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This study aimed to investigate the salivary microbiota and metabolome of 13 children with celiac disease (CD) under a gluten-
free diet (treated celiac disease [T-CD]). The same number of healthy children (HC) was used as controls. The salivary microbi-
ota was analyzed by an integrated approach using culture-dependent and -independent methods. Metabolome analysis was car-
ried out by gas chromatography-mass spectrometry–solid-phase microextraction. Compared to HC, the number of some
cultivable bacterial groups (e.g., total anaerobes) significantly (P < 0.05) differed in the saliva samples of the T-CD children. As
shown by community-level catabolic profiles, the highest Shannon’s diversity and substrate richness were found in HC. Pyrose-
quencing data showed the highest richness estimator and diversity index values for HC. Levels of Lachnospiraceae, Gemellaceae,
and Streptococcus sanguinis were highest for the T-CD children. Streptococcus thermophilus levels were markedly decreased in
T-CD children. The saliva of T-CD children showed the largest amount of Bacteroidetes (e.g., Porphyromonas sp., Porphyromo-
nas endodontalis, and Prevotella nanceiensis), together with the smallest amount of Actinobacteria. T-CD children were also
characterized by decreased levels of some Actinomyces species, Atopobium species, and Corynebacterium durum. Rothia muci-
laginosa was the only Actinobacteria species found at the highest level in T-CD children. As shown by multivariate statistical
analyses, the levels of organic volatile compounds markedly differentiated T-CD children. Some compounds (e.g., ethyl-acetate,
nonanal, and 2-hexanone) were found to be associated with T-CD children. Correlations (false discovery rate [FDR], <0.05)
were found between the relative abundances of bacteria and some volatile organic compounds (VOCs). The findings of this study
indicated that CD is associated with oral dysbiosis that could affect the oral metabolome.

Celiac disease (CD) is a chronic immune-mediated enteropa-
thy, which affects the small intestinal mucosa after the inges-

tion of gluten from wheat, rye, and their cross-related varieties in
genetically susceptible individuals (1). CD is one of the most dif-
fuse chronic diseases in Europe, North America, and developing
countries (South America, South Africa, and South Asia) (2).
Nowadays, the incidence of CD is increasing, and it is estimated to
be 0.7 to 2.0% (3). Overall, CD is characterized by steatorrhea and
malnutrition coupled with multiple deficiency states. Diverse
problems such as dental anomalies, short stature, osteopenic bone
disease, lactose intolerance, infertility, and nonspecific abdominal
pain are associated with CD (4). Moreover, alterations of the oral
ecosystem and of the saliva composition seem to be determined by
CD (2, 5, 6). Compared to healthy subjects, the saliva of CD pa-
tients contains small amounts of amylase and secretory IgA and
IgM (7, 8) and has low buffering capacity, speed of salivary flow,
concentration of calcium, and Ca/P ratios (5, 9).

The gluten-free diet (GFD) is effective and safe. At present, the
exclusion of gluten-containing products is the only treatment
available. Recently, some reports also suggested that the gastroin-
testinal (GI) microbiota is somewhat affected during CD patho-
genesis and treatment with GFD (10, 11). Early microbial infec-
tions (12, 13) and imbalances in the composition of the GI
microbiota (14–21) were associated with CD. Compared to
healthy individuals, GFD lasting 2 years did not completely restore
the GI microbiota and, consequently, the metabolome of children
with CD (14).

It is doubtless that the oral and GI microbiota play key roles in
health and disease (22–28). The human oral cavity is a complex
ecosystem populated by ca. 700 bacterial species that reach num-
bers of 1011 bacteria/g (wet weight) of dental plaque and 108 to 109

CFU/g of saliva (29). Some of these bacterial species are closely
associated with the development of oral diseases, mainly dental
caries and periodontitis (25, 26). Also, several nonoral diseases,
such as bacterial endocarditis (30), heart disease (31), obesity (28),
pneumonia (32), atherosclerosis (33), and preterm low birth
weight (34), seemed to be somehow related to bacteria from the
human oral cavity. Overall, the saliva is considered to be the most
suitable tool to obtain information on the microbiota of the oral
cavity (35). The composition of saliva includes volatile organic
compounds (VOCs) (metabolome) derived from various sources
(e.g., serum, blood, microorganisms, and environmental pollu-
tion). Metabolites are considered indicators of physiological or
pathological states (36). Recently, saliva metabolomics analyses
have opened new possibilities for the identification of metabolite
biomarkers representative of specific disorders (36, 37).

