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ABSTRACT

STING (stimulator of interferon genes) is known to control the induction of innate immune genes in response to the recognition
of cytosolic DNA species, including the genomes of viruses such as herpes simplex virus 1 (HSV-1). However, while STING is
essential for protection of the host against numerous DNA pathogens, sustained STING activity can lead to lethal inflammatory
disease. It is known that STING utilizes interferon regulatory factor 3 (IRF3) and nuclear factor �B (NF-�B) pathways to exert its
effects, although the signal transduction mechanisms remain to be clarified fully. Here we demonstrate that in addition to the
activation of these pathways, potent induction of the Jun N-terminal protein kinase/stress-activated protein kinase (JNK/SAPK)
pathway was similarly observed in response to STING activation by double-stranded DNA (dsDNA). Furthermore, TANK-bind-
ing kinase 1 (TBK1) associated with STING was found to facilitate dsDNA-mediated canonical activation of NF-�B as well as
IRF3 to promote proinflammatory gene transcription. The triggering of NF-�B function was noted to require TRAF6 activation.
Our findings detail a novel dsDNA-mediated NF-�B activation pathway facilitated through a STING-TRAF6-TBK1 axis and sug-
gest a target for therapeutic intervention to plausibly stimulate antiviral activity or, alternatively, avert dsDNA-mediated inflam-
matory disease.

IMPORTANCE

The IKK complex, which is composed of two catalytic subunits, IKK� and IKK�, has been suggested to be essential for the acti-
vation of canonical NF-�B signaling in response to various stimuli, including cytokines (e.g., interleukin-1� [IL-1�] and tumor
necrosis factor alpha [TNF-�]), Toll-like receptor (TLR) ligands (e.g., lipopolysaccharide [LPS]), and dsRNAs derived from vi-
ruses, or a synthetic analog. STING has been identified as a critical signaling molecule required for the detection of cytosolic ds-
DNAs derived from pathogens and viruses. However, little is known about how cytosolic dsDNA triggers NF-�B signaling. In the
present study, we demonstrate that TBK1, identified as an IKK-related kinase, may predominantly control the activation of
NF-�B in response to dsDNA signaling via STING through the IKK�� activation loop. Thus, our results establish TBK1 as a
downstream kinase controlling dsDNA-mediated IRF3 and NF-�B signaling dependent on STING.

The detection of cytosolic nucleic acids derived from pathogens
such as herpes simplex virus 1 (HSV-1) is a central cellular

host defense strategy which triggers essential innate immune re-
sponses required for protection of the host. However, inappropri-
ate recognition of self nucleic acids, predominantly involving
double-stranded DNA (dsDNA) species, can result in debilitating
inflammatory diseases, such as systemic lupus erythematosus
(SLE) (1–3). How the cell triggers the induction of innate immune
genes in response to nucleic acids derived from microbes, such as
DNA viruses, intracellular bacteria, and parasites, or in response
to self DNA, has not been elucidated fully. However, we previously
reported that an endoplasmic reticulum (ER)-associated multi-
ple-transmembrane protein, STING (stimulator of interferon
genes; also referred to as TMEM173, MPYS, ERIS, and MITA),
functions as an essential innate immune signaling molecule re-
quired for triggering dsDNA-mediated gene induction (4–8).
STING may directly associate with stimulatory ligands, which in-
clude dsDNA, as well as with cyclic dinucleotides (CDNs) (9),
produced directly by pathogens or metabolized from dsDNA by
cyclic-GMP-AMP (cGAMP) synthase (cGAS) (10, 11). The rep-
ertoire of cytosolic dsDNA-dependent induced genes, including
those for type I interferon (IFN) and proinflammatory genes such
as those for interleukin-6 (IL-6), IL-1�, and tumor necrosis factor
alpha (TNF-�), is known to require the IRF3 and NF-�B pathways
(12). In resting cells, NF-�B remains in the cytoplasm through its

association with inhibitory I�B. A central step in the activation of
NF-�B is phosphorylation of inhibitory I�B by the I�B kinases
(IKKs) � and �. Phosphorylation of I�B results in its degradation
by the proteasome, followed by the release and nuclear transloca-
tion of NF-�B transcription factor subunits, such as p50 and NF-
�Bp65/RelA (13). However, recent evidence suggests that NF-�B
activity can also be controlled by alternate kinases. For example,
cells lacking glycogen synthase kinase 3� (GSK3�), the IKK-re-
lated kinase TANK-binding kinase 1 (TBK1; also referred to as
NAK or T2K) or inducible I�B kinase (IKKi; also referred to as
IKKε), or protein kinase � (PKC �) while exhibiting normal I�B
degradation in response to select stimuli are evidently impaired in
the activation of NF-�B-dependent gene transcription (14–16).
AKT/phosphatidylinositol 3-kinase (PI3K) has also been reported
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to be involved in NF-�Bp65/RelA activation through IKK� acti-
vation (17). TBK1 was originally identified in the context of its
ability to regulate NF-�B in vitro (14, 18, 19). However, subse-
quent studies using mouse embryonic fibroblast cells (MEFs)
lacking TBK1 or IKKi did not strongly support this evidence (20,
21). Rather, cells deficient in TBK1 indicated that TBK1 is an
essential factor for the production of type I IFN through control of
the IRF3 pathway. The complexity of this regulation is exemplified
by recent progress that has identified four serine residues in the
NF-�Bp65/RelA subunit, namely, Ser276, Ser311, Ser529, and
Ser536, that are inducibly phosphorylated through mechanisms
regulated by cytokines such as TNF-� or IL-1 (13).

