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We performed a case-control study of women at risk of HIV-1 superinfection to understand the relationship between immune
activation and HIV-1 acquisition. An increase in the frequency of HIV-1 target cells, but not in other markers of T cell activation,
was associated with a 1.7-fold increase in the odds of superinfection. This suggests that HIV-1 acquisition risk is influenced more
by the frequency of target cells than by the generalized level of immune activation.

Inflammation and immune activation promote HIV-1 disease
progression, presumably because activated target cells support

high levels of viral replication (1, 2); however, their role in driving
HIV-1 transmission is less clear. A number of studies have exam-
ined immune activation in HIV-exposed but uninfected individ-
uals. The majority of these studies support the idea that low levels
of immune activation at the time of exposure reduce the risk of
HIV-1 infection (3–16). However, one recent study indicated that
condom use was associated with lower levels of immune activa-
tion, potentially confounding some of the prior results (10). Fur-
ther, in other studies, exposure to HIV-1 is associated with in-
creased levels of immune activation (17–20) and with the
development of HIV-1-specific immune responses (18, 21–26)
that could play a role in protection. Differences in study design,
control groups, and the type of immune response that was as-
sessed and classified as immune activation may be partly respon-
sible for these somewhat conflicting results from exposed, unin-
fected cohorts.

HIV-1 vaccine trials have done little to clarify the role of im-
mune activation in driving HIV-1 acquisition. In the Step Study,
the enhanced risk of infection among the members of a subset of
vaccinees was attributed to their circumcision status and prior
elevated antibody titers with respect to the Ad5 vector rather than
to increased immune activation of T cells (27, 28). In the RV144
vaccine trial, generalized immune activation was not directly
linked to either protection or susceptibility (29). The factors that
contribute to HIV-1 acquisition in the setting of natural exposure
to diverse circulating strains remain incompletely understood.

Here, we examined the association between immune activa-
tion and HIV-1 acquisition in a cohort of HIV-1-infected women
at ongoing risk of HIV-1 superinfection through sex work. A sub-
set of these women went on to become superinfected with a sec-
ond HIV-1 strain (30–32). Superinfection provides a unique op-
portunity to evaluate correlates of HIV-1 acquisition, since both
immune activation and HIV-1-specific immune responses can be
evaluated. Our previous studies of this cohort found no significant
differences in preexisting HIV-1-specific antibody or T cell re-
sponses in women who went on to be superinfected versus those
who did not (33–35). However, individuals in other cohort studies
of mostly male subjects who acquired a second HIV-1 infection

within �1 year of initial infection were found to have weak neu-
tralizing antibody responses to their initial infection, suggesting
the possibility that neutralizing antibodies can play some role in
mediating susceptibility (36–38). Superinfection has also been
noted to occur despite broad CD8� T cell responses (39). None of
these studies explored the role of generalized immune activation
in HIV-1 superinfection, though such activation could mitigate
the beneficial effects of HIV-1-specific immunity.

Immune activation was assessed by examining differentiation
and activation markers on T cell subsets by flow cytometry anal-
ysis of peripheral blood mononuclear cells (PBMCs) from 10 su-
perinfected women and 29 nonsuperinfected controls as previ-
ously described (34). Cases and controls were matched based on
the timing of sample collection with respect to initial infection and
their HIV-1 plasma viral loads (Table 1). All analyses were per-
formed using samples collected at the visit prior to documented
superinfection in order to assess immunity at the time point most
relevant in terms of exposure to, and lack of protection from, the
second virus. Cases and controls did not differ significantly in
their sex frequencies (mean of 1.4 versus 1.5 self-reported sex acts
in the preceding week averaged over follow-up prior to sample
collection; Table 1). CD4 counts were not routinely available but
were �200 cells/mm3 either immediately prior to or within 2 years
of superinfection in all cases (30–32). As expected based on prior
results (1, 40–43), HIV-infected individuals showed higher levels
of CD4� and CD8� T cell activation markers (Ki-67, CD38, HLA-
DR, CCR5) and had perturbations in the expression of memory
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and differentiation markers in comparison to HIV-1-uninfected
controls (Fig. 1).

