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Abstract

Background—Previous studies of air pollution and birth outcomes have not evaluated whether

complicated pregnancies might be susceptible to the adverse effects of air pollution. We

hypothesized that trimester mean pollutant concentrations would be associated with fetal growth

restriction, with larger risks among complicated pregnancies.

Methods—We used a multiyear linked birth certificate and maternal/newborn hospital discharge

dataset of singleton, term births to mothers residing in New Jersey at the time of birth, who were

White (non-Hispanic), African American (non-Hispanic), or Hispanic. We defined very small for

gestational age (VSGA) as a fetal growth ratio <0.75, small for gestational age (SGA) as ≥0.75

and <0.85, and ‘reference’ births as ≥0.85. Using polytomous logistic regression, we examined

associations between mean pollutant concentrations during the 1st, 2nd, and 3rd trimesters and the

risks of SGA/VSGA, as well as effect modification of these associations by several pregnancy

complications.

Results—We found significantly increased risk of SGA associated with 1st and 3rd trimester

PM2.5, and increased risk of VSGA associated with 1st, 2nd, and 3rd trimester NO2 concentrations.

Pregnancies complicated by placental abruption and premature rupture of the membrane had ~2-5

fold greater excess risks of SGA/VSGA than pregnancies not complicated by these conditions,

although these estimates were not statistically significant.
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Conclusions—These findings suggest that ambient air pollution, perhaps specifically traffic

emissions during early and late pregnancy and/or factors associated with residence near a roadway

during pregnancy, may affect fetal growth. Further, pregnancy complications may increase

susceptibility to these effects in late pregnancy.
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INTRODUCTION

A body of evidence is emerging from several countries on the adverse consequences of

ambient air pollution on fetal/birth outcomes, including preterm birth and fetal growth

restriction.1-20 However, the biological mechanism(s) by which ambient air pollution may

impact adverse birth outcomes, which may be different in complicated and uncomplicated

pregnancies, is/are not clearly established.

Pathophysiologic changes that have been proposed as plausible mechanisms for fetal growth

restriction (i.e. decreased oxygen saturation, endothelial dysfunction, increased blood

viscosity, thrombosis, etc.), also have been associated with air pollution in studies of acute

pollution/cardio-respiratory responses.21-24 Further, these mechanisms also may play an

important role in the occurrence of pregnancy complications including preeclampsia,

placental abruption and placenta previa.25-29 Thus, air pollution related fetal growth

restriction, some pregnancy complications (e.g., placental abruption) and cardio-respiratory

disease may share common mechanisms. Therefore, we hypothesized that elevated levels of

air pollution affect fetal growth in uncomplicated pregnancies, and that pregnancy

complications adversely modify the pollution/fetal growth association making the risk of

impaired fetal growth more pronounced among complicated pregnancies.

Using a multi-year, New Jersey (NJ) statewide, linked birth certificate and maternal hospital

discharge dataset, and PM2.5 (particulate matter <2.5 μm in aerodynamic diameter), nitrogen

dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) measurements made at

monitoring locations across NJ, we examined the effect(s) of ambient air pollutant

concentrations during early, middle, and late pregnancy on fetal growth restriction among

term births. These linked data provide more complete recording of pregnancy complications

than birth certificates alone, and provide an opportunity to examine if the effect of air

pollution on fetal growth differs between uncomplicated and complicated pregnancies.

METHODS

Study population

Using linked birth certificate and maternal/newborn hospital discharge summaries

maintained by the Division of Family Health Services, NJ Department of Health and Senior

Services (NJDHSS), we selected all singleton births in NJ from 1999-2003 to White (non-

Hispanic), African American (non-Hispanic), or Hispanic mothers who were residents of NJ
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at the time of birth, with a gestational age of 37-42 completed weeks and a birth weight ≥

500g. The study was approved by both UMDNJ and NJDHSS Institutional Review Boards.

