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Polymicrobial infections involving Staphylococcus aureus exhibit enhanced disease severity and morbidity. We reviewed the
nature of polymicrobial interactions between S. aureus and other bacterial, fungal, and viral cocolonizers. Microbes that were
frequently recovered from the infection site with S. aureus are Haemophilus influenzae, Enterococcus faecalis, Pseudomonas
aeruginosa, Streptococcus pneumoniae, Corynebacterium sp., Lactobacillus sp., Candida albicans, and influenza virus. Detailed
analyses of several in vitro and in vivo observations demonstrate that S. aureus exhibits cooperative relations with C. albicans,
E. faecalis, H. influenzae, and influenza virus and competitive relations with P. aeruginosa, Streptococcus pneumoniae, Lactoba-
cillus sp., and Corynebacterium sp. Interactions of both types influence changes in S. aureus that alter its characteristics in terms
of colony formation, protein expression, pathogenicity, and antibiotic susceptibility.

Staphylococcus aureus is an opportunistic and resilient human
pathogen that colonizes the mucosal surfaces. It is the caus-

ative agent of many serious acute and chronic infections. The an-
terior nares are the primary reservoirs of S. aureus. Asymptomatic
colonization occurs in approximately 20% of the normal popula-
tion, and 60% are transiently colonized, while 20% appear to be
rarely or never colonized (1). Extranasal colonization of S. aureus
also takes place in several locations, including the skin, rectum,
axillae, vagina, pharynx, and gastrointestinal tract (2).

S. aureus causes numerous infections, including skin infections
(boils, furuncles, styes, impetigo), surgical and trauma wounds,
urinary tract infections, gastrointestinal tract infections, pneumo-
nia, osteomyelitis, endocarditis, thrombophlebitis, mastitis, men-
ingitis, infections on indwelling medical devices, toxic shock syn-
drome (TSS), and septicemia (3, 4). The factors contributing to
the rise of this organism as a formidable pathogen involve multi-
ple mechanisms of virulence. These include the evolution of strat-
egies to resist antibiotics and evade host defenses, as well as the
production of an arsenal of virulence factors such as capsule, co-
agulase, lipase, hyaluronidase, protein A, fibrinogen binding pro-
teins, fibronectin binding proteins, and secreted toxins such as
secreted enterotoxins (SEs), toxic shock syndrome toxin-1 (TSST-
1), Panton-Valentine leucocidin (PVL), hemolysins, and phenol-
soluble modulins (PSM) (5–9).

Several studies have confirmed S. aureus as one of the coinfect-
ing microbes in many patients with polymicrobial infections (10).
The interactions between S. aureus and the coexisting microbes
are either cooperative, as with Candida albicans (11–14), Entero-
coccus faecalis (15, 16), Haemophilus influenzae (17–19), and in-
fluenza virus (20, 21), or competitive, as with Pseudomonas aerugi-
nosa, Streptococcus pneumoniae (18, 19), Lactobacillus sp. (22–27),
and Corynebacterium sp. (17, 28–30). Irrespective of whether the
interactions are cooperative (Fig. 1) or competitive (Fig. 2), S.
aureus within a community behaves differently with respect to its
monomicrobial growth. This article focuses on reviewing the sig-
nificance of interactions between S. aureus and other microorgan-
isms and its effect on disease progression and outcome.

Interactions with Candida. Both Candida species and S. au-
reus usually exist as commensals and colonize human mucosal

surfaces. Furthermore, they are opportunistic pathogens and
cause a wide range of infections such as sepsis, pneumonia, den-
ture stomatitis, and neonatal sepsis. Despite causing a number of
infections independently, C. albicans and S. aureus can also be
coisolated from several diseases such as cystic fibrosis, superinfec-
tion of burn wounds, urinary tract infections, and diabetic foot
wounds and from the surfaces of various biomaterials, including
dentures, voice prostheses, implants, endotracheal tubes, feeding
tubes, and catheters (31–34).

