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The DNA damage response (DDR) is critical for genome stability and the suppression of a wide variety of human malignancies,
including neurodevelopmental disorders, immunodeficiency, and cancer. In addition, the efficacy of many chemotherapeutic
strategies is dictated by the status of the DDR. Ubiquitin-specific protease 28 (USP28) was reported to govern the stability of
multiple factors that are critical for diverse aspects of the DDR. Here, we examined the effects of USP28 depletion on the DDR in
cells and in vivo. We found that USP28 is recruited to double-strand breaks in a manner that requires the tandem BRCT do-
mains of the DDR protein 53BP1. However, we observed only minor DDR defects in USP28-depleted cells, and mice lacking
USP28 showed normal longevity, immunological development, and radiation responses. Our results thus indicate that USP28 is
not a critical factor in double-strand break metabolism and is unlikely to be an attractive target for therapeutic intervention
aimed at chemotherapy sensitization.

In response to diverse DNA lesions, cells mount a DNA damage
response (DDR) to prevent the accumulation of chromosomal

instability, such as DNA breaks or chromosomal rearrangements
(1, 2). The DDR coordinates the regulation of cell cycle check-
points, DNA repair, transcription, and cell fate pathways, such as
apoptosis and senescence. Mutations in various DDR genes are
involved in hereditary diseases characterized by increased cancer
predisposition, premature aging, infertility, and developmental
defects that particularly impair the immune system and central
nervous system (CNS).

DNA double-strand breaks (DSBs) are recognized by the
MRE11 complex, composed of MRE11, RAD50, and NBS1, which
then rapidly activates the ATM kinase, the central transducer of
the DDR to DSBs (3, 4). Mutations in ATM, MRE11, NBS1, and
RAD50 lead to similar, but clinically distinct, human diseases—
ataxia-telangiectasia (AT), AT-like disease (ATLD), Nijmegen
breakage syndrome (NBS), and NBS-like disease (NBSLD), re-
spectively— characterized by chromosomal instability, hypersen-
sitivity to DSB-inducing agents, and impaired DNA damage re-
sponses. Given the apical functions of ATM and the MRE11
complex in the DDR and their roles in preventing human disease,
it is important to identify and characterize regulatory factors gov-
erning DDR events to gain a better understanding of the etiology
of human pathologies associated with an impaired DDR.

Recently, it has become clear that ubiquitin ligases, deubiqui-
tylating enzymes, and other mediators of ubiquitin signaling rep-
resent major components of the DDR and play significant roles in
human disease pathologies and chemotherapeutic responses (5).
Indeed, there is growing evidence that the development of phar-
macological agents against proteins mediating ubiquitylation and
deubiquitylation may provide new opportunities for human dis-
ease management (5, 6). ATM-dependent phosphorylation events
are required for the recruitment of many DSB response factors,
including the RING-E3 ubiquitin ligases, RNF8 and RNF168,
which act sequentially to orchestrate the recruitment of critical
DDR regulators, including 53BP1 and the tumor suppressor

BRCA1, itself a ubiquitin RING-E3 ligase in conjunction with the
BARD1 protein (7, 8).

In addition to requiring ubiquitylation, the recruitment of
53BP1 to DSBs requires its oligomerization and recognition of
histone H4 lysine 20 dimethylation (H4K20me2) through its Tu-
dor domain (9–11). Unlike BRCA1, 53BP1 does not exhibit any
known enzymatic activities, but nonetheless it plays important
roles in development and in response to DNA damage, in part by
facilitating long-range end-joining events through the promotion
of end synapsis and chromatin mobility (12, 13). Indeed, mice
lacking functional 53BP1 exhibit increased cell death in the devel-
oping thymus, severe deficiencies in immunoglobulin class switch
recombination (CSR), chromosomal instability, elevated sensitiv-
ity to DSB-inducing agents, and predisposition to lymphoma (14–
17). A central role of 53BP1 appears to be the negative regulation
of DNA-end resection pathways initiated by the Mre11 complex,
CtIP, and BRCA1 (18, 19). In this regard, it is notable that 53BP1
loss rescues the viability of BRCA1 mutant mice and restores the
DNA repair proficiency to BRCA1-deficient cells by allowing
DNA resection and repair through homology-directed repair
pathways (20, 21). Therefore, the proper regulation and balance
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between 53BP1 and BRCA1 recruitment can significantly influ-
ence tumor responses to chemotherapies.

Various deubiquitylating enzymes, including the ubiquitin-
specific proteases (USPs) USP1, USP3, USP10, USP11, USP16,
and USP28, have also been implicated in the DDR to DSBs, al-
though in many cases their precise roles remain to be defined (22).
In particular, USP28 was first linked to the DDR through its phys-
ical association with the 53BP1 protein, and its depletion was re-
ported to impair the stability of key DDR response proteins, in-
cluding NBS1, CHK2, 53BP1, claspin, and TOPBP1, after a
human cell line was treated with ionizing radiation (IR) (23).
Therefore, it was proposed that, by reversing DDR-induced ubiq-
uitylation of such factors, USP28 protects them from proteasomal
degradation. In addition, USP28 was shown to be an ATM sub-
strate in response to DNA damage and was found to regulate
CHK2-dependent apoptosis, in part through the induction of the
proapoptotic PUMA protein. Subsequently, USP28 was impli-
cated in the maintenance of cell cycle G2 arrest through its ability
to stabilize the claspin protein, a key regulator of CHK1 activity
(24). Together, these data lead to a model in which USP28 is an
ATM target and a crucial regulator of multiple DDR factors that
control DNA repair, checkpoint responses, and apoptosis. Indeed,
these findings suggested that USP28 deficiency would likely pre-
dispose to pathological outcomes associated with chromosomal
instability and defective responses to DNA breaks, such as in-
creased tumor predisposition and/or immunological deficiencies.