Previously, few studies dealt with the salivary microbiota of CD
patients. It was shown previously that strict adherence to GFD
reduces the prevalence of dental caries (38). Compared to healthy
individuals, CD children were characterized by a low prevalence of
salivary mutans streptococci and lactobacilli (9). On the contrary,
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no statistically significant differences (P � 0.05) were found for
streptococcus and lactobacillus counts between the saliva samples
of healthy children (HC) and those of CD children who were
subjected to GFD (39). A more in-depth characterization of the
oral microbiota of CD patients during GFD is needed, and no
previous study combined characterizations of the salivary micro-
biota and metabolome.

This study aimed to compare the salivary microbiota and
metabolomes of CD children subjected to GFD and healthy chil-
dren.

MATERIALS AND METHODS
Study design. This study was approved by the Institutional Review Board
of the Faculty of Medicine and Surgery of the University of Bari Aldo
Moro (Italy). Informed written consent was obtained from parents. Two
groups of children (median age, ca. 10 � 1.4 years) were included in the
study: 32 symptom-free CD patients who were treated with GFD for at
least 2 years (treated celiac disease [T-CD]) and 37 healthy children (HC)
without CD and other known food intolerances, who were referred as the
controls. CD diagnosis was based on the positivity of tissue transglutami-
nase (TTG)-IgA and the antiendomysial antibody (EMA) test in the pres-
ence of clinical symptoms and positive histological evidence of villous
atrophy with crypt hyperplasia, increases in levels of intraepithelial lym-
phocytes with a gluten-containing diet, and the disappearance of symp-
toms with the normalization of a positive serum-specific antibody(ies)
with GFD (40). HC were selected after negative results of serological tests
for CD were obtained.

Based on the exclusion criteria, 43 children were excluded after the
first visit (see Fig. S1 in the supplemental material). The information and
characteristics of the recruited children are reported in Table 1.

Collection of saliva samples. Unstimulated whole saliva samples were
collected in the morning, 2 h after tooth brushing, by direct spitting into a
sterile plastic tube in a time span not exceeding 30 min. No intake of food
and drink was allowed the morning before sampling. The samples were
either immediately subjected to analysis (plate counts and Biolog system)
or frozen at �20°C (DNA extraction and metabolome analyses).

Enumeration of cultivable bacteria. Salivary samples (1 g) were
mixed with 9 ml of sterilized physiological solution and homogenized.
Counts of viable bacterial cells were carried out as described previously by
De Angelis and coworkers (41). The following selective media were used:
plate count agar (total facultative aerobes and anaerobes), MRS agar (lac-
tobacilli and enterococci), modified Bifidobacterium agar (bifidobacteria)
(Becton, Dickinson, France SA, Le Pont de Claix, France), glucose-M17
medium (lactococci and streptococci), Baird Parker plus egg yolk tellurite

emulsion (staphylococci and micrococci), Wilkins-Chalgren anaerobe
agar (total anaerobes), Wilkins-Chalgren anaerobe agar plus G-N selec-
tive supplements and defibrinated sheep blood (Bacteroides, Porphyromo-
nas, and Prevotella), violet red bile agar (enterobacteria), and Slanetz-
Bartley medium (enterococci). Except for modified Bifidobacterium agar,
all media were purchased from Oxoid Ltd. (Hampshire, England).