From the birth certificate, we extracted data on maternal characteristics (i.e. age, race/

ethnicity, marital status, education level, and cigarette smoking, drug use, and alcohol use

during pregnancy), maternal place of residence at the time of birth, trimester of 1st prenatal

care visit, infant birth weight, and gender. Also from the birth certificate, we retained data

on the start day, month, and year of the last menstrual period (LMP), and the clinical

estimate of gestational age. If either the birth certificate or maternal discharge data indicated

a specific pregnancy complications (gestational hypertension, preeclampsia, eclampsia,

gestational diabetes, placenta previa, placental abruption, or premature rupture of the

membranes), we coded that subject as having that complication. This approach provides a

higher sensitivity and specificity than use of birth certificates or maternal hospital discharge

data alone.30-33

Outcome definition

We estimated gestational age based on LMP using the algorithm proposed by the National

Center for Health Statistics.34 Gestational age information reported on the basis of women’s

menstrual history has been shown to be reasonably reliable.33,35,36 For each birth, we

calculated a fetal growth ratio as a measure of newborn size.37,38 For each gestational age/

gender/race specific stratum (e.g. white males with gestational age of 38 weeks), we

calculated the median birth weight. Each newborn’s/birth’s fetal growth ratio was then

calculated as the newborn’s birth weight divided by the median birth weight of the

corresponding stratum. We then defined VSGA as a fetal growth ratio <0.75, SGA as ≥0.75

and <0.85, with all fetal growth ratios ≥ 0.85 comprising the reference group. The cutoff

values for defining VSGA and SGA have been validated by other investigators.37,38 This

method of measuring fetal growth has been used previously by our group39 and others.37,38

Air pollution

All pollutant measurements by the NJ Department of Environmental Protection were

retrieved from the United States Environmental Protection Agency website.40 PM2.5

measurements (24 hour period) were made every third day at 20 monitoring sites in NJ from

September 1999 through December 2003. NO2 was measured continuously at 11 stations,

SO2 continuously at 16 stations, and CO continuously at 16 stations for the study period.

To each subject/birth, we assigned measurements from the PM2.5 monitor closest to the

maternal residence at birth. However, we excluded all births whose maternal residence was

>10km from the closest monitoring station. Using the estimated date of conception, we

calculated the mean 1st trimester (1st 93 days from estimated date of conception) and mean

2nd trimester PM2.5 concentrations (2nd 93 days from estimated date of conception). The

mean 3rd trimester PM2.5 concentration was calculated as the mean PM2.5 concentration

during the remaining pregnancy time (3rd trimester ranged from 73 to 108 days). We

calculated a mean concentration for only those trimesters with <30% of the scheduled PM2.5

measurements missing. If ≥30% were missing, we set that trimester specific mean PM2.5
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concentration to missing. We then calculated trimester specific NO2, SO2, and CO

concentrations in the same manner, and used these concentrations in all subsequent analyses.

Neighborhood level socio-economic status (SES)

To control for neighborhood characteristics of the maternal residence that may both be

associated with birth outcomes and correlated with air pollution concentrations, we

abstracted the following variables from the 2000 US Census, by census tract:41 percentage

of persons aged 25 and older with less than a high school education, percentage of persons

aged 25 and older with at least 4 years of college education, and percentage of persons

below the federally defined poverty line. These area-based variables have been shown to be

reasonable measures of neighborhood level SES,42 which may predict health risks

associated with neighborhood characteristics independent of individual level SES

measures.43 The latitude and longitude of the maternal residence at birth were used to

identify the census tract in which each mother resided, using ArcGIS v.9.2 (©ESRI,

Redlands, CA). We then assigned each birth/mother values of these three area-based US

census variables.