Biofilm-embedded microbes are extremely resistant to both
host clearance mechanisms and antimicrobial agents. S. aureus
and C. albicans are often isolated concurrently from mixed bacte-
rial-fungal biofilms on implanted medical devices (35). During
biofilm-associated coinfections, C. albicans forms the base of the
biofilm and facilitates the biofilm formation of S. aureus. C. albi-
cans hyphal protein agglutinin-like sequence 3 (Als3p) mediates
the binding of S. aureus with C. albicans hyphae (14, 36, 37).
Within the polymicrobial biofilm, S. aureus exhibits enhanced
resistance to vancomycin (13).

Independent studies demonstrated that the interactions be-
tween S. aureus and C. albicans enhance disease severity in several
ways (33, 38). Candidal infections cause physical damage to organ
walls, allowing S. aureus to penetrate the internal organs more
easily. S. aureus, on the other hand, secretes different proteases
that help C. albicans to enhance its adhesion to the mucosal layer
(12). During systemic infections, each organism helps the other to
evade phagocytic killing mediated by polymorphonuclear leuko-
cytes (PMNs). C. albicans secretes a proteinase that degrades the
Fc portion of immunoglobulin G (IgG) and greatly reduces the
opsonizing activity of human PMNs against S. aureus (39). On
the other hand, S. aureus secretes coagulase and extracellular
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fibrinogen binding proteins (Efb) that protect Candida sp. from
PMN-mediated phagocytosis. Coagulase activates prothrombin,
which mediates the conversion of fibrinogen to fibrin. Formation
of fibrin clots surrounding the candidal cells helps Candida spp. to
evade phagocytic killing by granulocytes (40). Additionally, Efb
binds to C3 complement and interferes with complement activa-
tion and C3-mediated opsonization (41). The cooperative infec-
tion of C. albicans and S. aureus represents a significant therapeu-
tic challenge, and their coisolation from blood is an indication of
a dire prognosis (42).

Competitive or antagonistic relationships between C. albicans
and S. aureus have also been reported where the farnesol quorum-
sensing molecule secreted by C. albicans inhibits the biofilm for-
mation of S. aureus. Farnesol disrupts the S. aureus cell membrane
integrity and thereby its viability. Additionally, in vitro results
demonstrated that farnesol-treated S. aureus showed enhanced
susceptibility to a variety of clinically important antibiotics (43).
However, it is as yet unclear how much farnesol C. albicans se-
cretes under in vivo conditions and whether the secreted concen-
trations are sufficient to inhibit the growth of S. aureus in vivo.
Nevertheless, all available in vivo data suggest that S. aureus and C.
albicans exist in synergy. Apart from Candida albicans, S. aureus
was also isolated together with Candida tropicalis, Candida parap-
siolosis, and Trichosporon asahii (44, 45).

Interactions with influenza virus. The mechanisms of inter-
action of S. aureus with influenza virus are much more complex
than the interactions between S. aureus and C. albicans. Superin-
fection of influenza virus and S. aureus is one of the major causes
of severe influenza pneumonia, prolonged inflammation, and
higher mortality rates. This represents the best-known model of
bacterial-viral coinfection (20).

Influenza virus A infection promotes and enhances the naso-
pharyngeal adherence of S. aureus (46). On the other hand, S.
aureus promotes the infectivity and spread of the influenza virus
particles. Hemagglutinin (HA), a trimeric glycoprotein, present in

multiple copies in the membrane envelope of influenza virus, is
responsible for the attachment of the virus particle to sialic acid-
containing receptors of the host ciliated columnar epithelial cells.
Proteolytic cleavage of the hemagglutinin is an important prereq-
uisite for the infectivity of the influenza virus and for the spread of
the virus in the host organism and associated pathogenicity. Sev-
eral strains of S. aureus have been found to secrete serine proteases
that activate infectivity of influenza virus by proteolytic cleavage
of the hemagglutinin (21).

Coinfections of S. aureus and influenza virus may lead to severe
disease outcome, as influenza virus infection enhances the delete-
rious effects of staphylococcal enterotoxin B (SEB) and toxic
shock syndrome toxin 1 (TSST-1) (47, 48). SEB and TSST-1 are
superantigens that activate T cells in an uncontrolled manner and
cause massive systemic release of cytokines. Concurrent S. aureus
and influenza virus infection induces enterotoxin-mediated mas-
sive release of tumor necrosis factor alpha (TNF-�) and gamma
interferon (IFN-�). This results in fever, rash, hypotension, tissue
injury, and shock. It has been hypothesized that the lethal syner-
gism between concurrent influenza infection and S. aureus super-
antigen exposure may contribute to sudden and unexpected death
from influenza virus infection (49).