Community-level catabolic profiles (CLCPs). Carbon source utiliza-
tion patterns of the salivary microbiota were assessed by using Biolog
96-well Eco microplates (Biolog, Inc., Hayward, CA) (42). Microplates
contained 31 different carbon sources (carbohydrates, carboxylic acids,
polymers, amino acids, amines, and miscellaneous substrates) in tripli-
cate. Ten grams of saliva was homogenized with 90 ml of a sterile sodium
chloride (0.9% [wt/vol]) solution (Classic Blender) and centrifuged at
12,500 � g for 15 min at 4°C. The pellet was washed with 50 mM Tris-HCl
(pH 7.0) and then washed with a sterile sodium chloride solution and
centrifuged at 12,500 � g for 15 min at 4°C. The cellular suspension was
diluted (1:10) into the sterile sodium chloride solution and subsequently
dispensed (150 �l) into each of the 96 wells of the Biolog Eco microplates.
The microplates were incubated at 30°C in the dark, and color develop-
ment was measured at 590 nm every 24 h with a microplate reader (Biolog
Microstation). Three indices were determined (43–45). Shannon’s diver-
sity (H=), indicating the substrate utilization pattern, was calculated as
H= � �� pi ln(pi), where pi is the ratio of the activity of a particular
substrate to the sums of activities of all substrates at 120 h. Substrate
richness (S), measuring the number of different substrates used, was cal-
culated as the number of wells with a corrected absorbance of 	0.25.
Substrate evenness (E) was defined as the equitability of activities across all
utilized substrates and was calculated as E � H=/log S.

16S rRNA gene amplicon library preparation and sequencing. Total
DNA extraction was carried out on the pellet of 2 ml of saliva by using a
Biostic Bacteremia DNA isolation kit (Mo Bio Laboratories, Inc., Carls-
bad, CA).

Microbial diversity was studied by pyrosequencing of the amplified
V1–V3 region of the 16S rRNA gene. A fragment of 520 bp was amplified
by using primers and PCR conditions described previously (46). 454
adaptors were included in the forward primer, followed by a 10-bp sam-
ple-specific multiplex identifier (MID). After agarose gel electrophoresis
was performed, PCR products were purified twice by using an Agencourt
AMPure kit (Beckman Coulter, Milan, Italy) and quantified by using the
QuantiFluor system (Promega, Milan, Italy), and an equimolar pool was
obtained prior to further processing. Duplicate PCR products were
pooled for each sample. The amplicon pool was used for pyrosequencing
on a GS Junior platform (454 Life Sciences, Roche, Italy) according to the
manufacturer’s instructions and using titanium chemistry.

Bioinformatics and data analysis. Raw reads were first filtered ac-
cording to the 454 processing pipeline. Sequences were then analyzed by
using QIIME 1.7.0 software (47). Raw reads were demultiplexed and fur-
ther filtered through the split_library.py script of QIIME. In order to
guarantee a higher level of accuracy, the reads were excluded from the
analysis if they had an average quality score of �25, if there were ambig-
uous base calls, if there were primer mismatches, and if they were �300
bp. Sequences that passed the quality filter were denoised (48), and sin-
gletons were excluded. Operational taxonomic units (OTUs) defined by
97% similarity were picked by using the uclust method (49), and the
representative sequences, chosen as the most abundant in each cluster,
were submitted to the RDPII classifier (50) to obtain the taxonomy as-
signment and the relative abundance of each OTU by using the Green-
genes 16S rRNA gene database (51). Alpha- and beta-diversities were
evaluated by QIIME, as recently described (52). Adonis and Anosim sta-
tistical tests were performed with the compare_category.py script of
QIIME, in order to verify if there were differences between the two types of
individuals. For categorical variables, analysis of variance (ANOVA) and
G tests were carried out with the otu_category_significance.py script of
QIIME in order to test whether the presence/abundance of any OTUs was
significantly associated with a specific subject type or the other variables,

TABLE 1 Baseline demographic and clinical characteristics of children

Characteristic

Value for group

Children with
celiac disease
(n � 13)

Healthy
controls
(n � 13)