Statistical analysis

Main analysis—We used a cohort study design and polytomous logistic regression (SAS

Proc Catmod, ©SAS Inc, Cary, NC) to estimate the risk of SGA and VSGA, compared to

the reference group, associated with incremental increases in mean PM2.5 concentration in

the 1st trimester. In this model we included those covariates that were not thought to be on

the causal pathway from PM2.5 to SGA/VSGA, which changed the pollutant effect estimate

by 10% and/or were predictors of SGA/VSGA. These included maternal age, education, and

race, trimester of prenatal care initiation, maternal smoking, drug use, and alcohol use

during pregnancy, marital status, percentage of the maternal residence census tract’s

population 25 years and older with < 12 years of education, percentage with ≥ 4 years of

college education, and the percentage of the census tract’s population living below the

poverty line. We then re-ran this same model without the 1st trimester PM2.5 to separately

examine effects associated with 2nd and then 3rd trimester mean PM2.5 concentrations, as

well as 1st, 2nd, and 3rd trimester mean NO2, SO2, and CO concentrations. From each model,

we report the excess risk and its 95% confidence interval.

Sensitivity analyses—To evaluate our assumption of a linear concentration response, we

replaced the continuous pollutant concentration (e.g. 1st trimester PM2.5) with indicator

variables based on quintiles and re-ran the same one pollutant model described above. We

then used an ordinal variable to replace these quintiles to perform a test for trend. To assess

the stability of our single pollutant model risk estimates (e.g. 1st trimester PM2.5) after

adjustment for other pollutant concentrations, we ran the same models including two

pollutant concentrations from the same trimester (e.g. 1st trimester PM2.5 and 1st trimester

NO2). To determine if our findings were sensitive to the definitions of SGA/VSGA used

(i.e. fetal growth ratio vs. <10%tile), we redefined VSGA as a birth weight less than the 3rd

percentile of the corresponding gestational age, gender, and race specific distribution of

birth weights, SGA as greater than or equal to the 3rd percentile and less than the 10th

percentile, and our reference birth group as greater than or equal to the 10th percentile. We
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then re-ran the same model described above. To evaluate if our findings were restricted to

one racial/ethnic group, we evaluated effect modification by maternal race. To evaluate

whether our findings were sensitive to control for long term trends, season, and temperature,

we included indicator variables for the month and calendar year of birth, and linear and

quadratic terms of 1st trimester mean apparent temperature.44 For each subject we used

temperature and dew point measurements made at the closest airport to the maternal

residence, and from these calculated apparent temperature as a measure of the subject’s

perceived air temperature given the humidity.

Effect modification by pregnancy complications—We investigated whether the

association between fetal growth restriction and PM2.5 differed in those women with and

without pregnancy complications. We created an indicator variable for the presence of each

pregnancy complication (i.e. gestational hypertension, gestational diabetes, pre-eclampsia,

eclampsia, placenta previa, placental abruption, and premature rupture of the membrane),

and then included an interaction term (PM2.5 * Pregnancy Complication) in the model. All

statistical analyses were done using SAS v.9.1 (©SAS, Inc. Cary, NC).

RESULTS

There were 492,678 singleton births to White (non-Hispanic), African American (non-

Hispanic), and Hispanic mothers who were residents of NJ from 1999 to 2003. After

retaining only those births with gestational ages 37 to 42 weeks, and excluding all

observations with missing data on birth weight, date of birth, LMP, and other covariates,

350,107 births remained (n=27,943 SGA births [8%] and n=7,773 [2%] VSGA births).

Births with a maternal residence >10 km from a monitoring station, or those missing

trimester specific mean pollutant concentrations were then excluded, leaving n=88,678

births for analyses involving PM2.5, n=132,888 for SO2, n=114,411 for NO2, and n=134,798

births for analyses involving CO. There were n=199,221 births included in at least 1

pollutant specific analysis.

Mothers of SGA and VSGA infants were more likely to be less than 25 years old and less

likely to have completed high school, compared to mothers of appropriate size births (Table

1). They were also more likely to be single, African American and have smoked during

pregnancy. The frequencies of gestational hypertension, preeclampsia, fetal distress,

placental abruption and premature rupture of membranes were highest for mothers of VSGA

infants, intermediate for mothers of SGA infants, and lowest for mothers of appropriate size

infants. Mothers of VSGA and SGA infants lived in census tracts where greater proportions

of residents had less than a high school education and lived in poverty, compared to mothers

of births in the referent group (Table 1).

