-a range for this OWT

(Table 4) extends from a low of 0.53 to 41.1 mg/m3, with a mean of 6.62 mg/m3. This range

agrees with chlorophyll-a values presented in Binding et al. (2012) for Lake Erie. In these

areas, waters are strongly associated with OWT 3 more than 50% of the time, and higher in

portions of the eastern basin. In contrast, the western basin is associated with OWTs 1, 4 and

5. OWTs 4 and 5 are types that are characterized by high chlorophyll-a and show better

performance with the Mer-3B algorithm. From this perspective and in regards to Lake Erie,

different chlorophyll-a algorithms are more appropriate for different parts of the lake and at

different times.

The persistence maps can also be used to locate areas of ‘low membership’. These areas

might reflect potential missing water types or problems with atmospheric correction. Fig. 9

shows the mapped frequency distribution of low memberships (membership sums less than

the 0.10 threshold) for Lake Erie, and the average unnormalized membership sum for the

entire mission period. Overall, areas with low memberships (and low membership sums)

occur along the central and eastern shorelines up to 50% of the time. In western Lake Erie

low membership frequency occurs up to 10% of the time, although the average membership

sums are at or greater than one. Membership sums greater than one are permitted in our

scheme, as ultimately these are normalized to a sum of one when used as weights. These

areas reflect high membership to multiple water types, which may indicate that some OWTs

are close in proximity to one another and can compensate for times when there is low

membership in the average.

It is unclear if areas of low membership are related to radiance errors from atmospheric

correction (e.g., aerosol characterization, land adjacency effects, shallow water bottom

reflection), a lack of representation in the current OWT characterization, or sensitivities of

the classification algorithm. All of these sources could cause memberships to be low to the

OWTs. Vantrepotte et al. (2012) attribute quality issues with satellite Rrs as a significant

factor for the presence of unclassified pixels in their scheme, but also include missing

spectral shapes from the training set as a possibility. Further insight can be gained by

directly comparing the satellite radiances with the mean OWT vectors. These are shown in

Fig. 10 for the same MERIS image over Lake Erie from Sep. 3, 2011.While these spectra

are from a MERIS image, the analysis is representative for MODIS-Aqua as well.

For each OWT, extracted image spectra generally follow the shape and magnitude of the

mean vector of the OWT. However, the membership values to the OWTs could be high or

low. For OWT 5, the spectra shown have memberships to this OWT of less than 0.10, but it

is still the dominant OWT. For this case, it can be seen that at 709 nm the reflectance values

from the image are much less than the OWT mean value, but overall these spectra are
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closest to the mean vector for that OWT. The accuracy of image reflectance values at this

wavelength is unknown without additional ground truth.

Fig. 10 also shows Rrs spectra with negative values at 412 nm for OWTs 2, 3, 4 and 6. The

memberships to OWTs 2 and 6 (Fig. 5) are lower than 0.25. The accuracy of radiances at

this wavelength has also been a long-standing issue with ocean color data especially in

coastal regions (Bailey, Franz, & Werdell, 2010; Zibordi et al., 2009). This is a result of the

atmospheric correction scheme and the problems associated with aerosol characterizations

near land. In addition, non-zero reflectance in the NIR region impacts all bands in

atmospheric correction as the NIR region is used for assessing aerosol models that are

interpolated from the NIR to all other wavelengths. For these reasons, we omitted this band

from the membership function (see Section 3.3). It is worth noting that Melin et al. (2011)

and Vantrepotte et al. (2012) also discarded this wavelength from their classification

schemes. Ultimately, in situ radiance validation data are needed to determine satellite

radiance accuracies.

One of our aims was to assess how applicable the lake/coastal OWTs are to coastal regions.

To investigate this aim, we applied the classification to a MERIS image over Chesapeake

Bay and the Yangtze River/Yellow Sea—two coastal regions with turbid waters. Across

much of the scenes, high membership sums are present along with areas of membership

sums greater than one, indicating multi-type overlap (Fig. 11). The hard OWTs also show

reasonable and expected distribution patterns.