USP28 was independently identified in an shRNA screen for
proteins required for apoptosis induced by the c-Myc oncogene
and was shown subsequently to promote c-Myc protein stability
in a posttranscriptional manner (25). c-Myc is a potent inducer of
replication stress, and its misregulated expression provokes a
DDR involving ATM and the related ATR kinase that is critical for
survival of cells overexpressing c-Myc (26, 27). c-Myc levels are
reduced following DNA damage, and it was proposed that this
requires the dissociation of USP28 from the FBXW7 ubiquitin E3
ligase, which targets c-Myc for polyubiquitination and degrada-
tion via the proteosome (28–30). This would then allow USP28 to
associate with DDR proteins to promote their stabilization and
enhance the DDR. These data therefore suggested that USP28 de-
ficiency can impair tumorigenesis, particularly when driven by
c-Myc oncogene overexpression.

Based on these previous studies, we hypothesized that USP28
could be an attractive therapeutic target, as its inhibition would be
predicted to enhance DNA damage sensitivity through the desta-
bilization of critical DDR mediators, such as 53BP1, NBS1, and
claspin. Indeed, based on published evidence, USP28 deficiency
would be predicted to influence tumor predisposition as well as
tumor responsiveness to DNA damage-inducing cancer therapies
and DDR-targeted drugs, as well as potentially selectively impair-
ing the proliferation of tumor cells reliant on c-Myc activity. To
address these possibilities, we examined the effects of USP28 de-
pletion in both primary and transformed cell cultures, during
mammalian development, and in response to radiation in vivo.
We found that USP28 localized to DSBs in a manner that required
the tandem BRCT domains of 53BP1. However, USP28 deficiency
had no major effect on the stability of DDR proteins, cell cycle
checkpoint responses, DNA repair, chromosome stability, or sen-
sitivity to DNA damage in either primary or transformed cells.
Consistent with USP28 being dispensable for effective DSB repair,
we found that V(D)J recombination and class switch recombina-

tion (CSR) functioned essentially normally in USP28-deficient
mice. In addition, USP28-deficient animals were fertile, and
CHK2-dependent apoptosis occurred normally following IR ex-
posure in cells and in tissues lacking USP28 expression. These data
indicated that USP28 is not a critical factor for the DDR in vitro
and in vivo, and its deficiency does not predispose to tumors in
mice. Considering these findings, we suggest that USP28 is un-
likely to be a potent tumor suppressor or represent a promising
target for developing new cancer therapeutic strategies.

MATERIALS AND METHODS
Cell culture and transfections. Human U2OS, HEK-293, and RPE1 cells
and mouse embryonic fibroblasts (MEFs) were grown in Dulbecco’s
modified Eagle medium (Invitrogen) supplemented with 10% fetal bo-
vine serum (FBS; BioSera), 2 mM L-glutamine, 100 unit/ml penicillin, 100
�g/ml streptomycin, and amphotericin B (Fungizone; Sigma-Aldrich).
Cell transfections with plasmid DNA or small interfering RNA (siRNA)
duplexes (Table 1) were performed by using FuGene HD (Roche) and
Lipofectamine RNAiMax (Invitrogen), respectively, following the manu-
facturers’ instructions. All siRNAs were purchased from Eurofins MWG
Operon. Cells were analyzed 48 to 72 h after transfection.

Immunostaining. Human U2OS and RPE1 cells and MEFs were
grown on coverslips or glass-bottom dishes for treatment with IR or laser
microirradiation, respectively. Following the treatment, cells were either
preextracted in CSK buffer [10 mM piperazine-N,N=-bis(2-ethanesul-
fonic acid) (pH 7.0), 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2]
containing 0.5% Triton X-100 for 5 min at room temperature and then
fixed in 2% formaldehyde or fixed without preextraction. Samples were
then blocked in 5% bovine serum albumin and stained with the appro-
priate primary antibody and secondary antibodies coupled to Alexa Fluor
488 or 594 (Molecular Probes). Confocal images were captured on a Flu-
oView1000 Olympus microscope with a 40� or 60� oil objective lens.

Automated IRIF quantification using high-throughput microscopy.
RPE1 cells were seeded in 96 microwell plates (Cell Carrier; PerkinElmer)
48 h after siRNA transfections and treated the following day. Immortal-
ized MEFs were seeded in the dishes described above 24 h prior to treat-
ment. An Opera spinning-disk high-throughput microscopy platform
(PerkinElmer) was used to image fixed immunostained cells, using a 20�
water immersion objective lens (0.7 numerical aperture; Olympus). Six to
10 digital micrographs of two fluorescence channels (4=,6-diamidino-2-
phenylindole [DAPI] and Alexa Fluor 488) were captured per microplate
in a single optimal focal plane. For each experiment, 2 to 8 microplate
wells per condition were imaged and automatically analyzed, leading to
the quantification of �500 nuclei for each independent biological repli-
cate. The images were analyzed using the spot detection script of the
Acapella software (PerkinElmer). The DAPI channel was used to detect
and segment the nuclei. Transfer of the nuclear area regions to the second
fluorescence channel (�H2AX, 53BP1, or FK2) allowed the detection of
IR-induced foci (IRIF) specifically within the nuclear areas of the detected
cells.