Mothers of infants excluded from the analysis (i.e. no pollutant monitoring station <10 km

from the maternal residence) were generally older (23% ≥ 35 years), had earlier prenatal

care (86% in the 1st trimester), and were more likely to be white (77%), married (77%), and

have had some college education (63%), than the mothers of reference births included in the

analysis (Table 1). The frequencies of specific pregnancy complications, however, were
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similar (e.g. preeclampsia 2%; gestational diabetes 4%; placental abruption 1%; premature

rupture of the membrane 4%) to the reference group.

Subject specific 1st trimester mean PM2.5 concentrations ranged from 2 to 29 μg/m3, NO2

from 5 to 47 ppb, SO2 from 1 to 14 ppb, and CO from 0.137 to 2.195 ppm. The mean and

standard deviation for subject’s trimester specific mean pollutant concentrations are shown

in Table 2. Subject specific 1st, 2nd, and 3rd trimester NO2 and CO concentrations were each

highly correlated (e.g. 1st trimester CO and 2nd trimester CO: r=0.88), but subject specific

1st, 2nd, and 3rd trimester SO2 and PM2.5 concentrations were not (Table 3). Trimester

specific NO2 and CO concentrations were moderately correlated (e.g. 1st trimester NO2 and

1st trimester CO: r=0.51), and all other pollutant/trimester pairs uncorrelated.

When we evaluated each trimester specific pollutant concentration separately, each 4 μg/m3

increase in both the 1st and 3rd trimester mean PM2.5 concentration was associated with

significantly increased risk of SGA (Table 4). The 1st and 3rd trimester VSGA excess risk

estimates were also greater than 0, but not statistically significant. Each 10 ppb increase in

each of the 1st, 2nd, and 3rd trimester mean NO2 concentrations was associated with

significantly increased risk of VSGA, but not SGA. No trimester specific mean SO2 or CO

concentration was associated with increased risk of SGA or VSGA (Table 4).

When including 1st trimester PM2.5 and NO2 concentrations in a model simultaneously

(n=59,955 births with both PM2.5 and NO2 trimester mean concentrations), the PM2.5/SGA

and NO2/VSGA risk estimates were not substantially different than the risk estimates from

single pollutant models on those same n=59,955 subjects (Table 5). This was also true for

the 2nd and 3rd trimester risk estimates. Risk of SGA or VSGA generally increased with

increasing quintiles of 1st and 3rd trimester PM2.5 concentration (Figure 1) and 1st, 2nd, and

3rd trimester NO2 concentrations, although not always (Figure 2).

When we redefined SGA and VSGA as less than the 10th and 3rd percentiles, respectively,

the excess risk estimates were generally consistent with our previous PM2.5/SGA estimate

(1st trimester: 4.5%, 95% CI = -0.5%, 8.7%; 3rd trimester: 4.1%, 95% CI = 0.3%, 8.0%), and

our NO2/VSGA estimates (1st trimester: 7.0%, 95% CI = 1.8%, 12.4%; 2nd trimester: 7.7%,

95% CI= 2.6%, 13.0%; 3rd trimester: 7.4%, 95% CI = 2.5%, 12.5%). When we included

apparent temperature, calendar month and year of birth in our models, our excess risk

estimates were consistent with our previous PM2.5/SGA estimates (1st trimester: 5.5%, 95%

CI: 0.3%, 11.0%; 3rd trimester: 3.3%, 95% CI = -1.7%, 8.6%) and our NO2/VSGA estimates

(1st trimester: 7.5%, 95% CI = 1.9%, 13.4%; 2nd trimester: 7.3%, 95% CI = 1.8%, 13.0%;

3rd trimester: 8.0%, 95% CI = 2.7%, 13.7%).