In both images, turbid waters were present, and in some areas failed using the default

atmospheric correction. Turbid areas that did pass were assigned to OWTs 6 and 7. Yet, the

membership sums in these areas are extremely low. After examination of the satellite

radiance fields from these areas, the spectra are nearest to OWT 6 (or 7) relative to the other

OWTs, but significant differences exist in at least a few bands when compared to the mean

spectra for OWT 6 (or 7). As in the case of Lake Erie, it is unclear if the low memberships

are a result of atmospheric correction, a lack of OWT representation or both.

4.3. Concerning satellite red/NIR accuracy

In general, the accuracy of satellite radiances in the red/NIR remains problematic in ocean

color data, and is a concern to bio-optical algorithms that rely on wavelengths in this region

and also to the classification scheme. The issues of accuracy stem from atmospheric

correction assumptions in the NIR region, which begin to break down in turbid waters

(Goyens, Jamet, & Schroeder, 2013). In addition, aerosol properties can be difficult to

model and remove in such regions as well. New techniques are emerging for improving

accuracy of radiances in coastal, turbid areas (e.g., Doron, Belanger, Doxoran, & Babin,

2011; Ruddick, De Cauwer, & Park, 2006; Stumpf, Arnone, Gould, Martinolich, &

Ransibrahmanakul, 2003;Wang, Son, & Shi, 2009), which should eventually lead to more

accurate radiances in these bands. In this study, images were processed with default settings

in SeaDAS. Mouw et al. (2013) found that the standard atmospheric correction worked best

over Lake Superior. However, this evaluation was based on the blue-green region. Binding

et al. (2012) showed good agreement between modeled and satellite-derived radiances at

667 nm and 748 nm for Modis-Aqua imagery in Lake Erie. Those images were processed
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using the default iterative NIR scheme within SeaDAS, and offer some insight on the use of

the default scheme for this region.

We did not set out to test and evaluate different atmospheric correction schemes. Such an

evaluation would need to be site-specific, and require match- up data between in situ and

satellite-derived radiances that include the red/NIR region. Thus, assessing how effective

OWT membership maps are at characterizing the underlying water environment is impaired

by errors in atmospheric correction and the dependencies of the membership functions on

the information in the red/NIR region. Further analysis is needed to evaluate accuracy in

Lake Erie and other regions.

4.4. Is the chlorophyll product improved?

Our assessment of a blended chlorophyll-a product approach showed lower RMSE and

MARE than for either of the single algorithms over the entire range of the in situ data set.

From our analysis, each algorithm generally performed best at certain ranges of chlorophyll-

a. The OC4 algorithm, representing blue/green band ratio algorithms in general, performed

better when chlorophyll-a was less than 10 mg/m3. The Mer-3B algorithm, representing the

red/NIR-based algorithms, performed best above this chlorophyll-a value. These findings

support the view that bio-optical algorithms tuned and developed for specific ranges of

conditions perform better than an algorithm tuned to a larger variety of conditions, and a

blended algorithm approach is superior to single algorithms when considering the entire

dynamic range of environmental conditions.

In this study, we examined only two algorithms, yet a more comprehensive analysis using a

wider range of algorithms is needed. However, the framework for the image classification,

algorithm selecting and retrieval blending capabilities is flexible and can readily integrate

different algorithms that have yet to be tested in the system. In addition, a regional versus

global algorithm study should be conducted, as it has been shown that Mer-3B has global

application (Gitelson et al., 2011). The capabilities to dynamically identify water types and

blend retrievals from multiple algorithms while reducing error are the advantages of the

OWT scheme. We have shown how the OWTs can be used in a single image to blend

spatially-varying optical environments.