In this study, we demonstrate that TBK1 may predominantly
control the activation of NF-�Bp65/RelA following cellular detec-
tion of cytosolic dsDNA. The activation of NF-�Bp65, including
the phosphorylation of Ser536, nuclear translocation, and the ex-
pression of NF-�B target genes by stimulation with dsDNA, was
significantly reduced in TBK1-deficient or RNA interference
(RNAi)-silenced MEFs. We also demonstrate that TRAF6 plays a
key role in facilitating STING-mediated NF-�B activation. Thus,
our results establish TBK1 as a downstream kinase controlling
dsDNA-mediated IRF3 and NF-�B signaling pathways dependent
upon STING.

MATERIALS AND METHODS
Cells. STING-deficient MEFs were described previously (4). Immortal-
ized MEFs derived from IKK�-, IKK�-, and TBK1-deficient mice were
described previously (22). MEFs reconstituted with Myc-tagged human
TBK1 (hTBK1) were generated by the transduction of retroviral vector
systems. 293T cells were obtained from the ATCC. All cell lines were
maintained in Dulbecco’s modified Eagle’s medium (DMEM) (Invitro-
gen) supplemented with 10% fetal bovine serum (FBS; Gemini Bio-Prod-
ucts) and were cultured at 37°C in a humidified atmosphere with 5% CO2.

Antibodies, reagents, and plasmids. A rabbit polyclonal antibody
against STING was described previously (4). Other antibodies were pur-
chased from the indicated sources. Antibodies specific to phosphorylated
IRF3 (Ser396) (4D4G), phosphorylated NF-�Bp65 (Ser536) (93H1), NF-
�Bp65 (D14E12), extracellular signal-regulated kinase 1/2 (ERK1/2)
(137F5), phosphorylated ERK1/2 (Thr202/Tyr204) (D13.14.4E), p38
(D13E1), phosphorylated p38 (Thr180/Tyr182) (D3F9), stress-activated
protein kinase/Jun N-terminal protein kinase (SAPK/JNK) (56G8), phos-
phorylated SAPK/JNK (Thr183/Tyr185) (81E11), phosphorylated c-Jun
(Ser63) (54B3), I�B� (L35A5), IKK� and IKK� (2C8), and phosphory-
lated TBK1/NAK (Ser172) (D52C2) were purchased from Cell Signaling.
TBK1/NAK (EP611Y), HSV-1 ICP4 (ab6514), and HSV-1 glycoprotein D
(gD) (ab6507) antibodies were purchased from Abcam. TRAF3 (M-20)
and TRAF6 antibodies were purchased from Santa Cruz Biotechnology
and Stratagene, respectively. Poly(I·C), 5,6-dimethylxanthenone-4-acetic
acid (DMXAA), canonical 3=-5= cyclic-GMP-AMP (cGAMP), and
poly(dA-dT) were purchased from Invivogen. dsDNA90 was prepared as
follows: a single-stranded DNA (ssDNA) sense strand (5=-TACAGATCT
ACTAGTGATCTATGACTGATCTGTACATGATCTACATACATACA
GATCTACTAGTGATCTATGACTGATCTGTACATGATCTACA-3=) was
annealed to an ssDNA90 antisense sequence. The Quantikine ELISA (en-
zyme-linked immunosorbent assay) murine IL-6 immunoassay and
VeriKine mouse IFN-� ELISA kits were purchased from R&D Systems
and PBL Biomedical Laboratories, respectively. The phosphorylation sta-
tus of NF-�Bp65 was determined by use of a PathScan phospho-NF-�B
p65 (Ser536) sandwich ELISA kit (Cell Signaling). DNA fragments encod-
ing murine TRAF3 and TRAF6 were amplified by reverse transcription-
PCR (RT-PCR) from total RNA of primary MEFs and cloned into
pcDNA3.1-A-Myc-His (Invitrogen). The C-terminal deletion mutant of
TRAF3 (TRAF3 mut) was amplified by a PCR using AccuPrimePfx Super-

Mix (Invitrogen) and subcloned into pcDNA3.1-A-Myc-His. The con-
struction of hemagglutinin (HA)-tagged murine STING (STING-HA)
and FLAG-tagged human TBK1 (TBK1-FL) was performed as described
previously (4).

RNA interference. MEFs were transfected with corresponding small
interfering RNAs (siRNAs) (ON-Target Plus siRNA-SMARTpool; Dhar-
macon) by use of Lipofectamine RNAiMAX (Invitrogen) according to the
manufacturer’s instructions. Seventy-two hours after transfection, cells
were used for further experiments. Experiments were done in triplicate,
using more than one siRNA for each gene.