When we evaluated effect modification by maternal race, the 3rd trimester NO2/VSGA

excess risk estimate was greatest for Hispanic mothers (9.5%; 95% CI = 0.5%, 19.2%), and

smaller but similar for White (non-Hispanic) (5.2%, 95% CI = -2.3%, 13.3%) and African

American (non-Hispanic) mothers (5.0%, 95% CI = -3.9%, 14.8%). However, the 3rd

trimester PM2.5/SGA risk estimate was greatest for African American mothers (7.9%, 95%

CU = 0.1%, 16.2%), smaller for White mothers (4.2%, 95% CI = -1.4%, 10.1%), but there

was no apparent effect in Hispanic mothers (-0.1%, 95% CI = -6.4%, 6.7%).
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Last, we evaluated whether the association between late pregnancy (i.e. 3rd trimester) mean

PM2.5 concentration and the risk of SGA/VSGA was modified by several pregnancy

complications. Among those pregnancies with at least one pregnancy complication, each 4

μg/m3 increase in 3rd trimester mean PM2.5 concentration was associated with a 12.6%

greater risk of VSGA. Among uncomplicated pregnancies, this excess risk estimate was ~5

times smaller (1.5%; Table 6). We did not observe a similar pattern when estimating the risk

of SGA associated with the same incremental PM2.5 increase, and neither of these

interaction terms were statistically significant. We then evaluated each pregnancy

complication separately in the same manner. Although none of the complication-specific

interaction terms were statistically significant, we did observe ~2 to 5 fold larger SGA/

VSGA excess risk estimates in those pregnancies complicated by placental abruption

compared to those without placental abruption, and premature rupture of the membrane

compared to those without this condition. For the other pregnancy complications, we did not

observe larger excess risks of both SGA and VSGA associated with incremental PM2.5

concentration increases for complicated pregnancies compared to uncomplicated

pregnancies (Table 6).

DISCUSSION

In this large, multiyear, statewide cohort study of ambient air pollution and risk of fetal

growth restriction, we found significantly increased risk of SGA associated with each 4

μg/m3 increase in mean PM2.5 concentration in the 1st and 3rd trimesters, and significantly

increased risk of VSGA associated with each 10 ppb increase in 1st, 2nd, and 3rd trimester

mean NO2 concentrations, after controlling for known risk factors. These estimates were not

attenuated when both PM2.5 and NO2 were included in the same model, and each pollutant

effect was generally consistent with an increasing concentration-response relationship.

However, there were differences in the magnitude of the 3rd trimester risk estimates by race/

ethnicity, but the pattern of effect modification was not the same for PM2.5 (highest for

African American mothers) and NO2 (highest for Hispanic mothers). Last, we found

evidence of effect modification by several pregnancy complications including placental

abruption and premature rupture of membranes, although these effects were not statistically

significant, likely because of the rarity of these complications.

Our findings are consistent with previous studies reporting greater risk of fetal growth

restriction or low birth weight associated with 1st trimester pollutant

concentration1,5,8,9,12,16,20 and 3rd trimester pollutant concentrations,1,7,9-13,16-18 although

the specific pollutants responsible for those increased risks may be different. Associations

with NO2 suggest local traffic pollution and/or residence near a source of traffic pollution

during the pregnancy may be important risk factors. Future analyses will estimate risks

associated with pregnancy exposures to specific PM2.5 components (i.e. sulfates, elemental

carbon, organic carbon, etc) or other traffic related pollutants (e.g. specific polycyclic

aromatic hydrocarbons) to explore these PM2.5 and traffic pollution findings further.

The biological mechanism(s) by which ambient air pollution affect(s) fetal growth is/are

largely unknown and may differ between early and late-onset fetal growth restriction, as

well as between uncomplicated and complicated pregnancies. Mechanisms may include a
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defective trophoblast invasion,45,46 decreased vascular reactivity,47 decreased oxygen and

nutrient delivery,48 and increased trophoblast apoptosis,49 which may act independently or

jointly. Mechanisms may also include the direct transfer of pollutants across the maternal

blood-placenta barrier and direct binding to the fetal DNA regulating its transcription.