Laser microirradiation and FRAP. The experimental setup for fluo-
rescence recovery after photobleaching (FRAP) was essentially as de-

TABLE 1 siRNA sequences

siRNA Target sequence Reference

siLuc 5=-CGUACGCGGAAUACUUCGA-3= 40
si53BP1-2 5=-GAAGGACGGAGUACUAAUA-3= 31
si53BP1-3=-UTR 5=-AAAUGUGUCUUGUGUGUAA-3= This work
siUSP28-1 5=-CUGCAUUCACCUUAUCAUU-3= 23
siUSP28-3=UTR 5=-GUGUAAAGAAGGAUUGAAA-3= This work
siATM 5=-GACUUUGGCUGUCAACUUUCG-3= 71
siCtIP 5=-GCUAAAACAGGAACGAAUC-3= 40
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scribed previously (31). In brief, cells were plated in glass-bottom dishes
(Willco-Wells) and presensitized with 10 �M 5-bromo-2=-deoxyuridine
(BrdU; Sigma-Aldrich) in phenol red-free medium (Invitrogen) for 24 h
at 37°C. Laser microirradiation was performed by using a FluoView1000
confocal Olympus microscope equipped with a 37°C heating stage (Ibidi)
and a 405-nm laser diode (6 mW) focused through a 60� UPlanSApo 1.35
numerical aperture lens. Localized DNA damage was generated by expo-
sure of cells to a UV-A laser beam (32).

For FRAP analyses, green fluorescent protein (GFP)-tagged proteins
were allowed to accumulate and reach the steady-state level at the laser
tracks. After a series of three prebleach images, a rectangular region placed
over the laser-damaged line was subjected to a bleach pulse, followed by
image acquisition in 6-s intervals for GFP-MDC1 and GFP-53BP1. Aver-
age fluorescent intensities in the bleached region were normalized against
intensities in an undamaged nucleus in the same field after background
subtraction to correct for overall bleaching of the GFP signal due to re-
petitive imaging. For mathematical modeling of GFP-tagged protein mo-
bility, (It � I0)/Ipre values were plotted as a function of time, where I0 was
the fluorescence intensity immediately after bleaching and Ipre was the
average of the three prebleach measurements. Estimation of the mobile
protein fraction (A) and residence time (�) were performed using Prism 4
software and assuming the existence of one protein population, using the
following equation: y(t) � A[1 � exp(�t/�)].

Western blotting and immunoprecipitations. Samples were lysed ei-
ther in TNG-150 buffer (50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1%
Tween 20, 0.5% NP-40) with protease and phosphatase inhibitors or in
SDS lysis buffer, then separated by SDS-PAGE and transferred to a poly-
vinylidene difluoride membrane (Millipore). Membranes were probed
with antibodies for ATM and 	-tubulin (both from Sigma), ATM pS1981
(Epitomics), ATR, H2AX, H3, H3 pS10, and 
-actin (Abcam), 53BP1
(Novus Biological), USP28, CHK2 pT68, CHK1 pS345, and H2AX pS139
(Cell Signaling), USP28, CHK1, and RPA32 pS33 (Bethyl Laboratories),
claspin, CHK1, and hemagglutinin (HA) (Santa Cruz Biotechnology),
NBS1 (Novus Biological), CHK2 and H2AX pS139 (Millipore), anti-
ubiquitin (FK2; Enzo Life Sciences), GFP (Roche). Primary antibodies
were detected with appropriate secondary antibodies conjugated to horse-
radish peroxidase and visualized with an ECL-Plus apparatus (GE). HA-
and GFP-tagged 53BP1 derivatives were immunoprecipitated using
EZview red anti-HA affinity gel (Sigma-Aldrich) or GFP-trap agarose
(ChromoTek), respectively.

Clonogenic survival assay. Immortalized MEFs were seeded and
treated with the indicated doses of IR or UV-C in an X-ray cabinet (Max-
ishot.200) or UV cross-linking oven (Stratalinker; Stratagene). U2OS cells
were transfected with siRNA, and 48 h later they were seeded on 6-well
dishes. Twenty-four hours later, cells were treated with a DNA-damaging
agent, IR (CellRad Faxitron; Faxitron Bioptics), or camptothecin (Sigma).
One or 2 weeks later, colonies were stained with 0.5% crystal violet–20%
ethanol and counted. Results were normalized to plating efficiencies.

Checkpoint assays. A G1/S checkpoint assay was performed essen-
tially as described previously (33) with modifications. Asynchronously
growing RPE1 cells were pulsed for 30 min with 10 �M 5-ethynyl-2=-
deoxyuridine (EdU), followed by mock or IR (2 Gy) treatment and incu-
bation with 10 �M BrdU and 0.25 �g/ml nocodazole for 7 h. Cells were
collected by trypsinization and fixed using Cytofix/Cytoperm reagent (BD
Biosciences). EdU and BrdU were detected using Click-iT chemistry (Life
Technologies) and anti-BrdU antibody (GE Healthcare), respectively.
Genomic DNA was stained with DAPI, and samples were analyzed by flow
cytometry. EdU-positive cells represent the S-phase population at the time of
irradiation, while BrdU-positive cells represent the S-phase population fol-
lowing mock or IR treatment. Cells labeled with both EdU and BrdU repre-
sent the population of cells that continued DNA replication following the
treatment.