Mean age (yr) � SD 9.7 � 1.4 10.2 � 1.4
No. of male children/no. of female

children
4/9 5/8

Feeding habit Gluten-free diet Unrestricted
Mean duration of gluten-free diet

(yr) � SD
4.6 � 2.2

Mean BMIa (%) � SD 63.5 � 25.2 58.3 � 31.24
Tooth-brushing habits 2 times a day 2 times a day
Mean hemoglobin level (g/dl) � SD 13.6 � 0.7 13.1 � 1.2
Mean iron level (ng/ml) � SD 76.3 � 25.1 65.2 � 31.4
Mean ferritin level (ng/ml) � SD 33.6 � 14.5 28.8 � 15.4
a BMI, body mass index.
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while Spearman correlations were computed between OTUs and metab-
olite concentrations.

Gas chromatography-mass spectrometry–solid-phase microextrac-
tion analysis of salivary volatile compounds. After preconditioning
according to the manufacturer’s instructions, a Carboxen-polydim-
ethylsiloxane (CAR-PDMS) (85-�m) fiber and a manual solid-phase
microextraction (SPME) holder (Supelco, Inc., Bellefonte, PA, USA) were
used. Before headspace sampling was performed, the fiber was exposed to
a gas chromatography (GC) inlet for 5 min for thermal desorption at
250°C. Three grams of salivary sample was placed into 10-ml glass vials
and added with 10 �l of 4-methyl-2-pentanol (final concentration of 33
mg/liter) as the internal standard. Samples were then equilibrated for 10
min at 45°C. The SPME fiber was exposed to each sample for 40 min. Both
equilibration and absorption phases were carried out with stirring. The
fiber was then inserted into the injection port of the gas chromatograph
for 10 min of sample desorption. GC-mass spectrometry (MS) analyses
were carried out with an Agilent 7890A gas chromatograph (Agilent Tech-
nologies, Palo Alto, CA) coupled to an Agilent 5975C mass selective de-
tector operating in the electron impact mode (ionization voltage, 70 eV).
A Varian CP7773 Wax 52 CB capillary column (length, 50 m; inside di-
ameter, 0.32 mm) (Agilent Technologies) was used. The temperature pro-
gram was 40°C for 1 min, followed by an increase to 65°C, at a rate of
4.5°C/min; an increase to 230°C, at a rate of 10°C/min; and then 230°C for
17 min. The injector, interface, and ion source temperatures were 250°C,
250°C, and 230°C, respectively. The mass-to-charge ratio interval was 30
to 350 Da at a rate of 2.9 scans per s. Injection was carried out in the
splitless mode, and helium (flow rate, 1 ml/min) was used as the carrier
gas. Molecules were identified based on comparisons of their retention
times with those of pure compounds (Sigma-Aldrich, Milan, Italy). Iden-
tities were confirmed by searching mass spectra in the available databases
(NIST, version 2005, and Wiley, version 1996). All the GC-MS raw files
were converted to the netCDF format via a Chemstation system (Agilent
Technologies) and subsequently processed with the XCMS toolbox (http:
//metlin.scripps.edu/download/). XCMS software allows automatic and
simultaneous retention time alignment, matched filtration, peak detec-
tion, and peak matching. The resulting table, containing information such
as peak indices (retention time-m/z pair) and normalized peak areas, was
exported into R (http://www.r-project.org/) for subsequent statistical or
multivariate analyses. Quantitative data for the compounds identified
were obtained by the interpolation of the relative areas versus the internal
standard area. GC-MS-SPME data were organized into a matrix and an-
alyzed by canonical discriminant analysis of principal coordinates (CAP)
(41).

Statistical analysis. Culture-dependent and metabolome data were
obtained in at least triplicates. ANOVA was carried out on transformed
data, followed by separation of means with Tukey’s honestly significant
difference (HSD) test, using Statistica for Windows statistical software
(Statistica 6.0 for Windows 1998; StatSoft). Significantly different groups
(P � 0.05) by Tukey’s test are indicated in Table 2. CAP analysis was also
carried out for GC-MS-SPME data. The hypothesis of nonsignificant dif-
ferences in the multivariate location within groups was tested by using the
trace statistic based on 9,999 permutations (53). The correlation between
the concentration of metabolites and the number of predominant bacte-
rial cells and genera was examined by linear regression analysis.