4.5. Future impacts

It is possible that a water type could be associated with a unique optical phenomenon such

as a coccolithophore bloom (e.g., Moore, Dowell, & Franz, 2012). We recognize that

floating algal mats—such as those resulting from cyanobacteria blooms—could also have a

unique optical signature. Kutser (2004) used a classification scheme for detecting

cyanobacteria blooms based on reflectance spectral characteristics by pattern matching for a

region off the coast of Finland. There are other instances of floating or near-surface blooms

in the ocean having unique optical properties (Gower, King, & Goncalves, 2008;

Subramanium, Brown, Hood, Carpenter, & Capone, 2002). Matthews et al. (2012) have

shown that floating algae and algal scum have distinct optical properties. The data set we

used in the characterization of the OWTs did contain samples from lakes with high

concentrations of floating cyanobacteria at the surface. While we need to assess this further,
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it is conceivable that under the current method unique optical types could be detected as

such provided that the optical signature is represented in one of the OWTs—either existing

or as a future addition.

A final consideration is how the lake/coastal OWTs developed here relate to the oceanic

OWTs developed from NOMAD (Moore et al., 2009). While the two systems were

developed independently from each other, there is the question of whether they should be

merged. Fig. 12 shows the NOMAD OWTs with the current lake/coastal OWTs. There is

some degree of overlap with the existing OWTs. Specifically, lake OWTs 1, 2 and 3 have

very similar shape and magnitude to three of the NOMAD-based OWTs and are somewhat

redundant, and to a lesser degree OWT 6 is also similar to an existing NOMAD OWT. It

also highlights the new water type forms that have emerged from analysis of the present data

set. From this view, the feasibility in merging the two systems seems possible. Merging the

systems would potentially provide water type coverage from oligotrophic areas of the open

ocean to highly eutrophic areas in coastal waters and lakes, and cover greater optical range

in environments than either water type system alone.

5. Summary

We have presented an architectural framework aimed at the improvement of remote sensing

ocean color products through the integration of bio-optical algorithms tuned over specific

ranges of environmental conditions. We have shown the feasibility of such an approach

using two chlorophyll-a algorithms—one based on blue/green relationships and the other

based on relationships in the red/NIR region of the light spectrum. This method is based on

the notion of optical water types, and is an extension of the global ocean optical water type

(OWT) method of Moore et al. (2009) adapted to coastal/inland waters. Using a weighted

blending scheme, the method effectively combines retrievals from multiple algorithms into a

seamless product across different optical conditions present in water bodies both spatially

and temporally. This method is constructed so as to be applicable to any ocean color

satellite, and is a common reference framework that can be tailored to different satellites and

algorithms. We expect that other algorithms not considered here could be better in terms of

retrieval accuracy for different OWTs and/or different regions. These can be added to the

existing framework without changing the base OWT characteristics and configuration. We

also foresee the possibility of either adding new OWTs or modifying their current

characteristics with the addition of new data. As such, our characterization of the inland

lake/coastal OWTs is provisional.
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Fig. 1.
Histogram of the combined in situ chlorophyll-a data set (N = 488).
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Fig. 2.
Reflectance data sorted into the seven clusters from the fuzzy c-means cluster analysis (N =

488); blue lines: individual station reflectance data; red lines: mean reflectance.
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Fig. 3.
The reflectance means of the seven optical water types (OWTs). The OWT means and

covariance matrices serve as the basis for the membership function.
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Fig. 4.
Modeled versus measured chlorophyll-a plots. A: OC4 versus in situ chlorophyll-a; B:

Mer-3B versus in situ chlorophyll-a; C: the blended versus in situ chlorophyll-a.
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Fig. 5.
Membership maps for a MERIS image over Lake Erie—Sept. 3, 2011.White areas denote

high membership; black areas denote zero or low membership; shades of blue are

intermediate values. The dominant OWT—expressed as the water type with the highest

membership—is shown in the lower right panel.
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Fig. 6.
Membership maps for a MODIS-Aqua image over Lake Erie—Sept. 3, 2011. As in Fig. 5,

white areas denote high membership; black areas denote zero or low membership; shades of

blue are intermediate values. The dominant OWT—expressed as the water type with the

highest membership—is shown in the lower right panel.