Reporter analysis. 293T cells were transfected with a plasmid for
STING-HA in combination with empty vector (EV), pcDNA3.1-mu-
rine TRAF3-Myc-His (TRAF3-His), or pcDNA3.1-murine TRAF6-
Myc-His (TRAF6-His), together with a reporter plasmid carrying the
luciferase gene under the control of the IFN-�, NF-�B, pRDIII, or
ISRE promoter. Luciferase activity was determined at 24 h posttrans-
fection (Promega).

Immunoblotting and cell fractionation. Cells were seeded onto a 24-
well tissue culture plate for 24 h and stimulated with dsDNA90 (10 �g/
ml), poly(dA-dT) (5 �g/ml), poly(I·C) (5 �g/ml), or DMXAA (200 �M)
for the indicated time. Cell lysis was performed with RIPA buffer (50 mM
Tris-HCl [pH 8.0], 150 mM NaCl, 0.1% SDS, 1% NP-40, 0.5% deoxy-
cholate [DOC], and protease inhibitors) at 4°C for 60 min. The samples
were boiled in 20 �l of SDS sample buffer and then subjected to SDS-10%
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to poly-
vinylidene difluoride (PVDF) membranes (Thermo Scientific). These
membranes were blocked with Tris-buffered saline with Tween 20 (TBST)
containing 5% skim milk at room temperature for 1 h and then incubated
with corresponding antibodies. Membranes were visualized with Super-
signal West Femto maximum-sensitivity substrate (Thermo Scientific).
Cell fractionation assays were performed by using NE-PER nuclear and
cytoplasmic extraction reagents (Thermo Scientific) according to the
manufacturer’s instructions. I�B� (Cell Signaling) and RFC1 (Abcam) or
histone H3 (Abcam) were used as cytoplasmic and nuclear markers, re-
spectively.

Real-time PCR. Total RNA was prepared from each cell line by using an
RNeasy minikit (Qiagen). First-strand cDNA was synthesized by using a
QuantiTech reverse transcription kit (Qiagen). Real-time PCR was per-
formed by using Sybr green (Finnzyme; Thermo Scientific) for the murine
TRAF3 (5=-AAGCATCATCAAAGACAAGG-3= and 5=-ATTCCGACAGTA
GACCTGAA-3=), murine TRAF6 (5=-TGTTCTTAGCTGCTGGGGTGT-3=
and 5=-GAAGGAGCTGGAGAGAGGTTCC-3=), and murine IKK� (5=-GG
AGTACTGCCAAGGAGGAGAT-3= and 5=-ACAGGCTGCCAGTTAGGG
AGGAAG-3=) genes and the TaqMan gene expression assay (Applied Biosys-
tems) for innate immune genes and inflammatory cytokine genes (for IFN-�,
primer Mm010439546; for CXCL10, primer Mm00445235; for Ccl5, primer
Mm01302427; for Ccl2, primer Mm99999056; and for IL-6, primer
Mm00446190).

Confocal microscopy. Silencing of TRAF3 or TRAF6 in STING-
deficient MEFs reconstituted with HA-tagged murine STING was per-
formed with dsDNA90 for 3 h. MEFs were fixed in 4% paraformaldehyde
for 10 min at room temperature and permeabilized with 0.5% Triton
X-100. After blocking with 2% bovine serum albumin (BSA) in phos-
phate-buffered saline containing 0.1% Tween 20 (PBST) for 2 h at room
temperature, the cells were incubated with anti-HA mouse monoclonal
antibody (HA-7) (Sigma) and anti-NF-�Bp65 rabbit monoclonal anti-
body (D14E12) (Cell Signaling) for 1 h at room temperature, followed by
incubation with anti-mouse IgG conjugated with Alexa Fluor 488 and
anti-rabbit IgG conjugated with Alexa Fluor 555, respectively. The stained
cells were analyzed by use of an SP5 confocal microscope (Leica) at the
University of Miami Imaging Core Facility.

Statistics. Results are expressed as means � standard deviations (SD).
Student’s t test was used to analyze data. P values of �0.05 were consid-
ered to denote significance.
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RESULTS
MAPKs and NF-�B are robustly activated in MEFs following
exposure to STING ligands. Previous reports have shown that the
activation of NF-�B is reduced in MEFs or macrophages in re-
sponse to STING-dependent dsDNA signaling (3, 5, 23, 24). To
further evaluate the mechanisms of STING function, we analyzed
select signaling profiles in STING�/� and wild-type (STING	/	)
MEFs in response to cytosolic dsDNA. We observed that the trans-
duction of dsDNA90 into wild-type MEFs induced the phosphor-
ylation and subsequent degradation of STING after approxi-
mately 3 to 6 h (Fig. 1, top left panel). We also observed robust
phosphorylation of IRF3 (on Ser396) and NF-�Bp65/RelA (on
Ser536) (Fig. 1, left panels). Similarly, the activation of mitogen-
activated protein kinases (MAPKs), including ERK1/2, JNK, c-
Jun, and p38, was also noted following the transduction of ds-
DNA90 into wild-type MEFs (Fig. 1, left panels). These events
were greatly reduced or eliminated in STING�/� MEFs (Fig. 1, left
panels). Treatment of cells with DMXAA, which was recently clas-
sified as a novel STING activator (25, 26), also exhibited an effect
similar to that of dsDNA, except for p38 MAPK activation (Fig. 1,
right panels). The transduction of canonical 3=-5= cGAMP, which
is known as a new STING ligand produced by cGAS (10, 11), also
activated STING-dependent signaling in MEFs (see Fig. S1A in the
supplemental material). Poly(dA-dT)-mediated phosphorylation
of IRF3 or ERK1/2 was partially retained in STING-deficient
MEFs at 3 to 6 h postransduction (Fig. 1, left panels), likely due to
the involvement of RIG-I-dependent sensing through the cytoso-
lic DNA-dependent RNA polymerase III response (27). In con-