Interactions with other bacteria. The majority of the interac-
tions between S. aureus and other bacterial species are competitive
in nature, and only a few interactions are cooperative. Coopera-
tive interactions involving S. aureus exist with H. influenzae and E.
faecalis. Competitive interactions are observed between S. aureus
and other bacteria, viz., Pseudomonas aeruginosa, Streptococcus
pneumoniae, lactic acid bacteria (LAB), Corynebacterium sp., or S.
epidermidis. That the interactions are competitive does not mean
that these organisms completely inhibit the colonization of S. au-
reus; rather, S. aureus employs numerous defense strategies for its

FIG 1 Cooperative interactions between S. aureus and other microbes. S.
aureus can cocolonize with H. influenzae, E. faecalis, C. albicans, and influenza
virus. S. aureus-induced lysis of red blood cells (RBC) leads to the release of
hemin and NAD, which act as nutrients and support the growth of H. influen-
zae. S. aureus secretes proteases that cleave the host sialic acid receptor and
increase the infectivity of influenza virus by releasing the virus from the host
cell surface. S. aureus gained vancomycin resistance from E. faecalis due to
horizontal gene transfer and became more resistant to antibiotics during coin-
fection with C. albicans. Symbols: SA, S. aureus; VRSA, vancomycin-resistant
S. aureus; VREF, vancomycin-resistant E. faecalis.

FIG 2 Competitive interactions between S. aureus and other microbes. S.
aureus exhibits antagonism toward P. aeruginosa, Streptococcus sp., and Lacto-
bacillus sp. P. aeruginosa produces phenazine (PZ), hydrogen cyanide (HCN),
quinolone oxidase (QO), and pyocyanin (PY), resulting in the respiratory
blockage of S. aureus, which in turn leads to the formation of small-colony
variants (SCVs). SCVs are more persistent and are resistant to antibiotics.
Lactobacillus sp. and Streptococcus sp. inhibit the growth of S. aureus by pro-
ducing hydrogen peroxide (H2O2). S. aureus produces staphyloxanthin and
catalase, which neutralize the toxic effects of H2O2. Additionally, Lactobacillus
spp. produce organic acids and bacteriocins that limit the growth of S. aureus.
Certain S. aureus strains also produce bacteriocins such as staphylococcin Au
26, which in turn inhibit the growth of lactobacilli. Blocked arrows indicate
antagonism, and arrows indicate survival strategies of S. aureus.
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survival, counterattacking the competing bacteria and surviving
in the same ecological niche. Cooperative or competitive interac-
tions lead to the development of more-persistent S. aureus strains
with altered colony morphology, antibiotic resistance, and in-
creased virulence. The interactions of S. aureus with other bacte-
rial species are listed below.

(i) Interactions with Haemophilus influenzae. S. aureus and
H. influenzae both colonize the nasopharynx and, in some in-
stances, the conjunctivae and genital tract. H. influenzae reaches
higher colony densities when the resident colonizer is S. aureus.
The higher H. influenzae colony densities have been attributed to
the availability of nutrients that S. aureus provides to facilitate its
growth (19). S. aureus produces three major hemolysins (�, �, and
�) which lyse erythrocytes by compromising their membrane in-
tegrity (50). The hemolysis of erythrocytes by S. aureus-secreted
hemolysins releases nutrients such as hemin and NAD, which are
vital for the growth of H. influenzae (51–53). Margolis et al. dem-
onstrated synergistic interactions of S. aureus and H. influenzae in
the rat nasopharynx (19). However, Pettigrew et al. and van den
Bergh et al. studied the compositions of nasal microflora among
children and have reported antagonism or negative association
between S. aureus and H. influenzae (54, 55). Both of those studies
were designed to determine the microflora composition among
children in the age group between 6 and 36 months.