The G2/M checkpoint was analyzed by assessing the mitotic index
following irradiation with the indicated doses and recovery for 1, 6, or 24
h. Cells were fixed in 70% ethanol, washed, and stained with primary

antibody for phospho-histone H3-S10 (Millipore), stained with second-
ary antibody conjugated to fluorescein isothiocyanate (FITC), and ana-
lyzed by flow cytometry.

Comet assay. For the comet assay, cells were treated with 60 �g/ml
phleomycin for 2 h at 37°C and allowed to recover for 2 h in culture
medium at 37°C. Neutral comet assays were performed as specified in a
comet assay kit (Trevigen) using GelBond films (Lonza) to support aga-
rose gels. Samples stained with SYBR green I were imaged on an epifluo-
rescence microscope (Olympus IX71) with a UPlanFLN 10� objective.
Images were analyzed with CometScore software (TriTek). A total of 50 to
100 cells were scored in each sample.

Homologous recombination assay. Homologous recombination
(HR) efficiency was evaluated using the Traffic Light Reporter (TLR) sys-
tem, the four-color system to track nuclease and donor template delivery
simultaneously (described in reference 34). We performed assays using
U2OS cells with a stably integrated TLR construct, which if cut with ISceI
and repaired accurately using the provided donor sequence results in the
restoration of an intact GFP sequence. At 6 h after siRNA transfections,
the cells were cotransfected with DNA plasmids containing an HR donor
and ISceI enzyme (plasmids contained blue fluorescent protein [BFP] and
infrared fluorescent protein [IFP] expression markers, respectively). At 72
h after the first transfection, cells were harvested and analyzed by flow
cytometry. GFP-positive cells were accounted for only in the population
of dually transfected cells positive for BFP and IFP signals.

Generation of mice and mouse embryo fibroblasts. The
EUCE0037g10 embryonic stem cell line was obtained from the
EUCOMM repository and injected into 3.5-day-old blastocysts derived
from C57B6/J mice. Blast cells were reimplanted into 2.5-day-old pseu-
dopregnant foster mice. Chimeras were scored for coat color and mated
with C57B6/J wild-type mice. Agouti offspring were screened for the pres-
ence of the mutation by using PCR primers specific for the gene trap (for
details on these methods, see the supplemental material). For the genera-
tion of primary MEFs, embryos were extracted at embryonic day 14.5 and
trypsinized overnight. Disaggregated embryos were plated and cultured in
MEF medium (15% FBS [HyClone], 1� Glutamax [Gibco], and 1� pen-
icillin-strepdavidin [Gibco]). Primary MEFs were transformed by the
transfection (MEF2 reagent Amaxa Nucleofector; Lonza) of a linearized,
origin-less plasmid containing the simian virus 40 genome (p129).

Real-time quantitative PCR. For real-time PCR of murine Usp28,
total RNA was isolated using Tri reagent (Sigma) and reverse transcribed
using a high-capacity RNA-to-cDNA kit (Applied Biosystems). A Taq-
Man (Applied Biosystems) master mix was used to amplify the cDNA of
either Usp28 or GAPDH as an endogenous control on a 7900HT machine
(Applied Biosystems). Data were plotted using SDS2.3 software and the
2���CT method and analyzed with the RQ manager.

Metaphase spread preparations. Early-passage (p2) MEFs were un-
treated or treated with aphidicolin (0.3 ng/ml) for 24 h, followed by incu-
bation with colcemid (0.1 �g/ml) for 1 to 3 h. MEFs were swelled in 0.075
M KCl for 15 min at 37°C and then fixed in ice-cold fixative (75% meth-
anol and 25% acetic acid) and washed several times in fixative. Metaphase
preparations were spread on glass slides, steam treated using an 80°C
water bath for 3 to 5 s, dried, and stained with 5% Giemsa solution.

Analysis of thymocytes. Thymi were dissected from 7-to 9-week-old
animals, and 1 � 106 cells were mock treated or irradiated using an X-ray
cabinet (1.5 Gy/min; Maxishot 200; Yxlon International). Viable (double-
negative [DN]) cells were identified by flow cytometry after propidium
iodide and anti-annexin V–FITC antibody (BD Biosciences) staining. A
viability ratio (the percentage of treated DN cells/percentage of mock-
treated DN cells) or graphs of viable and apoptotic cells were plotted. To
identify T-cell receptor (TCR) rearrangements, genomic DNA was pre-
pared using the PureLink genomic DNA minikit (Invitrogen) following
the manufacturer’s instructions. To assay for recombination within and
between TCR� and TCR
 loci, a nested PCR was performed as described
previously, using 100 ng of genomic DNA as the template (35). The prim-
ers used were as follows: for TCR� intralocus, TCRGV3S1a (5=-ACCATA
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CACTGGTACCGGCA) and TCRGJ1/2a (5=-TCATCACTGGAATAAAG
CAG); for TCR
 intralocus, TCRBV5S1a (5=-TGGTATCAACAGACTC
AGGGG) and TCRBJ2a (5=-TCTACTTCCAAACTACTCCAG); for the
TCR� and TCR
 interlocus, TCRGV3S1a and TCRBJ2a. To assess thymic
subpopulations during development, isolated thymocytes were stained
with fluorescence-conjugated antibodies for CD3e, CD4, and CD8 (Bec-
ton Dickinson). Cells were analyzed by flow cytometry, and CD3e-posi-
tive cells were gated and analyzed using the FlowJo program.