To determine whether higher levels of activation were associ-
ated with altered odds of superinfection, exact conditional logistic
regression analysis was performed (Table 2). Increased frequen-
cies of both CD3� T cells and, more specifically, CD3� CD4�

CCR5� cells, primary targets of HIV-1 infection, were associated
with increased odds of superinfection (Table 2). For every 1%
increase in the frequency of CD3� CD4� CCR5� HIV-1 target
cells among total lymphocytes, the odds of superinfection were
1.69-fold higher (95% confidence interval [CI], 1.02 to 3.36), with
a P value of 0.04. This elevation in risk was reflected only in the
frequency of these cells as a percentage of total lymphocytes, as the
percentage of CCR5-expressing CD4� T cells was not associated
with an elevated risk of superinfection (odds ratio [OR], 0.99; 95%

CI, 0.94 to 1.05). There was no association between expression of
other immune activation markers such as Ki-67, CD38, or
HLA-DR among T cells and the odds of superinfection (Table 2).
Furthermore, the levels of activation among either CD4� or
CD8� cells, as measured by expression of any combination of
Ki-67, CD38, and HLA-DR, was not associated with the odds of
superinfection (not shown). Finally, differences in the frequencies
of regulatory T cells, naive cells, and various memory and effector
T cell subsets were not associated with significant alterations in the
odds of superinfection (Table 2). Thus, only increases in the fre-
quency of CD3� and CD3� CD4� CCR5� target cells, but not
increases in the frequencies of any other activated subsets, were
associated with increased odds of superinfection.

These data leverage long-term, regular follow-up of a high-
risk population and the setting of superinfection to evaluate,

TABLE 1 Sample timing and demographics for superinfection cases and controlsa

Case no. SI case ID SI testing ypib
SI VL
(log10 copies/ml) SI sex frequencyc Cont case ID Cont testing ypi