trast to known STING ligands, the use of poly(I·C), which does
not trigger STING activity, showed robust activation of IRF3, NF-
�Bp65, and MAPKs, in a STING-independent manner (Fig. 1,
right panels). Cell fractionation analysis revealed that dsDNA-
mediated IRF3 and NF-�Bp65 nuclear translocation was substan-
tially reduced in STING-deficient MEFs (see Fig. S1B). Similarly,
quantitative RT-PCR analysis established that the STING pathway
controlled dsDNA- and DMXAA-mediated IFN-�, CXCL10,
Ccl5, and IL-6 induction, which was not stimulated by poly(I·C)
(see Fig. S1C). However, poly(dA-dT) was able to trigger RIG-I-
dependent gene expression (see Fig. S1C).

Previously, STING was shown to be essential for host de-
fense against HSV-1 infection (5). HSV-1 infection has also
been shown to activate NF-�Bp65 through multiple pathways,
including via I�B kinases such as IKK� and IKK�, through
PKR, and through the Toll-like receptor 2 (TLR2)–MyD88 axis
(28–30). To further elucidate the role of STING in HSV-1-
mediated NF-�Bp65 activation, MEFs derived from wild-type
(STING	/	) or STING-deficient (STING�/�) MEFs were
stimulated with purified HSV-1 virions or dsDNA representing
the genome of HSV-1 at the indicated times, and cell lysates
were analyzed by immunoblotting. Purified HSV-1 virions or
dsDNA derived from HSV-1 induced phosphorylation of IRF3
and TBK1 that was totally dependent upon STING (see Fig. S2
in the supplemental material). Our data indicate that STING is
required for the efficient induction of SAPK/JNK signaling, as
well as IRF3 and NF-�B signaling, in response to HSV-1 or
cytosolic DNA.
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FIG 1 STING ligand-mediated signaling response in MEFs. Primary MEFs (1 
 105 cells/well) derived from wild-type (STING	/	) or STING-deficient
(STING�/�) mice were stimulated with 10 �g/ml of dsDNA90, 5 �g/ml of poly(dA-dT), 5 �g/ml of poly(I·C), or 200 �M DMXAA for the indicated times. The
expression levels of I�B�, STING, IRF3 phosphorylated at Ser396 (p-IRF3), NF-�Bp65 phosphorylated at Ser536 (p-NF-�Bp65), NF-�Bp65, ERK1/2 phos-
phorylated at Thr202/Tyr204 (p-ERK1/2), ERK1/2, SAPK/JNK phosphorylated at Thr183/Tyr185 (p-SAPK/JNK), JNK1/2, p38 phosphorylated at Thr180/
Tyr182 (p-p38), p38, c-Jun phosphorylated at Ser63 (p-cJun), and �-actin were determined by immunoblotting. The phosphorylation state of STING is
indicated by an arrowhead.
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IKK�� is involved in dsDNA-mediated NF-�B activation in
MEFs. The IKK complex, which is composed of two catalytic sub-
units, IKK� and IKK�, and a regulatory subunit, IKK�/NEMO,
has been suggested to be essential for the activation of canonical
NF-�B signaling in response to various stimuli, including cyto-
kines (e.g., IL-1� and TNF-�), TLR ligands (e.g., lipopolysaccha-
ride [LPS] and CpG oligonucleotides), and RIG-I-like receptor
(RLR) ligands (e.g., RNA viruses or a synthetic analog of dsRNA)
(13, 31). However, little is known about how cytosolic dsDNA
triggers NF-�B signaling. Thus, we further evaluated the mecha-
nisms of dsDNA-mediated NF-�B activation in MEFs lacking sev-
eral NF-�B-related genes. In IKK�-deficient MEFs treated with
dsDNA90, we observed that the activation of NF-�Bp65, as deter-
mined by analyzing phosphorylation levels, nuclear translocation,
and the transcription of cytokines such as IFN-� and IL-6, re-
mained intact (Fig. 2A and B). On the other hand, we observed a
partial reduction of IL-6 (*, P � 0.01) but not IFN-� expression
and a slight reduction of NF-�Bp65 phosphorylation 3 to 6 h
following stimulation in IKK�-deficient MEFs (Fig. 2A and B).
Moreover, to elucidate the effects of both IKK� and IKK� on
dsDNA-mediated signaling responses, IKK�-deficient MEFs were
transduced with nonspecific (NS) or IKK� siRNA for 72 h, fol-
lowed by dsDNA90 stimulation at the indicated times. In contrast
to the evaluation of single-knockout MEFs derived from IKK�- or
IKK�-deficient mice, the depletion of IKK� in IKK�-deficient
MEFs showed substantial reductions of both NF-�Bp65 phos-
phorylation and NF-�Bp65-mediated gene expression, such as
that of IL-6 and CXCL10, after stimulation with dsDNA90 (Fig.
2C and D). These results may suggest that classical I�B kinases,
such as IKK� and IKK�, are involved in STING-dependent, ds-
DNA-mediated NF-�Bp65 activation in MEFs.