Polycyclic aromatic hydrocarbons (PAH) previously have been associated with DNA

adducts, which have been reported to adversely affect fetal growth and development,50

especially during the period of rapid fetal growth. PAH exposure during pregnancy also has

been associated with increased risk of fetal growth restriction.51,52

We observed approximately two to five fold larger SGA/VSGA risk estimates in those

pregnancies complicated by placental abruption and premature rupture of membranes

compared to those without these complications. Although fetal growth restriction and

placental abruption share a common mechanism of defective placental implantation early

during embryogenesis,53 elevated levels of pollution late in pregnancy may exaggerate

decidual necrosis, microinfarcts and atheromatous/fibrinoid changes in the placenta of

pregnancies that are prone to abruption,29 accentuating their effect on fetal growth

restriction. The reason(s) for the synergy between elevated air pollution and premature

rupture of membranes is not clear. Premature rupture of membranes may serve as an

indicator of chronic infection as it is associated with chorioamnionitis.54 Thus, mothers

developing certain pregnancy complications, such as placental abruption and premature

rupture of the membranes, may represent a parturient group particularly susceptible to the

adverse health effects of elevated air pollution. However, our results need confirmation.

Although our study had several strengths, including the large number of subjects and the use

of statewide, multiyear linked data from birth certificates and maternal hospital discharges,

there were some limitations that should be considered. First, we had a limited number of

VSGA births and pregnancy complications, and therefore less precision in these risk

estimates. Second, it is likely that smoking, illicit drug use, and alcohol use are

underreported on birth certificates and hospital discharge data. Nonetheless, because these

data are recorded during prenatal visits, it is unlikely that this misclassification is differential

with respect to normal versus restricted fetal growth. However, residual confounding cannot

be ruled out. Third, there is likely non-differential exposure misclassification, and therefore

underestimation of risk, as we assigned pollutant concentrations based on residential

proximity to fixed pollutant monitoring sites. Although we still found increased risks

associated with PM2.5 and NO2, this non-differential misclassification may explain the lack

of association with CO, a more spatially heterogeneous pollutant.

Fourth, although we assumed the maternal residence at birth was the same throughout the

pregnancy, previous studies have shown that between 25% and 33% of pregnant women

move during pregnancy,55 with 62% moving within the same municipality,56 and 70%

moving within the same county.57 Since we matched air pollution concentrations from the

monitor closest to the maternal residence at birth, we may have mismatched some pollution

monitors if the mother changed residences during pregnancy. Assuming this mismatching/

exposure error was non-differential with respect to fetal growth category, this

misclassification may have resulted in a bias towards the null and underestimation of risk.
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However, the magnitude of this bias may be minimal, as movement within a municipality or

to a neighboring municipality may not have resulted in a change in the air pollution monitor.

Last, only 25% of births with complete covariate data (88,678 of 350,107), had a maternal

residence ≤10 km from a PM2.5 monitoring station and were thus retained for PM2.5

analyses. Since many of these monitors were located in urban areas, there were clear

differences in the sociodemographic characteristics between those included (births to

mothers from mostly urban areas) and excluded from analyses (births to mothers from

urban, suburban, and rural areas). Although this is not an issue of internal validity, these

differences in subject characteristics between those included and excluded from this analysis

may limit the generalizability of these findings.

Future work to examine associations between pregnancy exposure to specific PM

components/sources and adverse birth outcomes, and/or to examine more powerfully the

role of pregnancy complications as effect modifiers of this association or as outcomes

themselves, are needed.
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WHAT IS ALREADY KNOWN ON THIS SUBJECT?

1 – Although the relationship between ambient air pollution and adverse birth outcomes

is an active area of investigation, more data is needed to establish the time(s) during

pregnancy when mothers are most at risk.

2 – Also, whether the presence of pregnancy complications late in pregnancy infer

greater susceptibility to the adverse effects of ambient air pollution on birth outcomes is

not known.
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WHAT THIS STUDY ADDS

1 – Our findings suggest that ambient air pollution, perhaps specifically traffic emissions

during early and late pregnancy and/or factors associated with residence near a roadway

during pregnancy, may affect fetal growth.