Cont VL
(log10 copies/ml) Cont sex frequency

1 QA013 0.73 5.12 1.4 QA465 0.62 5.05 1.8
QC370 0.83 5.05 1.7
QD435 0.82 4.29 1.1

2 QB008 0.83 4.52 1.1 QB099 0.77 4.93 4.3
QC406 1.0 4.77 0.8
QD370 0.76 4.22 1.7

3 QA413 2.0 4.95 0.8 QA509 2.1 4.61 1.0
QC036 2.1 5.30 0.6
QC890 1.8 4.84 0.2

4 QB045 4.6 4.50 0.3 QA281 4.7 4.98 0.8
QA692 4.8 5.15 0.9
QB247 4.7 4.70 0.9

5 QB726 2.8 3.77 1.0 QA874 2.9 4.68 1.6
QB670 2.8 4.18 1.3
QC413 2.7 3.38 1.9

6 QB850 0.14 5.22 3.0 QB424 0.086 5.52 2.5
QB543 0.14 5.52 0.5
QC805 0.12 5.16 2.0

7 QC885 0.16 5.56 1.4 QB461 0.16 5.58 1.2
QB765 0.22 5.50 1.0

8 QB609 0.28 2.39 1.3 QB857 0.30 4.17 2.3
QC048 0.20 5.05 4.7
QF481 0.26 3.97 0

9 QA252 2.7 4.02 0.8 QC100 2.7 1.69 1.7
QD470 3.0 4.31 0
QD834 2.9 4.91 1.6

10 QC858 0.93 4.29 2.9 QA560 0.96 4.07 0.7
QB936 0.59 5.12 2.4
QC888 1.07 4.50 2.4

a Abbreviations: Cont, control; ID, identification number; SI, superinfection; ypi, years postinfection; VL, viral load.
b Samples were tested at the time point immediately prior to detection of superinfection in order to best assess the status of the immune response at the time point most relevant in
terms of exposure to, and lack of protection from, the second virus. Controls were matched to this time postinfection.
c Data represent averages of self-reported frequencies of sexual intercourse in the preceding week from all follow-up visits up to the time of sample collection. This measure includes
both protected and unprotected visits. The median number of visits contributing to this summary was 37 (interquartile range, 20 to 64 visits) over a median of 2 years (interquartile
range, 1 to 5 years).
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for the first time, whether the activation and/or differentiation
of T cells was associated with HIV acquisition. This is an im-
portant consideration, as the contributions of HIV-1-specific
immune responses to protection remain uncertain. Some im-
mune responses may even enhance infection risk, particularly
if they increase recruitment of HIV-1 target cells to sites of viral
entry without containing early replication. Our finding that an
increased frequency of HIV-1 primary target cells is associated
with increased odds of a second infection may partially explain
the observation that the risk of superinfection appears to be
highest in the first 6 months following initial infection (44, 45),
before target cell depletion.

A strength of this study is the fact that superinfection cases
were prospectively identified, allowing us to evaluate immunity in

matched individuals with similar risk behaviors for exposure to
HIV-1 but different outcomes. While this remains the largest su-
perinfection cohort available with adequate sampling for such im-
munologic studies, we still had relatively modest power to detect
significant differences between groups and therefore did not ad-
just for multiple comparisons. With the number of statistical tests,
a single significant association may have been observed by chance,
and our finding that increased numbers of HIV-1 target cells in-
crease the odds of superinfection warrants follow-up in additional
studies. Although the lack of association between other markers of
immune activation and the risk of HIV-1 superinfection could be
attributed to a lack of statistical power, this seems somewhat un-
likely because the majority of observed associations were modest
in magnitude. The median absolute estimated odds ratio for one

FIG 1 Representative flow cytometry data to assess T cell subsets and immune activation levels from superinfection cases and controls. (A) An example of the
sequential gating tree used to identify T cell subsets. FSC, forward scatter; AViD, Live/Dead fixable aqua dead cell stain; SSC, side scatter. (B) Phenotypes of CD8�

(top two rows) and CD4� (bottom two rows) T cells based on expression of the activation and memory markers Ki-67, HLA-DR, CD38, CD28, CD27, CCR5,
CCR7, and CD45RA are shown. The top panels show the flow cytometry plots from HIV-infected subject QA465, and the bottom panels show the plots from cells
from an HIV-uninfected individual that were cryopreserved and evaluated in each experiment in order to set consistent gating. The following antibodies were
used: CD195 (CCR5)-phycoerythrin (PE)-Cy7, CD127-Alexa 647, CD25-PE-Cy7, CD28-PE-Cy5, CD38-PE, CD4-fluorescein isothiocyanate (FITC), CD8-
peridinin chlorophyll protein (PerCP)-Cy5.5, GranzymeB-Alexa 700, and Ki-67-FITC (BD Biosciences); CD197 (CCR7)-allophycocyanin (APC) (R&D Sys-
tems); CD27-APC-efluor780 and Fox-p3-PE (eBioscience); CD3-Qdot605 (Molecular Probes); CD3-ECD and CD45RA– electron-coupled dye (ECD) (Beck-
man Coulter); and HLA-DR-Pacific blue (BioLegend).
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unit increase in frequency was 1.03, equivalent in magnitude to
the observed association (OR � 0.97) for percent CD38� HLA-
DR� of CD8 T cells. Using cluster-level bootstrap sampling of the
observed data for percent CD38� HLA-DR� of CD8 T cells, we
would need approximately 300 case-control clusters (1,200 sub-
jects with 1:3 case:control matching) to have 80% power to detect
this observed association. Another potential limitation is that we
were able to measure only reported risk behavior, and background
variations in actual exposure to HIV-1 could have attenuated ob-
served relationships between immune responses and HIV-1 ac-
quisition.

This report highlights the complex interplay of different fac-

tors that influence the risk of HIV-1 acquisition in an HIV-1-
infected individual. It is likely that both HIV-1-specific immunity
and the availability of CD3� CD4� CCR5� HIV-1 primary target
cells contribute to the risk of superinfection. Larger studies will be
needed to confirm and fully define this dynamic. Here, we show
that target cell availability appears to be a more significant con-
tributor to superinfection risk than the generalized immune acti-
vation state.
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