TBK1 is involved in dsDNA-mediated NF-�B activation in
MEFs. Next, we examined whether another IKK-related kinase,
such as TBK1, may be involved in dsDNA-mediated NF-�Bp65
activation in MEFs. This was considered a possibility because
TBK1 is known to activate NF-�B in vitro and in vivo (14, 19, 32,
33). Immortalized MEFs derived from wild-type (TBK1	/	) or
TBK1-deficient (TBK1�/�) mice were stimulated with dsDNA90
or poly(I·C) at the indicated times, and cell lysates were analyzed
by immunoblotting. Surprisingly, the phosphorylation of NF-
�Bp65 in response to dsDNA90 did not significantly increase in
TBK1-deficient MEFs compared with wild-type MEFs (Fig. 3A).
In contrast, the same cells exposed to poly(I·C) stimulation exhib-
ited comparable levels of NF-�Bp65 activity. dsDNA90- and
poly(I·C)-induced IRF3 phosphorylation was totally dependent
on TBK1, as previously reported (Fig. 3A). The activation of
MAPKs in TBK1-deficient MEFs following stimulation with ds-
DNA90 or poly(I·C) was comparable to that in wild-type MEFs
(see Fig. S3A in the supplemental material). We also confirmed
that ectopic expression of TBK1 in 293T cells activated the induc-
tion of both the IRF3 and NF-�B pathways, but not MAPK signal-
ing responses (see Fig. S3B), suggesting that TBK1 is not involved
in dsDNA-mediated MAPK activation. Consistent with our im-
munoblot analysis, dsDNA90- but not poly(I·C)-induced nuclear
translocation of NF-�Bp65 was substantially reduced in TBK1-
deficient MEFs (Fig. 3B). Alternatively, dsDNA90- and poly(I·C)-
induced nuclear translocation of IRF3 was totally dependent upon
TBK1 (Fig. 3B). Further support showing that TBK1 may be in-
volved in dsDNA-mediated NF-�B activation in MEFs was ob-
tained by cell fractionation analysis and ELISA. The presence of

NF-�Bp65 in the nuclear fraction of MEFs following stimula-
tion with dsDNA90 was substantially reduced in TBK1-deficient
cells, while that after poly(I·C) stimulation remained comparable
(Fig. 3C). In addition, quantitative ELISA also showed a signifi-
cant reduction of NF-�Bp65 phosphorylation in TBK1-deficient
MEFs after stimulation with dsDNA90, while poly(I·C) stimula-
tion did not significantly alter the level (Fig. 3D). We also exam-
ined the effects of IKKi/IKKε, another IKK-related kinase that is
involved in IRF3 and NF-�B signaling, on STING-mediated sig-
naling responses in MEFs. In IKKi/IKKε knockdown MEFs
treated with dsDNA90, we observed that the activation of NF-
�Bp65, as determined by analyzing phosphorylation levels and the
transcription of cytokines such as IL-6 and CXCL10, remained
intact (see Fig. S4).

To further evaluate the role of NF-�Bp65 activation in dsDNA-
mediated signaling, wild-type and TBK1-deficient MEFs were
stimulated with dsDNA90 or poly(I·C), and the expression of NF-
�B-related cytokines was measured by quantitative RT-PCR. In-
duction of IL-6, CXCL10, Ccl5, and Ccl2 following stimulation
with dsDNA90, but not poly(I·C), was completely abolished in
TBK1-deficient MEFs, whereas IFN-� induction was abolished
regardless of the type of nucleic acid stimulation (Fig. 4A). These
results may imply that the expression of poly(I·C)-mediated, NF-
�B-related cytokines may be regulated by the classical I�B kinases
rather than through TBK1. Finally, we carried out transcomple-
mentation experiments in TBK1�/� MEFs transduced with retro-
viral vectors encoding Myc-tagged human TBK1 (hTBK1) and
then evaluated the expression of NF-�B-related cytokines by
quantitative RT-PCR. We observed that TBK1-deficient MEFs
transduced with hTBK1 showed rescued expression of some NF-
�B-related cytokines, in addition to IFN-�, following stimulation
with dsDNA90, while the expression in mock-transduced cells was
not restored (Fig. 4B). Collectively, these results suggest that TBK1
dominantly regulates dsDNA-mediated NF-�Bp65 activation
through the IKK�� activation loop in MEFs.