Moore et al. Page 26

Remote Sens Environ. Author manuscript; available in PMC 2015 March 05.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7.
Two chlorophyll-a products (based on OC4 andMer-3B) are blended into a single image

using the normalized OWT memberships to weight the two chlorophyll-a products from the

MERIS image on Sep. 3, 2011 (same as Fig. 5).
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Fig. 8.
OWT persistence maps for MODIS-Aqua from 2002 through 2012 over Lake Erie (OWT5

not shown due to lack of persistence). Persistence is defined as the frequency of the

dominant OWT of valid pixels (membership sum > 0.10) normalized to the total number of

water pixel counts (i.e., pixel that passed atmospheric correction).
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Fig. 9.
Left: OWT persistence map for of low membership values (<0.10) for MODIS-Aqua

from2002 through 2012 over Lake Erie Note: Color scale range is from0 to 50%. Right:

Average membership sum of non-normalized memberships for same date range. Green area

is where memberships sum are greater than one. Shore areas along the central and eastern

edges of the lake are most susceptible to low membership conditions.
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Fig. 10.
Extracted satellite pixels (subset of N = 100 for clarity) associated with each OWT (from the

maximum membership) for the MERIS image from Sep. 3, 2011 over Lake Erie. Black lines

indicate image spectra, and red lines indicate the OWT mean reflectance vector.
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Fig. 11.
Left panels: MERIS image from Oct. 14, 2008 over Chesapeake Bay. Top: Hard

classification; middle: Membership sum—green areas indicate membership sums greater

than 1, dark areas no membership or cloud; bottom: image spectra (blue) from low

membership areas associated with OWT 6; solid red line: OWT 6 mean vector, dashed red

line: OWT 1 mean vector. Right panels: MERIS image from June 5, 2011 over the Yellow

Sea. Top: Hard classification; middle: Membership sum—green areas indicate membership

sums greater than 1, dark areas no membership or cloud; bottom: image spectra (blue) from
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low membership areas associated with OWT 7; solid red line: OWT 7 mean vector, dashed

red line: OWT 1 mean vector.
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Fig. 12.
The reflectance means of the seven optical water types combined with the NOMAD-based

optical water types (red dashed lines).
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Table 1

In situ data set summary.

Data set N Location Source

UNH 140 NH lakes, Great Salt Lake UNH

Spain 179 Assorted Spanish lakes CEDEX

NASA 169 Coastal marine, U.S. SeaBASS, NASA
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Table 3

In situ data distribution across OWT.

OWT Spanish lakes UNH lake data SeaBASS coastal Total

1 26 18 21 65

2 24 71 23 118

3 42 15 91 148

4 42 6 22 70

5 28 4 0 32

6 12 18 12 42

7 5 8 0 13

Total 179 140 169 488
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Table 5

RMSE for the OC4, Mer-3B and the blended chlorophyll-a products (in log10 units) by OWT.

OWT OC4a MERIS 3-Banda Blenda

1 0.295A 0.910 0.286

2 0.330A 0.425 0.370

3 0.307 A 0.517 0.303

4 0.479 0.357A 0.310

5 0.670 0.194A 0.197

6 0.345A 0.438 0.384

7 0.460 0.289A 0.254

All 0.416 0.437 0.320

A
–denotes optimal algorithm for that water type.

a
Excludes chlorophyll retrievals that were negative from MERIS 3-band algorithm.
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Table 6

Median Absolute Relative Error (MARE) for the OC4,Mer-3B and the blended chlorophyll-a products (in

percent) by OWT.

OWT OC4 (%) MERIS 3band (%) Blend (%)

1 72.3 1278 64.6

2 109.8 1174 62.7

3 41.2 216.8 48.8

4 71.0 71.2 51.4

5 73.1 22.6 23.7

6 56.1 196.8 55.8

7 62.8 24.3 20.0

All 66.1 146.1 47.9
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Table 7

Bias for the OC4, Mer-3B and the blended chlorophyll-a products (in log10 units) by OWT.

OWT OC4a MERIS 3-Banda Blenda

1 0.167 0.687 0.264

2 0.110 0.210 0.103

3 −0.105 0.105 −0.095

4 −0.234 −0.041 −0.193

5 −0.554 0.054 0.054

6 0.021 0.185 0.167

7 −0.314 0.043 −0.043

All −0.194 0.115 0.023

a
Excludes chlorophyll-a retrievals that were negative from MERIS 3-band algorithm.
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