Analysis of B lymphocytes and class switch recombination. Eight- to
12-week-old mice were sacrificed, and B cells were isolated from the
spleen by using a magnetically activated cell sorting B-cell isolation kit
(Miltenyi Biotec). Isolated B cells were stained with carboxyfluorescein
succinimidyl ester (CFSE; Sigma) and stimulated in RPMI 1640 medium
(Sigma) supplemented with 10% FBS (HyClone), 1% penicillin-strepda-
vidin (Gibco), 1% glutamine (Gibco), 1 mM sodium pyruvate (Gibco), 53
�M 
-mercaptoethanol (Gibco), 10 mM HEPES (Gibco), and 1� non-
essential amino acids (Gibco) with 5 ng/ml interleukin-4 (IL-4; Sigma)
and 25 �g/ml lipopolysaccharide (LPS; Sigma) for 1 to 4 days. Stimulated
B cells were either processed for fluorescence-activated cell sorting anal-
ysis or Western blotting as described above. For analysis by flow cytom-
etry, B cells were incubated in FcR blocking reagent and stained with
biotin-labeled primary antibodies (IgG1 and IgM; Miltenyi Biotec) for 10
min at 4°C and then washed and stained with anti-biotin-allophycocyanin
for 10 min at 4°C. Finally, DAPI was added at a concentration of 1 �g/ml
to exclude dead cells. Data were collected by flow cytometry and analyzed
using the FlowJo software. For analysis of CSR in vivo, 2-month-old mice
were immunized intraperitoneally with 100 �g trinitrophenyl-keyhole
limpet hemocyanin (TNP-KLH; Biosearch Technologies) in 200 �l Imject
alum (Pierce Chemical Co.). Serum was collected on day 0 before immu-
nization and on days 7, 14, 21, and 40 after immunization. A second

immunization was performed on day 41, and serum was collected after 8
days. All samples were processed for analysis of immunoglobulin subtypes
(IgG1 and IgG2b) in an enzyme-linked immunosorbent assay (ELISA).

Immunohistochemistry. Seven- to 9-month-old mice were irradiated
with 12.5 Gy by using a Faxitron X-ray cabinet and sacrificed 4 h later. The
spleen, thymus, intestine were isolated and fixed in 10% (vol/vol) neutral
buffered formalin, paraffinized, and sectioned using standard methods.
Serial sections were stained with antibodies against cleaved caspase-3 (Cell
Signaling), Ki67 (Novocastra Leica Biosystems), or yH2AX (Millipore).

RESULTS
USP28 is recruited to DNA breaks via 53BP1 tandem BRCT do-
mains. Previous work identified USP28 through an interaction
with 53BP1, but whether this interaction required specific do-
mains of 53BP1 or affected USP28 localization remained unclear
(23). To address this, we expressed HA epitope-tagged 53BP1 de-
rivatives (see Fig. S1 in the supplemental material) in human
HEK293 cells and analyzed the ability of endogenous USP28 to
coimmunoprecipitate with these by using HA-agarose beads. This
experiment revealed that the tandem BRCT domains were ro-
bustly associated with USP28 (Fig. 1A). By contrast, we could not
detect USP28 in immunoprecipitates of the C-terminal portion of
53BP1 from which the BRCT domains were deleted (C�BRCT)
(Fig. 1A). We then generated U2OS cells that stably expressed
GFP-tagged full-length 53BP1 or its derivative lacking the BRCT
domains (�BRCT). In these cell lines, the endogenous 53BP1 pro-
tein can be efficiently depleted by siRNA against the 3= untrans-
lated region (UTR) of the 53BP1 mRNA (Fig. 1B), leaving only
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FIG 1 Interaction of USP28 with 53BP1 and its recruitment to DSBs is dependent on the tandem BRCT domains of 53BP1. (A) HA tag alone or HA-tagged
derivatives of 53BP1 (BRCT and C�BRCT) were expressed in HEK293 cells and immunoprecipitated using HA-agarose. Western blots were probed for the
endogenous USP28. (B) siRNA against the 3=UTR of 53BP1 leads to efficient depletion of the endogenous protein. (C) U2OS cells stably expressing GFP-tagged
53BP1, either the WT or the protein lacking the tandem BRCTs (�BRCT), were depleted of the endogenous protein by using siRNA directed against the 3=UTR.
Proteins precipitated using GFP-agarose were assayed for presence of endogenous USP28. (D) Recruitment of endogenous USP28 in U2OS cells stably expressing
GFP-53BP1, WT and �BRCT, and depleted for the endogenous 53BP1 by using the 3= UTR siRNA.
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expression of the exogenous GFP-tagged protein. Following
siRNA-mediated depletion of the endogenous 53BP1, we per-
formed GFP pulldown assays of the full-length and �BRCT pro-
teins and found that the BRCT domains of 53BP1 were required
for coimmunoprecipitation with USP28 (Fig. 1C). In agreement
with previously published work (23), IR had little or no effect on
the ability of USP28 to coimmunoprecipitate with 53BP1 (Fig. 1A
and C, respectively).