DMXAA similarly activates NF-�B through TBK1. Previous
studies have shown that DMXAA acts as a potent IFN inducer
through the TBK1-IRF3 axis in MEFs and murine macrophages
(34). Recently, it was clarified that DMXAA achieves this through
functioning as a STING ligand (25, 26). To evaluate whether
DMXAA similarly activates NF-�B through TBK1, we examined
the effects of DMXAA-mediated NF-�B activation in MEFs lack-
ing TBK1 as described for Fig. 3 and 4. Similar to our previous
observations, we noted that TBK1-deficient MEFs exhibited sub-
stantially reduced DMXAA-mediated activation of both IRF3 and
NF-�Bp65 phosphorylation (Fig. 5A). Moreover, consistent with
our immunoblotting analysis, we observed a reduction in the nu-
clear translocation of NF-�Bp65 in TBK1-deficient MEFs in re-
sponse to DMXAA treatment by cell fractionation and confocal
imaging (Fig. 5B and C). In addition, abolishment of CXCL10
mRNA expression was observed in response to DMXAA in MEFs
lacking TBK1 (Fig. 5D). Next, to confirm the effect of TBK1 on
DMXAA-mediated NF-�B activation, primary MEFs were trans-
duced with nonspecific (NS) or TBK1 siRNA for 72 h, followed by
DMXAA or poly(I·C) stimulation at the indicated times. Cell ly-
sates were analyzed by immunoblotting. Knockdown of TBK1 re-
sulted in a substantial reduction in DMXAA-mediated NF-�Bp65
phosphorylation, while levels of NF-�Bp65 phosphorylation in
cells stimulated with poly(I·C) remained intact (Fig. 5E).
DMXAA- and poly(I·C)-induced IRF3 phosphorylation was to-
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tally dependent upon TBK1 (Fig. 5E). A significant reduction in
the level of CXCL10 mRNA in response to DMXAA was also ob-
served in MEFs treated with siRNA specific to TBK1 (Fig. 5F).
These results confirm that DMXAA activates the NF-�Bp65 sig-
naling response via TBK1 in MEFs, similar to dsDNA.

dsDNA-mediated NF-�Bp65 activation is essential for anti-
viral activity. To elucidate the antiviral importance of STING-
dependent activation of NF-�B, primary MEFs were treated with
nonspecific (NS) or NF-�Bp65/RelA siRNA for 72 h. Cells were
then transfected with dsDNA90 or infected with HSV-1 express-
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ing luciferase (HSV-luc), and IFN-� production or viral propaga-
tion was measured. Silencing of NF-�Bp65/RelA in MEFs reduced
the production of IFN-� mRNA and protein in response to ds-
DNA90 transfection by 50% (Fig. 6A), but levels of IRF3 phos-
phorylation remained approximately the same (Fig. 6B). These
results may suggest a contribution of NF-�Bp65/RelA to STING-
dependent, dsDNA-mediated IFN production. Moreover, sup-
pression of NF-�Bp65/RelA also facilitated the replication of
HSV-luc in MEFs (Fig. 6C). Immunoblot analysis further con-
firmed that the expression of select viral proteins, such as ICP4
and glycoprotein D (gD), was increased in NF-�Bp65/RelA-lack-

ing cells compared to MEFs treated with NS siRNA (Fig. 6D).
Thus, activation of NF-�Bp65/RelA by STING induces an anti-
DNA viral host defense.

TRAF3 and TRAF6 predominantly facilitate STING-medi-
ated innate immune signaling. Members of the TNF receptor-
associated factor (TRAF) family are known to facilitate NF-�B and
IRF activity (35). For example, it has been reported that TRAF3
and TRAF6 are involved in dsRNA- or dsDNA-mediated signaling
in a variety of cell types (36–39). However, it is unclear whether
these TRAF members participate in STING-dependent signaling
(7, 40). Thus, to determine the involvement of TRAF molecules in
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STING function, 293T cells were cotransfected with HA-tagged
murine STING (STING-HA), members of the TRAF family
(TRAFs-His), and reporter plasmids encoding luciferase genes
under the control of the IFN-�, ISRE, pRDIII, or NF-�B pro-
moter. This analysis revealed that the expression of TRAF3 and
TRAF6 enhanced promoter activity when the proteins were coex-
pressed with STING, except for that of the NF-�B promoter in
cells coexpressing STING and TRAF6 alone (Fig. 7A). We hypoth-
esized that the observed diminutive additive effect of the NF-�B
promoter coexpressed with STING and TRAF6 was due to TRAF6
already activating the NF-�B pathway (35). We did not observe
the same induction with TRAF1 or -2 (data not shown). Recently,
it was also reported that TRAF4 plays a role as a substrate for IKK�
in the NOD-dependent signaling pathway (41). However, single
IKK� knockout MEFs did not appear to be involved in dsDNA-
mediated IRF3 or NF-�B activation (Fig. 2A and B). We also no-
ticed that the enhancement of IFN-� and NF-�B promoter acti-
vation in cells coexpressing TRAF3 was reduced using defective
TRAF variants lacking the C-terminal TRAF domain important

for TRAF oligomerization and interactions with upstream regula-
tors (Fig. 7B). Interestingly, we observed an enhancement of
IFN-� and NF-�B promoter activation in cells coexpressing
STING in combination with TRAF3 or TRAF6, which was signif-
icantly reduced in cells with TBK1 knocked down (Fig. 7C). This
suggests that these TRAFs contribute to STING-mediated signal-
ing responses upstream of TBK1. Thus, TRAF3 and TRAF6 may
predominantly facilitate STING-dependent activity.