Nucleotide sequence accession number. The 16S rRNA sequences
produced in this study are available at the Sequence Read Archive of the
NCBI (SRP035361).

RESULTS
Enumeration of cultivable bacteria. Selective media were used to
enumerate cultivable bacteria (Table 2). Compared to HC, the
number of total anaerobes was significantly (P � 0.05) decreased
in the saliva of T-CD children. The other significant (P � 0.05)
difference concerned the number of presumptive enterobacteria.

No significant (P 	 0.05) differences were found between the
T-CD and HC groups for the other microbial groups.

Community-level catabolic profiles. The substrate utilization
pattern (H= index) and substrate richness (S index) values were
calculated (Fig. 1). Compared to HC, the H= and S indices were
significantly (P � 0.05) decreased in the saliva of T-CD children.
The E index, which measures the statistical significance (equita-
bility) of the H= and S index values, confirmed the above-de-
scribed significant (P � 0.05) differences.

Richness and diversity of the salivary microbiota based on
16S rRNA gene sequencing data analysis. A total of 235,481 raw
sequences was obtained and analyzed; 179,276 reads passed the
filters applied through the QIIME split_library.py script, with an
average value of 7,171 reads/sample and an average length of 499
bp calculated after primer removal. Good’s estimated sample cov-
erage (median value of 98%; P 	 0.05) indicated that satisfactory
coverage was reached for all samples analyzed. The average num-
ber of species (OTUs) identified in the salivary samples of T-CD
children (median value of 319) significantly (P � 0.005) differed
from that in the salivary samples from HC (median value of 393).
Overall, six phyla (Firmicutes, Bacteroidetes, Proteobacteria, Fuso-
bacteria, Actinobacteria, and Tenericutes) and two candidate divi-
sions (TM7 and SR1) were identified (Fig. 2; see also Table S1 in
the supplemental material). Compared to HC, the saliva of T-CD
children differed only in the levels of Bacteroidetes (40 versus 33%;
P � 0.001) and Actinobacteria (5 versus 7%; P � 0.023) (Fig. 2).
The bacterial diversity among the microbial communities of
T-CD children and HC was also estimated by using the richness
estimator (Chao1) and diversity (Shannon) indices (Fig. 3).
Chao1 and Shannon diversity index values were lower (P 	 0.05)
for the saliva of T-CD children than for the saliva of HC. The
difference in the community structure was further confirmed by
using three phylogeny-based beta-diversity measures. The salivary
microbiota of HC and T-CD children were clearly differentiated
based on bacterial-lineage-specific principal-coordinate analysis
with a weighted UniFrac distance matrix (Fig. 4). In addition, both
Adonis and Anosim statistical tests indicated a significant influ-
ence of subject type (HC versus T-CD children) on microbial
diversity.

Distinctive salivary microbiome associated with CD. The dif-
ferences (P � 0.05) in the relative abundances of OTUs associated

TABLE 2 Cultivable bacteria in saliva samples from children with celiac
disease who were treated with a gluten-free diet for at least 2 years and
from healthy childrenb

Microbial group

Median no. of cultivable cells, log
CFU/ml (range)

P valueT-CD children HC

Total aerobic bacteria 7.29 (6.22–8.02) 7.55 (6.92–7.89) 0.057
Total anaerobes 7.62a (6.00–8.36) 7.81a (7.00–8.93) 0.029
Enterococcus and Lactobacillus 7.23 (5.85–8.51) 7.42 (6.06–8.02) 0.27
Lactococcus and Streptococcus 7.02 (6.00–7.90) 7.05 (6.14–7.88) 0.156
Staphylococcus and