53BP1 localizes rapidly to sites of DNA damage in a manner
that is independent of its BRCT domains (16, 36, 37). We next
asked whether USP28 also localized to DNA damage sites and, if
so, whether interaction with 53BP1 was required for this. To ad-
dress this question, cells stably expressing GFP-53BP1 full length
or �BRCT were depleted for endogenous 53BP1 (Fig. 1B) and
then subjected to laser microirradiation to induced DNA damage
tracks (38). Ensuing imaging revealed that endogenous USP28
was effectively recruited to sites of DNA damage in cells comple-
mented with wild-type (WT) 53BP1 but not in cells expressing the
�BRCT 53BP1 mutant (Fig. 1D, upper and lower panels, respec-
tively). Thus, as reported for EXPAND1/MUM1 (39), USP28 re-
cruitment to DSB sites depends on the tandem BRCT domains of
53BP1.

USP28 has a minor influence on DDR focus composition and
dynamics. As USP28 has been implicated in the stability of many
key DDR mediator proteins, we examined the influence of USP28
on the recruitment and retention of DDR proteins to IRIF. As a
first approach to address this issue, we used FRAP analysis in
U2OS cells stably expressing GFP-MDC1 or GFP-53BP1. This ex-
periment revealed that siRNA-mediated USP28 depletion had no
significant effect on the association kinetics of MDC1 or 53BP1
with sites of DNA damage following IR treatment (Fig. 2A and B).

We next conducted a quantitative analysis of IRIF formation of
established DDR markers in IR treated human RPE cells trans-
fected with siRNAs targeting a control gene (luciferase; siLuc),
53BP1, or USP28. While the depletion of 53BP1 abolished 53BP1
foci as expected, depletion of USP28 with multiple siRNAs had no
discernible effect on the localization of 53BP1 to IRIF over the
24-hour monitoring period (Fig. 2C; see also Fig. S2 in the sup-
plemental material). In addition, �H2AX focus numbers were also
unaffected by USP28 depletion (Fig. 2D), suggesting that lack of
USP28 does not lead to DSB persistence. By contrast, the amounts
of polyubiquitin chains, as detected with the FK2 antibody, were
slightly but reproducibly increased in cells depleted of USP28,
albeit to a lesser extent than in cells depleted of 53BP1 (Fig. 2E; see
also Fig. S2). This suggested that USP28 deficiency leads to a mi-
nor effect in the ubiquitin composition of IRIF.

To ensure that the lack of effects in the above studies was not
due to the function of residual USP28 protein, we corroborated
our analyses by using MEFs lacking USP28 expression due to a
gene trap insertion between the first and second exons of the gene
(Usp28T) (see Fig. S3 in the supplemental material). In homozy-
gosity, the Usp28T allele led to undetectable Usp28 mRNA produc-
tion (see Fig. S3). As observed in siRNA-treated RPE1 cells, the
kinetics of 53BP1 IRIF formation in Usp28T/T MEFs was similar to
that of littermate controls (Fig. 2F). However, we did observe a
slight increase in 53BP1 and conjugated ubiquitin (FK2) foci in
cells lacking USP28 at later time points, consistent with the data
for RPE1 cells (Fig. 2F and H). Collectively, these data showed that
USP28 had a minor influence on the levels of polyubiquitinylated

proteins in IRIF but did not detectably affect the dynamics of IRIF
formation by the major DDR regulators studied.

USP28 deficiency does not strongly affect the DDR. The com-
position and dynamics of IRIF do not easily translate into func-
tional outcomes of the DDR, such as checkpoint activation or
DNA repair efficiency. To determine if USP28 regulates DDR sig-
naling, we performed Western immunoblotting using antibodies
directed against key DDR proteins and phosphorylation events.
This experiment established that siRNA-mediated USP28 deple-
tion does not perceptibly affect the kinetics of ATM, CHK2,
CHK1, RPA, or histone H2AX phosphorylation following treat-
ment with IR or the topoisomerase I inhibitor camptothecin
(CPT); furthermore, we did not observe marked differences in the
levels of any of the DDR proteins examined (Fig. 3A and B). Con-
sistent with these findings, USP28 loss did not affect the levels of
ATM, ATR, 53BP1, claspin, NBS1, or CHK1 in primary MEFs
treated with IR or UV-C light (Fig. 3C and D).

To determine if USP28 depletion affected processes regulated
by the DDR, such as cell cycle checkpoint arrest or DNA repair, we
examined the G1/S and G2/M checkpoints in human and murine
cells, assessed DSB repair proficiency in multiple assays, and ex-
amined metaphase chromosome preparations in cells lacking
USP28. This work established that human RPE1 cells depleted of
USP28 or 53BP1 are able to efficiently induce G1 checkpoint ar-
rest, while as expected, cells transfected with siRNA against ATM
showed a strong G1/S checkpoint defect (Fig. 3E). Furthermore,
MEFs lacking USP28 expression showed normal G2/M checkpoint
arrest and recovery following IR treatment (Fig. 3F). This was
consistent with the similar levels of the mitotic mark histone H3
phospho-serine 10 that were observed in U2OS cells transfected
with either siLuc or siUSP28 (Fig. 3A). We concluded that USP28
is not required for the activation of major IR-induced checkpoint
responses.