(ii) Interactions with Pseudomonas aeruginosa. The relation
between S. aureus and P. aeruginosa is competitive in nature, al-
though the two organisms are frequently found together in clinical
settings. They have common niches within the host, for example,
the lungs of cystic fibrosis (CF) patients, peritoneum of dialysis
patients, catheters, diabetic foot wounds, and other type of
wounds caused by skin injury or skin burn (44, 56). S. aureus is
often reported as the primary pathogen infecting the lungs of the
CF patients, followed by P. aeruginosa. Although coinfections of
these pathogens are very common under in vivo conditions, sev-
eral independent in vitro studies demonstrated that, when cocul-
tured together, P. aeruginosa thrives better than S. aureus (57–59).
The better survival of P. aeruginosa is attributed to its ability to
produce respiratory toxins such as pyocyanin, hydrogen cyanide,
and alkyl-hydroxyquinoline N-oxides that can block the electron
transport pathway, thereby inhibiting the growth of S. aureus and
other pathogenic staphylococci (57, 58).

Despite its sensitivity to respiratory inhibitors, S. aureus does
not get completely cleared away by P. aeruginosa. To counter the
effect of the respiratory toxins produced by P. aeruginosa, S. au-
reus forms electron transport-deficient small-colony variants
(SCVs) that grow as tiny, nonpigmented colonies (57). Purified
4-hydroxy-2-heptylquinoline-N-oxide (HQNO) or pyocyanin
produced by P. aeruginosa is sufficient to induce SCV selection in
S. aureus (57, 59). These SCVs are auxotrophic to hemin or men-
adione and are resistant to antibiotics, especially aminoglycosides,
trimethoprim-sulfamethoxazol (60), and the host antimicrobial
peptide lactoferricin B (8). The resistance of SCVs is due in part to
their severely decreased membrane potential as well as their re-
duced growth rate and metabolic processes. These SCVs also per-
sist better than their normal counterparts.

P. aeruginosa also produces a 20-kDa endopeptidase, LasA,
which selectively cleaves S. aureus peptidoglycan. LasA cleaves the
glycyl-glycine and glycyl-alanine bonds of the pentaglycine inter-
peptide bridge in the S. aureus peptidoglycan and induces lysis
(61, 62). Using the rat model of infection, Mashburn et al. showed

that P. aeruginosa can lyse S. aureus cells and that the iron-con-
taining proteins released from the lysed S. aureus cells serve as the
source of iron, thereby increasing the pathogenic potential of P.
aeruginosa (63, 64). However, this result is yet to be validated in
clinical settings. P. aeruginosa exhibits a similar kind of antagonis-
tic relationship with S. epidermidis, as well as with species repre-
sentatives of S. haemolyticus, S. saprophyticus, S. hyicus, S. muscae,
and S. lugdunensis (58).

(iii) Interactions with Streptococcus pneumoniae. The rela-
tion between S. pneumoniae and S. aureus is antagonistic. S. pneu-
moniae and S. aureus colonize the upper respiratory tract of chil-
dren and compete with each other for the same niche (59, 65, 66).
Various studies have shown that colonization of the upper airway
by S. pneumoniae is negatively correlated with S. aureus coloniza-
tion and that children who are vaccinated with pneumococcal
conjugate vaccines are at major risk of S. aureus infections (18).
This inverse relation suggests that one organism interferes with
the colonization of the other. In vitro data demonstrate that hy-
drogen peroxide (H2O2) , a byproduct of aerobic metabolism pro-
duced by S. pneumoniae, is responsible for the antagonistic rela-
tionship between these two pathogens (67). H2O2 production
leads to the production of DNA-damaging hyperoxides through
the Fenton reaction that induces the SOS response. The SOS re-
sponse induces the resident prophages, resulting in the lysis of
lysogenic staphylococci. Because the vast majority of S. aureus
strains are lysogenic, the production of H2O2 is a very effective
antistaphylococcal strategy of S. pneumoniae. H2O2, at concentra-
tions typically produced by pneumococci, kills lysogenic but not
nonlysogenic staphylococci (68). Pneumococci, however, are not
SOS induced upon exposure to H2O2, as they are resistant to the
DNA-damaging effects of the Fenton reaction (69).