Micrococcus
5.70 (5.10–6.13) 5.50 (4.87–7.18) 0.178

Bacteroides, Porphyromonas,
and Prevotella

6.10 (5.09–7.01) 6.07 (5.02–6.90) 0.074

Enterobacteriaceae 3.66a (1.50–4.59) 1.00a (0–5.59) 0.042
Bifidobacterium 7.32 (6.04–8.43) 7.18 (6.90–8.03) 0.285
a Significantly different groups (P � 0.05) by Tukey’s test.
b Data are the means of three independent experiments (n � 3) for each child.
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with the saliva of T-CD children or HC are shown in Fig. 5. The
abundances of some OTUs belonging to the Firmicutes phylum
significantly differed between T-CD children and HC (P � 0.05).
Streptococcus sanguinis, Gemella species, and Lachnospiraceae were
more abundant in the saliva of T-CD children, while levels of some
lactic acid bacteria (e.g., Streptococcus thermophilus) were highest
in HC. Granulicatella adiacens, Mogibacterium sp., Selenomonas
sp., and Veillonella parvula were also positively associated (P �
0.05) with HC. Within the phylum Bacteroidetes, Porphyromonas
sp., Porphyromonas endodontalis, and Prevotella nanceiensis
showed the highest abundances in the saliva of T-CD children.
Actinomyces oris, Atopobium sp., and Corynebacterium durum
were less abundant Actinobacteria in the saliva of HC. The candi-
date division SR1 was more abundant in saliva of T-CD children
(P � 0.05).

Volatile organic compound profiling of saliva. Overall, the
content of various metabolites largely varied within the same
group (T-CD children or HC), and the total median values of
some volatile organic compounds (VOCs) differed significantly
(P � 0.05) between T-CD children and HC. GC-MS-SPME data
were analyzed by canonical discriminant analysis of principal co-
ordinates (CAP). Compounds with negative values were those
significantly (P � 0.05) associated with saliva of T-CD children,
while those on the positive axis were significantly (P � 0.05) as-
sociated with saliva of HC (Fig. 6A). The median values for alco-
hols and phenols [e.g., 2-ethyl-1-hexanol, 4-(1,1,3,3-tetramethyl-
butyl)-phenol, and ethyl alcohol] were significantly (P � 0.05)
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FIG 1 CLCP indices (utilization pattern substrate [H=], substrate richness [S],
and equitability [E]) of the salivary microbiota of children with celiac disease
who were treated with a gluten-free diet for at least 2 years (T-CD children)
and healthy children (HC). Data are the means of three independent experi-
ments (n � 3). The center line of each box represents the median, and the top
and bottom of the box represent the 75th and 25th percentiles of the data,
respectively. The top and bottom of the error bars represent the 5th and 95th
percentiles of the data, respectively. The circles in each box plot extend to the
outliers of the data.

FIG 2 Relative abundance (percent) of total bacteria, which were found at the
phylum level in the saliva of T-CD children and healthy children.
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higher in HC (Fig. 6A; see also Table S2 in the supplemental ma-
terial). Within aldehydes, nonanal was found at the highest level in
T-CD children, and octanal was found at the highest level in HC.
The levels of butanoic acid 2-methyloctyl ester and acetic acid
ethyl ester were highest in HC and T-CD children, respectively.
Hydrocarbons were the largest group of VOCs. Overall, hydrocar-
bons (e.g., 1-octadecene) were found at the highest level in HC.
On the other hand, halogenated and aromatic hydrocarbons (e.g.,
1-chlorodecane and trichloromethane) were significantly associ-
ated with T-CD children. Carbone disulfide was also associated
with T-CD children. With few exceptions, ketones, terpenes, and
thiophenes were found at the highest levels in the saliva of HC.
According to the main VOC composition, the two groups of chil-
dren were separated by CAP (Fig. 6B).