We next examined the effects of USP28 depletion on the sen-
sitivity of cells to multiple genotoxic agents, including IR, CPT,
and UV-C. While siRNA-mediated depletion of the key DDR fac-
tors ATM and CtIP (40) led to IR and camptothecin hypersensi-
tivity in human U2OS cells, respectively, as expected, no signifi-
cant effects on clonogenic cell survival were observed upon USP28
depletion (Fig. 4A and B). Similarly, clonogenic survival curves in
response to IR or UV-C were essentially identical in MEFs con-
taining or lacking USP28 (Fig. 4C and D). To more directly assess
DNA repair proficiency in control cells and in those depleted of
USP28, we performed a neutral comet assay for DSB quantifica-
tion and traffic light reporter system to test DSB repair by homol-
ogous recombination (34). In each case, depletion of USP28 did
not have a discernible effect on repair, while depletion of the crit-
ical DNA repair factor MRE11 led to an increase in tail moment in
the comet assay following treatment with phleomycin, and deple-
tion of CtIP led to a defect in homology-directed repair (Fig. 4E
and F). Supporting the integrity of DNA repair pathways in cells
lacking USP28, we did not observe increased levels of chromo-
some aberrations in primary Usp28T/T MEFs compared to con-
trols, although USP28 loss did lead to slightly elevated levels of
chromosomal aberrations when cells were subjected to acute
aphidicolin exposure to impair DNA replication (Fig. 4G). Col-
lectively, these data indicated that, while USP28 may have a minor
influence on chromosomal stability in response to replication in-
hibition, USP28 depletion has no marked effect on DNA damage
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signaling, DDR factor stability, DNA damage sensitivity, or DNA
repair in multiple cell lines.

Physiological end-joining events are intact in USP28-defi-
cient mice. In cultured cells, numerous DNA end-joining path-
ways are available that can sometimes obscure more subtle phe-

notypes. For example, 53BP1-depleted U2OS cells are not strongly
hypersensitive to DNA damage induced by IR, but mice lacking
53BP1 nevertheless have a severe immunoglobulin gene CSR de-
fect and are predisposed to lymphomas (14, 15, 17). To determine
if USP28 plays important roles in physiological DNA repair
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events, such as those in the immune system, we examined both
V(D)J recombination-dependent development of T lymphocytes
and CSR in B lymphocytes. In contrast to mice lacking either ATM
or 53BP1, USP28-deficient animals had similar total numbers of
cells in the thymus (Fig. 5A) and a normal profile of CD4 and CD8
single-positive and double-positive T lymphocytes (CD3�) com-
pared to littermate controls (Fig. 5B and C). Consistent with these
findings, normal TCR joining events were readily detectable in
these animals, and trans-rearrangements, characteristic of ATM
deficiency (41), were not detectable (Fig. 5D).

In contrast to the situation regarding the thymus, Usp28T/T

animals had slightly smaller spleens with reduced cellularity (Fig.
5E and F). However, B-cell proliferation and CSR to IgG1 were
indistinguishable in Usp28T/T and wild-type littermates following

treatment with LPS or IL-4 (Fig. 5G and H). To more rigorously
determine if USP28 impacts CSR, we inoculated a cohort of mice
with TNP-KLH and examined IgG1, IgG2b, and IgE levels in se-
rum at different times following injection. This revealed that se-
rum levels of IgG1, IgG2B, and IgE were similar in WT and
Usp28T/T animals in vivo following inoculation with TNP-KLH
(Fig. 5I, J, and K). These data indicated that USP28 is not required
for physiological end-joining events that take place during V(D)J
and CSR and are required for immune system development.

DSB induced apoptosis is normal in USP28-deficient mice.
USP28 has been proposed to be required for CHK2 stability fol-
lowing DNA damage and to affect CHK2 function in apoptosis
following IR treatment (23). Following whole-body irradiation of
wild-type mice, or those deficient for either Usp28 or Chk2, we
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examined apoptosis in the thymus and spleen by staining for
cleaved caspase-3. While, as expected, little apoptosis was ob-
served in mice lacking Chk2 following whole-body irradiation
(42), comparable levels were seen in wild-type mice and those
lacking Usp28 expression (Fig. 6A and B). The IR-induced apop-
tosis of thymocytes is dependent on both CHK2 and ATM, which
together fully activate p53-dependent responses, while intermedi-
ate defects can be detected more readily by analyzing apoptosis in
thymocytes ex vivo (43). Importantly, we found that cells lacking
USP28 exhibited normal levels of apoptosis in response to IR over
a range of doses, indicating that both the CHK2 and ATM
branches of p53 signaling were functional in such cells (Fig. 6C

and D) (4). Additionally, CHK2 hyperphosphorylation, as well as
CHK2 and NBS1 protein levels, were normal in B lymphocytes
lacking USP28 (Fig. 6E). Collectively, our data thereby indicated
that USP28 does not strongly influence well-characterized apop-
totic pathways that are dependent upon NBS1, CHK2, ATM, and
p53 in the radiosensitive tissues of the immune system.

DISCUSSION

Proper regulation of the DDR is critical for the maintenance of
genome stability. Recent work from various groups has demon-
strated that the ubiquitin-proteasome pathway plays important
roles in the DDR, including regulating repair pathway choice and
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many aspects of mammalian development, particularly those in-
volving programmed DNA breakage and rearrangement in the
immune system and germ line cells (22, 44–50). The ubiquitin-
specific protease USP28 has been reported to play a role in the
DDR through the stabilization of key proteins, such as NBS1,
CHK2, claspin, and 53BP1 (23, 24). Furthermore, USP28 has been
implicated in regulating the levels of the c-Myc oncoprotein and
has been proposed to control the balance between c-Myc expres-
sion and the DDR, making it a particularly interesting enzyme,
and potentially a drug target, with regard to cancer therapeutics
(25, 28).