Distinct roles of TRAF3 and TRAF6 in STING-mediated sig-
naling. To further determine the involvement of TRAF3 and
TRAF6 in dsDNA-mediated signaling responses, primary MEFs
were transduced with siRNA targeting TRAF3 or TRAF6 for 72 h
and then treated with dsDNA90. Phosphorylation of IRF3, NF-
�Bp65, TBK1, and ERK1/2 in MEFs with silenced TRAF3 was
comparable to that in MEFs treated with nonspecific siRNA (NS)
(Fig. 8A). Consistent with previous observations, the constitutive
activation of NF-�Bp52, which is facilitated by the activation of
the noncanonical NF-�B pathway (42), was observed in TRAF3-
silenced MEFs (Fig. 8A, boxed panel). Conversely, cells with re-
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duced TRAF6 expression exhibited less NF-�Bp65 activation, but
not IRF3 and TBK1 phosphorylation, following stimulation with
dsDNA90 (Fig. 8A). This further indicates that TRAF6 may play a
role in STING-mediated NF-�B activation. Next, we confirmed
the nuclear translocation of NF-�Bp65 after stimulation with ds-
DNA90 in RNAi-treated cells. TRAF6- but not TRAF3-silenced
MEFs lacked NF-�Bp65 nuclear translocation but did not shown
an influence on STING trafficking (Fig. 8B). To further address
the influence of TRAF3 and TRAF6 on STING function, IFN-�
and IL-6 levels were measured by ELISA in MEFs knocked down

for TRAF3 or TRAF6 (Fig. 8C). Cells with knocked-down TRAF3
expression exhibited a significant reduction in IL-6 but not IFN-�
production (Fig. 8D), even though the phosphorylation and nu-
clear translocation of NF-�Bp65 remained intact (Fig. 8A). Alter-
natively, a reduction in IL-6 and a partial reduction in IFN-�
production were observed in TRAF6-silenced MEFs (Fig. 8D),
also suggesting that NF-�Bp65 contributes to IRF3-mediated
IFN-� production, consistent with our results in Fig. 6. MEFs
treated with siRNA specific to both TRAF3 and TRAF6 similarly
showed a significant reduction in poly(I·C)-mediated IL-6 but not
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IFN-� production (Fig. 8D). These results indicate that TRAF6
may be involved predominantly in dsDNA-mediated NF-�B acti-
vation rather than IRF3-mediated IFN-� production in MEFs.

STING ligands activate the noncanonical NF-�B signaling
pathway. Previous reports have suggested that TRAF3 deficiency
causes the constitutive activation of noncanonical NF-�B signal-
ing (42). To evaluate the distinct role of TRAF3 in the modulation
of dsDNA-mediated NF-�B activation, we compared canonical
and noncanonical NF-�B activation after STING activation. We
observed that the induction of NF-�Bp52 expression was regu-
lated via the TRAF3–NF-�B inducing kinase (NIK) pathway (Fig.
8A, right panels). We also confirmed that dsDNA90, but not
poly(I·C), induced NF-�Bp52 processing following the phosphor-
ylation of NF-�B2p100 in a STING-dependent manner (Fig. 9A).
It has been suggested that IKK� is involved in noncanonical
NF-�B signaling downstream of the TRAF3-NIK axis (32). IKK�-
deficient MEFs exhibited substantially reduced NF-�Bp52 pro-
cessing following the phosphorylation of NF-�B2p100 during
stimulation with dsDNA (Fig. 9B, top panels). These results indi-
cate that IKK� may be involved in dsDNA-mediated noncanoni-
cal NF-�B signaling. Although we observed that TBK1 was neces-
sary for the dsDNA-mediated canonical NF-�B signaling pathway
as shown in Fig. 3, TBK1-deficient MEFs exhibited a normal re-
sponse to NF-�Bp52 processing following the phosphorylation of
NF-�B2p100 after dsDNA90 stimulation (Fig. 9B, bottom pan-
els). In contrast to a requirement for TRAF3 in the dsDNA-medi-
ated noncanonical NF-�B pathway, NIK, which is an essential

activator of the noncanonical NF-�B pathway, was not predomi-
nantly involved in dsDNA-mediated signaling responses in MEFs
(Fig. 9C). These results may suggest that STING ligands can also
activate canonical and noncanonical NF-�B signaling pathways
through distinct control of TRAFs.