2 - Using more comprehensive data encompassing birth certificates and hospital

discharge abstracts at the time of delivery, pregnancies complicated by placental

abruption and premature rupture of the membrane had greater excess risks of SGA/

VSGA than pregnancies not complicated by these conditions.
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Figure 1.
Relative Odds and 95% Confidence Intervals of SGA Associated with Each Quintile of 1st

and 3rd Trimester Mean PM2.5 Concentration, by Median PM2.5 Concentration (μg/m3) of

Each Quintile.
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Figure 2.
Relative Odds and 95% Confidence Intervals of SGA Associated with Each Quintile of 1st,

2nd, and 3rd Trimester Mean PM2.5 Concentration, by Median PM2.5 Concentration (μg/m3)

of Each Quintile.
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Table 4

Percent Change in Risk (and 95% Confidence Intervals) of SGA and VSGA Associated with Each

Incremental (Interquartile Range) Increase in Mean Trimester Specific Pollutant Concentration. New Jersey

Air Pollution and Adverse Birth Outcomes Study 1999-2003.

Pollutant
(n)

Interquartile
range

Trimester
of mean

concentration

Small for
gestational

age

Very small
for

gestational
age

Fine particles - PM2.5

(n=88,678) 4 μg/m3

1st Trimester
4.5

(0.5, 8.7)
2.6

(−4.4, 10.0)

2nd Trimester
−1.8

(−5.6, 2.2)
0.2

(−6.7, 7.5)

3rd Trimester
4.1

(0.3, 8.0)
4.2

(−2.4, 11.2)

Sulfur Dioxide
(n=132,888) 3 ppb

1st Trimester
1.7

(−0.9, 4.3)
0.0

(−4.6, 4.8)

2nd Trimester
0.2

(−2.4, 2.9)
2.5

(−2.2, 7.4)

3rd Trimester
−0.1

(−2.8, 2.6)
3.1

(−1.8, 8.3)

Nitrogen Dioxide
(n=114,411) 10 ppb

1st Trimester
1.2

(−1.6, 4.0)
7.0

(1.8, 12.4)

2nd Trimester
1.1

(−1.6, 3.9)
7.7

(2.6, 13.0)

3rd Trimester
1.0

(−1.7, 3.7)
7.4

(2.5, 12.5)

Carbon Monoxide
(n=134,798) 0.5 ppm

1st Trimester
1.1

(−2.0, 4.3)
−4.1

(−9.4, 1.4)

2nd Trimester
0.0

(−3.0, 3.1)
−1.9

(−7.1, 3.6)

3rd Trimester
0.1

(−2.8, 3.1)
1.1

(−4.1, 6.5)

NOTE: Each trimester specific pollutant concentration was modeled separately. All risk estimates adjusted for maternal race/ethnicity, maternal
education, maternal age, marital status, trimester prenatal care began; maternal alcohol use, maternal smoking, maternal drug use, percentage of
population (≥ 25 years) in maternal residence census tract with < 12 years of education, percentage of population (≥ 25 years) in maternal residence
census tract with at least 4 years of college, and percentage of population in maternal residence census tract below federally defined poverty line.
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Table 5

Percent Change in Risk (And 95% Confidence Intervals) of SGA and VSGA Associated with Each

Incremental (Interquartile Range) Increase in Mean Trimester Specific PM2.5 and NO2 Concentrations (Single

pollutant and Two pollutant models). New Jersey Air Pollution and Adverse Birth Outcomes Study 1999-2003

(n=59,955).

Trimester
of mean

concentration

Model
Type

(Single or
Two

pollutant)

Pollutant Interquartile
range

Small for
gestational age

Very small for
gestational age

1st Trimester

Single* PM2.5 4 μg/m3 4.6
(−0.3, 9.8)

4.5
(−4.0, 13.7)

Single* Nitrogen
Dioxide 10 ppb 1.0

(−2.9, 5.0)
9.2

(2.0, 17.0)

Two

PM2.5 4 μg/m3 4.5
(−0.4, 9.7)

3.2
(−5.2, 12.4)