While the BRCT domains of 53BP1 are dispensable for its
known functions in the regulation of DNA repair pathway choice,
telomere protection, and CSR (10, 45, 51, 52), we have found that
they mediate binding to USP28 and are critical mediators of
USP28 localization to sites of DNA damage induced by laser mi-
croirradiation. Notably, previous work established that 53BP1
BRCT domains also mediate binding to p53 (53–55) and MUM1/
EXPAND1 (39). It will therefore be interesting in future studies to
assess whether 53BP1 binding to p53 or MUM1 is affected by
USP28 status or vice versa. Importantly, while p53 plays key roles
in damage-induced apoptosis, G1/S checkpoint arrest, and senes-

cence (53–55), we found that both the G1/S checkpoint and apop-
tosis were apparently fully intact in cells depleted of USP28, sug-
gesting that p53-dependent responses were unaffected by USP28
status. Furthermore, although we did not examine cell senescence
per se, it seems likely that p53-mediated senescence is also not
affected by USP28 status, because we did not observe any reduced
or enhanced growth in multiple preparations of primary MEF
cultures under atmospheric (
20%) oxygen conditions, which
are known to promote senescence in certain DDR-deficient back-
grounds (see Fig. S4 in the supplemental material) (56).

Depletion of USP28 led to a mild increase in conjugated ubiq-
uitin, as detected by the FK2 antibody which recognizes Lys-29-,
Lys-K48-, and Lys-63-mediated ubiquitin chains, at IRIF (Fig. 2),
but the targets of these modifications remain unclear and they
appear to have little bearing on the DDR parameters that we have
examined in vitro or in vivo. Tandem BRCT domains can function
as phospho-recognition domains (57, 58). While we cannot rule
out that phosphorylation of USP28 contributes to its interaction
with 53BP1, in line with a previous report (23), we found it to
occur independently of DNA damage (Fig. 1), suggesting that it
does not require DNA damage-induced phosphorylation events.

The E3 ubiquitin ligase FBXW7, a well-studied oncogene and
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regulator of c-Myc, has been shown to interact with USP28 (28,
59, 60). However, it remains unclear whether FBXW7 plays a role
in regulating the stability of DDR factors. Furthermore, recent
work identified the PIRH2 E3 ligase as a regulator of CHK2 sta-
bility and showed that USP28 can interact with PIRH2 and CHK2
in the context of USP28 overexpression (61). Interestingly, PIRH2
was also implicated in regulating c-Myc stability and the DDR
(61–63). While again consistent with previous data suggesting that
USP28 regulates CHK2, the functional relevance of this interac-
tion for the DDR remains unclear, as we have found that Usp28
knockout animals do not recapitulate any of the predicted pheno-
types, such as destabilized CHK2 or impaired IR-induced apop-
tosis. Finally, in this regard we note that recent work has indicated
that USP28 interacts with and stabilizes the lysine-specific de-
methylase 1 (LSD1) that localizes to sites of DNA damage in an
RNF168-dependent manner and reverses the histone mark
H3K4me2 to suppress transcription (64). The effects of USP28 on
LSD1 have been proposed to favor the expression of genes con-
trolling cancer stem cell (CSC) traits and thereby contribute to
enhanced tumorigenesis (65). Thus, the loss of USP28 would be
predicted to impair transcriptional suppression at DNA damage
sites and suppress CSC traits. We suggest that the requirement of
USP28 for LSD1 stabilization is likely to be context specific, as
mice lacking LSD1 have severe phenotypes in early embryogenesis
that are not recapitulated in Usp28-deficient animals (66) (see Fig.
S5A and B in the supplemental material).

Usp28-deficient cells and animals also do not appear to exhibit
any of the major phenotypes observed in mice lacking NBS1,
ATM, CHK2, or 53BP1, including tumor predisposition, DNA
repair defects, impaired apoptosis, chromosomal instability, im-
munodeficiency, or infertility (Fig. 2 to 6; see also Fig. S5 in the
supplemental material) (10, 15, 17, 67, 68). These data suggest that
the loss of USP28 alone does not have a major influence on path-
ological outcomes associated with impaired DSB metabolism. It is
possible that robust compensation exists through the activities of
other deubiquitylating enzymes or that USP28’s primary func-
tions reside outside of cellular responses to DSBs. With regard to
this, we have not formally addressed the effects of USP28 defi-
ciency on c-Myc stability. The most robust phenotype we ob-
served in vivo was a modest reduction of splenic cellularity, and we
speculate that this reflects deregulation of c-Myc levels that are
critical for fine-tuning germinal center B-cell populations, but we
have not further investigated this possibility (69).

In conclusion, we have characterized the effects of USP28 in
vitro and in vivo on DSB-induced DDR processes in primary and
transformed cells, as well as in developing and adult tissues. As
cells and animals lacking USP28 did not exhibit major DDR sig-
naling defects or developmental defects consistent with impaired
DSB metabolism, we conclude that USP28 is not a critical player in
this response and is unlikely to represent a promising therapeutic
target for cancer, based on opportunities relating to sensitization to
chemotherapies, radiotherapy, or DDR enzyme-targeting drugs.
However, we cannot exclude the possibility that it can significantly
influence pathological outcomes by modifying the effects of other
mutations in DDR or c-Myc-dependent pathways during tumor
evolution, play tissue-specific roles that we did not uncover in our
study, or exert additional functions under particular environmen-
tal conditions, such as hypoxia (70). In addition, we note that
pharmacological inhibition of USP28 could have consequences
distinct from those of USP28 loss or depletion. Further work will

be required to understand USP28’s primary physiological roles
and relevance to human health and disease.
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