It is interesting that S. aureus, which produces so many antiox-
idants and free radical scavengers, including catalase, alkyl hy-
droperoxide reductase, superoxide dismutase (SodA and SodM),
and staphyloxanthin (16, 70), is susceptible to H2O2 produced by
S. pneumoniae. A possible explanation could be that the amounts
of free radical scavengers that S. aureus produces are not sufficient
to neutralize all the H2O2 produced by S. pneumoniae. Regev-
Yochay et al. demonstrated that staphylococcal species that secrete
higher concentrations of catalase are resistant to S. pneumoniae
(67).

However, other studies have offered hypotheses suggesting
that the production of hydrogen peroxide may not be the main
reason for the antagonistic relationship between these pathogens
in vivo (71). Although both pathogens colonize the upper respiratory
tract, their microniches are different. Therefore, direct antagonism
mediated by H2O2 is an unlikely reason for their antagonism. Rather,
the antibody response generated during S. pneumoniae infection,
although ineffective in restricting this pathogen itself, is effective
in providing cross-protection against S. aureus (71, 72).

(iv) Interactions with LAB. The lactic acid bacteria (LAB) con-
sist of a group of heterogeneous bacterial species comprising non-
sporulating, Gram-positive cocci and bacilli that are able to fer-
ment sugars predominantly into lactic acid. This leads to
acidification of the environment down to a pH of 3.5. LAB colo-
nize the gut and urogenital tract and contribute to defense against
S. aureus-mediated food poisoning and genital infections. The
antistaphylococcal activity of LAB strains is attributed to the pro-
duction of H2O2, organic acids, antimicrobial proteins, biosurfac-
tants, surface proteins, and quorum-sensing inhibitors. The most
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commonly studied members of intestinal and vaginal LAB include
Lactobacillus acidophilus, L. casei, L. fermentum, L. salivarius, L.
rhamnosus, L. gasseri, L. vaginalis, L. johnsonii, and L. delbrueckii
(25, 73–75).

In similarity to the results seen with S. pneumoniae, LAB-pro-
duced hydrogen peroxide (H2O2) inhibits the growth of S. aureus
(76, 77). Additionally, LAB secrete organic acids (lactic, acetic,
formic, caproic, propionic, butyric, and valeric acids) that inhibit
the growth of S. aureus (78). LAB-produced bacteriocins interfere
with cell wall structure and biosynthesis and form pores in the S.
aureus membrane (79). Among the bacteriocins produced by
LAB, the most important are nisin, produced by Lactococcus lactis;
pediocin, produced by Pediococcus acidilactici; and lacticin 3147,
produced by Lactococcus lactis DPC 3147 (79, 80).

Apart from inhibiting the growth of S. aureus by the use of
H2O2, organic acids, and bacteriocins, LAB compete with S. au-
reus for the host cell adhesion sites. Biosurfactants and surface
proteins of LAB strains are involved in this competitive exclusion
process. L. fermentum, L. acidophilus, L. crispatus CRL 1266, L.
paracasei subsp. paracasei CRL 1289, L. salivarius CRL 1328, L.
rhamnosus GG, Lactococcus lactis subsp. lactis, and Propionibacte-
rium freudenreichii subsp. shermani were shown to disrupt the
adherence of S. aureus to the intestinal and urogenital tract by
competing for the same adhesion sites. Some LAB strains were also
shown to displace previously adhered S. aureus from the vaginal
epithelial cells (27). In a recent study, it was also shown that the
small signaling molecule cyclic dipeptides cyclo(L-Tyr-LPro) and
cyclo(L-Phe-L-Pro), produced by the human vaginal isolate L. reu-
teri RC-14, are able to interfere with the staphylococcal quorum-
sensing system agr, a key regulator of virulence genes, and repress
the expression of staphylococcal exotoxin TSST-1 (81).

To counter the detrimental effects of LAB species, S. aureus
produces bacteriocins that have antibacterial activity against LAB.
For example, S. aureus secretes bacteriocins such as staphylococ-
cin Au-26, Bac1829, BacR1, aureocin A70, and aureocin A53 that
inhibit the growth of lactobacilli (80).