Nitrogen
Dioxide 10 ppb 0.6

(−3.3, 4.6)
8.9

(1.6, 16.7)

2nd Trimester

Single* PM2.5 4 μg/m3 −3.2
(−7.8, 1.6)

−0.6
(−8.7, 8.3)

Single* Nitrogen
Dioxide 10 ppb 0.3

(−3.2, 4.0)
9.5

(2.8, 16.8)

Two

PM2.5 4 μg/m3 −3.3
(−8.0, 1.5)

−2.0
(−10.1, 6.9)

Nitrogen
Dioxide 10 ppb 0.6

(−3.0, 4.4)
9.7

(2.9, 17.0)

3rd Trimester

Single* PM2.5 4 μg/m3 8.2
(3.4, 13.2)

6.4
(−1.7, 15.2)

Single* Nitrogen
Dioxide 10 ppb 0.3

(−3.2, 3.8)
9.1

(2.5, 16.0)

Two

PM2.5 4 μg/m3 8.2
(3.5, 13.2)

5.3
(−2.8, 14.1)

Nitrogen
Dioxide 10 ppb −0.4

(−3.8, 3.2)
8.6

(2.1, 15.5)

NOTE: All risk estimates adjusted for maternal race/ethnicity, maternal education, maternal age, marital status, trimester prenatal care began;
maternal alcohol use, maternal smoking, maternal drug use, percentage of population (≥ 25 years) in maternal residence census tract with < 12
years of education, percentage of population (≥ 25 years) in maternal residence census tract with at least 4 years of college, and percentage of
population in maternal residence census tract below federally defined poverty line.

*
Note, these single pollutant models differ from those in Table 4 only by the number of births used in the analysis.
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Table 6

Percent Increase in Risk (and 95% Confidence Intervals) of SGA/VSGA Associated with Each 4 μg/m3

Increase in Mean 3rd Trimester PM2.5 Concentration, by Pregnancy Complication. New Jersey Air Pollution

and Adverse Birth Outcomes Study 1999-2003 (n=88,678)

SMALL FOR GESTATIONAL AGE VERY SMALL FOR
GESTATIONAL AGE

Percent
increase in

risk

95% confidence
interval

Percent
increase in

risk

95% confidence
interval

Any Complication

 No 4.7 (0.6, 9.0) 1.5 (−6.1, 9.7)

 Yes 2.2 (−6.1, 11.3) 12.6 (0.1, 26.7)

Placental Abruption

 No 4.0 (0.3, 7.9) 4.1 (−2.6, 11.2)

 Yes 11.7 (−21.7, 59.5) 7.6 (−29.8, 64.9)

Placenta Previa

 No 3.9 (0.2, 7.8) 4.1 (−2.5, 11.2)

 Yes 23.2 (−20.9, 91.9) 3.2 (−43.0, 86.9)

Pre-clampsia

 No 4.2 (0.4, 8.2) 4.4 (−2.6, 11.9)

 Yes 2.7 (−13.8, 22.3) 3.9 (−15.7, 28.1)

Gestational Hypertension

 No 4.3 (0.4, 8.4) 3.2 (−4.0, 10.9)

 Yes 3.9 (−7.8, 17.1) 12.9 (−3.3, 31.9)

Premature Rupture of the Membrane

 No 3.7 (−0.1, 7.7) 3.3 (−3.5, 10.5)

 Yes 14.6 (−3.3, 35.9) 21.9 (−3.6, 54.2)

Gestational Diabetes

 No 4.6 (0.8, 8.6) 4.3 (−2.5, 11.5)

 Yes −9.3 (−24.7, 9.3) 1.4 (−27.0, 40.9)

NOTE: All risk estimates adjusted for maternal race/ethnicity, maternal education, maternal age, marital status, trimester prenatal care began;
maternal alcohol use, maternal smoking, maternal drug use, percentage of population (≥ 25 years) in maternal residence census tract with < 12
years of education, percentage of population (≥ 25 years) in maternal residence census tract with at least 4 years of college, and percentage of
population in maternal residence census tract below federally defined poverty line.
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