Correlation between microbiome and metabolome data.
Spearman’s correlation analysis run with QIIME allowed us to
find some correlations between the relative abundances of salivary
bacteria and metabolites (data not shown). A positive correlation
(false discovery rate [FDR], �0.05) was found between the abun-
dances of P. endodontalis and Prevotella sp. and the levels of non-
anal and 1-chlorodecane. C. durum was positively correlated with
1,2,3-trimethylbenzene, 2,6-dimethyl-4-heptanone, 4-methyl-2-
hexanone, and 4-methyl-3-penten-2-one, and G. adiacens, Atopo-
bium sp., and Bacilli levels were correlated (FDR, �0.05) with the
levels of 1(3H)-isobenzofuranone (
-lactone) and 1-octadecene.
Also, 
-lactone and 1-chlorodecane were correlated with V. par-
vula, S. thermophilus, and the candidate division SR1.
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FIG 3 Average number of species (OTUs), richness (Chao1), and diversity
(Shannon index) values for the saliva of T-CD children and HC. The center
line of each box represents the median, and the top and bottom of the box
represent the 75th and 25th percentiles of the data, respectively. The top and
bottom of the error bars represent the 5th and 95th percentiles of the data,
respectively. The circles and asterisks in each box plot extend to the outliers
and extremes of the data, respectively.

FIG 4 Principal-coordinate analysis based on weighted UniFrac analysis of all
16S rRNA gene sequences found in the saliva of T-CD children and HC.

Francavilla et al.

3420 aem.asm.org Applied and Environmental Microbiology

http://aem.asm.org


DISCUSSION

According to the World Health Organization, the oral human
microbiota plays a crucial role in the health or disease status of the
human host (54–56). Previously, variations of the composition of
the oral microbiota were described for CD patients, but the trend
and the importance were not defined (9, 39).

To the best of our knowledge, this study represents the largest
effort to characterize the diversity, population structure, and
metabolome of the oral microbiota of CD children on a GFD.

Some cultivable microbial populations differed between the
saliva of T-CD children and the saliva of HC. In agreement with
this study, higher levels of total anaerobic bacteria were found in
the fecal samples of HC than in the fecal samples of T-CD children
(14). According to culture-dependent data, the community-level
catabolic profiles (CLCPs) also varied between T-CD children and
HC. As previously shown for other ecosystems (45, 57, 58), CLCPs
successfully described the global metabolic activities of the sali-
vary microbiota. The substrate with the lowest Shannon’s index
(H= index) was found in the saliva of T-CD children. The capacity
for the use of multiple substrates (e.g., carbohydrates, carboxylic
acids, polymers, amino acids, amines, and miscellaneous com-
pounds) was usually linked to the microbial diversity of a certain
microbial ecosystem. As shown by the Shannon-Weaver index,
CLCP analysis showed the highest level of microbial diversity
in HC.

Analysis of pyrosequencing data showed that bacterial groups
from the saliva of HC were similar to those found in previous
studies (55, 56). In agreement with the CLCPs, sequencing data
showed the highest richness estimator (Chao1) and diversity in-
dex (Shannon) values for the saliva of HC. The gut and oral mi-
crobiota may have common structures (29), and the bacterial spe-
cies richness of both these ecosystems usually decreases during
inflammatory bowel disease (IBD) (59–61). It was hypothesized
that high microbial richness and diversity values, which charac-
terized the healthy microbiota, may have a protective effect on
humans (59). The composition of the main bacterial phyla dif-
fered between the salivary microbiota of T-CD children and that
of HC. Compared to HC, Lachnospiraceae, Gemellaceae (genus
Gemella), and S. sanguinis were most abundant in the saliva of
T-CD children. On the contrary, the abundance of S. thermophilus
(the main Streptococcus species) was markedly decreased in T-CD
children. S. sanguinis was found to be associated with endocarditis
and other distant-site infections (30). Streptococcus is the main
genus of the healthy oral microbiota (25, 59, 62). Similar results
were found for the saliva of individuals affected by IBD (59).
Moreover, duodenal and fecal samples of CD patients (both at
diagnosis and during GFD) were associated with a decrease in the
level of Streptococcaceae (63). Other Firmicutes (e.g., V. parvula)
also associated with oral health (64) were found at the highest
levels in the saliva of HC. The saliva of T-CD children harbored