DISCUSSION

STING has been identified as a critical signaling molecule required
for the detection of cytosolic nucleic acids, particularly dsDNAs
derived from pathogens and viruses as well as endogenous second
messengers, such as cyclic-di-GMP and -AMP (43, 44). These
events result in the production of innate immune response genes
through the IRF3 and NF-�B pathways. In the present study, we
demonstrate that TBK1 may predominantly control NF-�Bp65 in
response to STING ligands through the IKK�� activation loop.
Furthermore, we show that TRAF6 may control STING-mediated
NF-�B function. These findings detail novel insights into STING-
dependent innate immune signaling mechanisms (Fig. 9C).

TBK1 was originally identified as a kinase that activates IRF3 in
response to various stimuli, such as proinflammatory cytokines,
bacterial components, and RNA or DNA virus infection (20, 21,
45, 46). After dsDNA stimulation, STING traffics with the kinase
TBK1 in an autophagic signaling complex, from the ER to perinu-
clear endosomal compartments harboring IRF3 and NF-�B (5, 23,
47). Recent reports have implicated that STING may be phos-
phorylated by TBK1 (48), followed by degradation to avoid the
sustained production of innate immune-related proinflammatory
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genes (43). However, STING was not observed to be phosphory-
lated by TBK1 in vitro (49). Interestingly, our data here indicate
that STING degradation was maintained in MEFs lacking TBK1
(Fig. 3A and 5A and E). These results imply that alternate kinases
may be involved in the phosphorylation and degradation of
STING (49).

Activation of IKKs depends upon the phosphorylation of
IKK�/� at Ser176/180 in the activation loop of IKK� and results
in the triggering of I�B� degradation through its phosphorylation
at Ser32 and Ser36. Previous reports have suggested that TBK1
facilitates the phosphorylation of I�B� at Ser36 through the IKK�
activation loop (19). We also showed that TBK1 facilitates
STING-dependent, dsDNA-mediated NF-�B activation through

the IKK�� activation loop, despite a weak response of I�B� deg-
radation following the phosphorylation of I�B� by stimulation
with STING ligands. These results may suggest the direct activa-
tion of NF-�Bp65 by TBK1 in response to the recognition of
STING ligands.

NF-�B signaling has been shown to require members of the
TRAF family. The C terminus of STING contains putative
TRAF2-binding motifs (40) and has also been suggested to inter-
act with the E3 ubiquitin ligase TRAF3 (7). In the present study,
we additionally found that TRAF6 may also contribute to dsDNA-
mediated canonical NF-�B signaling upstream of TBK1 (Fig. 8A,
B, and D). Recently, it was reported that targeted disruption of
TRAF3 results in constitutive activation of the noncanonical
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NF-�B pathway (42). A previous report has also shown that
TRAF3 acts as a suppressor of canonical NF-�B activity through
modulation of the IKK complex (50). This could cause the trig-
gering of a negative-feedback signaling response through activa-
tion of the canonical NF-�B signaling pathway. Previous studies
used classical NF-�B inducers, such as proinflammatory cytokines
(IL-1� and TNF-�), or noncanonical NF-�B signaling stimula-
tors (�LT�R) (35). Our data indicate that STING ligands may also
activate noncanonical NF-�B signaling in a STING-dependent
manner. Recently, Liu and colleagues suggested that MAVS re-
cruits TRAF molecules, such as TRAF2, -5, and -6, for activation
of the transcription factors IRF3 and NF-�B, leading to the induc-
tion of antiviral immune responses (51). These results may imply
the possibility that STING may also require a combination of
TRAF molecules for the optimal induction of type I IFN produc-
tion through IRF3 activation.

Most TRAFs, with the exception of TRAF1, contain a con-
served N-terminal domain that consists of several zinc finger do-
mains and a ring finger motif. The ring finger motif is also found
in many E3 ubiquitin ligases, and ring finger-mediated protein
ubiquitination has emerged as a key mechanism in TRAF-depen-
dent signal transduction. It has been suggested that STING is also
subject to the ubiquitination state by E3 ligases (52–54). The ubiq-
uitin ligase RNF5 has been reported to negatively regulate STING-
mediated signaling responses, whereas other ubiquitin ligases,
such as TRIM56 and TRIM32, have been implicated as positive
regulators of STING signaling. Our preliminary data suggest that
TRAF6, but not TRAF3, may be involved in the ubiquitination
state of STING in cells (data not shown). However, further exper-
imentation will be required to fully clarify the mechanisms of
STING ubiquitination and degradation.

Based on our data, we propose that ligands such as dsDNA,
cGAMP, and DMXAA activate STING, which delivers TBK1, as an
autophagosome signaling complex, from the ER to perinuclear
endosomal compartments to activate IRF3 and NF-�B (43).
STING is subsequently phosphorylated by kinases, such as ULK1
(49), which in turn may recruit TRAF6, leading to NF-�Bp65
activation. In addition, the stimulation of STING may also induce
the activation of TRAF3-mediated noncanonical NF-�B signal-
ing, leading to the processing of NF-�B2 (p100/p52) in a STING-
dependent way (Fig. 9A). Although it remains to be defined, un-
derstanding the signaling cross talk between canonical and
noncanonical NF-�B signaling pathways following STING activa-
tion could be useful for the design of antiviral drugs or, alterna-
tively, therapies to control dsDNA-mediated inflammatory re-
sponses.
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