FIG 5 Relative proportions (percent) of predominant bacteria, showing significant (P � 0.05) differences between the saliva samples of T-CD children and those
of HC.
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the highest levels of Bacteroidetes (e.g., Porphyromonas sp., P.
endodontalis, and Prevotella nanceiensis) and the lowest levels of
Actinobacteria. The fecal and duodenal microbiota of CD patients
were characterized by the largest numbers of Gram-negative bac-

teria (Bacteroidetes and Enterobacteria) and the smallest numbers
of Gram-positive bacteria such as Firmicutes (e.g., lactic acid bac-
teria) and Actinobacteria (e.g., Bifidobacterium) (14, 20, 21). Some
Porphyromonas species (e.g., P. endodontalis) were previously as-

FIG 6 CAP loading coefficient plot (A) and score plot (B) of the volatile organic compounds found in saliva of T-CD children and HC. n.d., not defined.
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sociated with periodontal diseases (65). Within the phylum Acti-
nobacteria, the saliva of T-CD children was characterized by de-
creased levels of some Actinomyces species (including A. oris),
Atopobium sp., and C. durum. Actinomyces spp. are predominant
Gram-positive members of the human oral commensal microbi-
ota and are known as the initial colonizers of tooth surfaces (66).
Rothia mucilaginosa was the only Actinobacteria species found at
the highest level in saliva of T-CD children. Rothia species are
components of the oral microbiota and were also identified in
duodenal biopsy specimens (67). Although some infections by R.
mucilaginosa have been described, this species is considered a
harmless colonizer of the oral cavity (68). Recently, it was hypoth-
esized that some species of the Rothia genus, including R. muci-
laginosa, are involved in gluten degradation (69, 70).

Overall, the human-associated microbiota interacts directly
with the host by means of metabolic products (71, 72). This study
combined characterizations of the salivary microbiota and the re-
lated metabolome. Analyses of the saliva metabolome have been
successfully used in several fields of physiology, diagnostics, func-
tional genomics, pharmacology, toxicology, and nutrition (36,
73). CAP of the GC-MS–SPME metabolic profiles allowed the
identification of VOCs, which changed in the saliva of T-CD chil-
dren. Many of the VOCs described in this study corresponded to
those previously reported for the saliva of healthy individuals (37,
74). These compounds may have various origins, as there are
many possible routes of entry into the salivary flow, including
environmental exposure through inhalation of air and/or water
vapor through the lungs, ingestion through the mouth, food in-
take, and transdermal absorption through the skin. Moreover,
microbial metabolic activities at the level of the oral cavity may
also affect the synthesis of VOCs (37, 74). First, this study showed
some correlations between the microbiome and metabolome of
children with CD. It was hypothesized that the salivary microbiota
affects the development of the gut microbiota (59). According to
this hypothesis, high levels of nonanal, 4-methyl-2-hexanone (2-
hexanone), and ethyl-acetate (acetic acid ethyl ester) were found
in both saliva (this study) and fecal (14, 75) samples of T-CD
children.

Some microbial indices (e.g., ratios of some Firmicutes and
Actinobacteria to Bacteroidetes) and the levels of some metabolites
(e.g., nonanal, ethyl-acetate, and 2-exanone) are signatures of CD
patients. GFD lasting at least 2 years did not completely restore the
salivary microbiota and, consequently, the salivary metabolome
of T-CD children. Similar data were also found for duodenal (63)
and fecal (14, 75) samples. Further screenings with a wider sample
size could provide informative sources for discovering CD-spe-
cific noninvasive salivary biomarkers. The limitation of this study
was related to the small number of T-CD children analyzed. Fur-
ther studies dealing with different severities of CD may be useful
to highlight the correlations between the severity of CD and the
salivary microbiome. Different GFDs could be analyzed to deter-
mine the effects of specific foods on the salivary microbiota of
T-CD children. In addition, dietary implementation with probi-
otics could be regarded as an alternative strategy to correct oral
dysbiosis.
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