(v) Interactions with Corynebacterium sp. S. aureus and Co-
rynebacterium sp. are two of the most important species infecting
the skin and nasopharynx. Both organisms are associated with
catheter-related infections. A lower incidence of S. aureus coloni-
zation has been observed in individuals heavily colonized by
Corynebacterium sp. (C. accolens, C. pseudodiptheriticum, and C.
tuberculostearicum). Corynebacterium spp. utilize competitive ex-
clusion strategies similar to those of LAB in competing with S.
aureus for the same adhesion site with host mucosal epithelial cells
(30). No bacteriocin-like activity of Corynebacterium sp. against S.
aureus has been reported. However, a number of bacteriocins se-
creted by S. aureus are active against Corynebacterium sp. These
bacteriocins include Bac1829 (17), aureocin A70 (29), aureocin
A53 (82) and staphylococcin 188 (28).

(vi) Interactions with S. epidermidis. Besides these interac-
tions, S. aureus is also known to interact with members of the same
genus. Several reports indicate antagonistic relationships between
S. aureus and S. epidermidis. Both S. aureus and S. epidermidis are
opportunistic and nosocomial pathogens. Unlike S. aureus, which
causes severe acute infections, S. epidermidis frequently causes
chronic infections and has an exceptional capacity to attach to the
indwelling medical devices during surgery and form biofilms. The
presence of S. epidermidis in the nasal cavities has been reported to
correlate with the absence of S. aureus (83). Similar to S. pneu-

moniae, this pathogen uses multiple strategies to inhibit S. aureus
colonization. These include production of autoinducing peptide
(AIP), phenol-soluble modulins (PSM), and bacteriocins. The
production of virulence factors and other extracellular proteins in
staphylococci is globally regulated by the accessory gene regula-
tory system (agr). agr encodes a two-component signaling path-
way whose activating ligand is AIP, which is also encoded by agr
(84). The AIPs can activate the agr response in the other members
of the same group but show mutually inhibitory effects between
members of different groups. Based on the agr loci present, S.
aureus strains have been divided into 4 major groups, agr-1Sa to
agr-4Sa, and S. epidermidis into 3 major groups, agr-1Se to agr-3Se

(85). S. epidermidis AIP has been proven to inhibit the activity of
agr-1Sa to agr-3Sa and thereby suppress the expression of virulence
factors such as the alpha-toxin, �-toxin, �-toxin, serine protease,
DNase, fibrinolysin, enterotoxin B, and toxic shock syndrome
toxin 1 in S. aureus. Among S. aureus AIPs, only agr-4Sa weakly
inhibits the activity of agr-1Se (30, 86).

Additionally, S. epidermidis secretes an extracellular serine
protease (Esp) that, alone or in combination with host �-defensin
2, eliminates S. aureus biofilms. Esp cleaves S. aureus major auto-
lysin (Atl) protein and interferes with its function (87). Activity of
Atl is necessary for DNA release and biofilm formation of S. aureus
(88). Phenol-soluble modulins (PSM� and PSM�) and bacterio-
cins (Pep5, epidermin, epilancin K7, and epicidin 280) produced
by S. epidermidis inhibit the growth of S. aureus. S. epidermidis-
secreted PSM peptides cooperate with each other and with the
host antimicrobial peptide, LL-37, to exert selective antimicrobial
action against S. aureus (9, 89).

(vii) Interactions with Enterococcus faecalis. The anterior na-
res are generally considered to be the primary site of colonization
of S. aureus; however, low concentrations (�105 CFU/g of feces)
of this organism cocolonize the intestinal tracts together with E.
faecalis in healthy humans. Both S. aureus and E. faecalis normally
exist as commensals, but they can turn into opportunistic patho-
gens causing urinary tract infections, bacteremia, and infective
endocarditis (15). Apart from the intestinal tract, E. faecalis and S.
aureus are frequently isolated from the respiratory tract, urinary
tract, and chronic foot ulcers and from diabetic foot wounds (44).
The interaction between E. faecalis and S. aureus is neither truly
synergistic nor antagonistic.

Many studies have focused on the mechanisms by which S.
aureus acquired the vancomycin resistance gene from E. faecalis.
Vancomycin-resistant S. aureus (VRSA) strains emerged due to
horizontal transfer of a Tn1546 transposon containing the vanA
gene from vancomycin-resistant E. faecalis (90–92). The trans-
poson Tn1546 harboring the vanA gene present on the pAM830
plasmid is related to the Inc18 family of broad-host-range conju-
gative plasmids and is responsive to the cAM373 pheromone se-
creted by the plasmid-free (recipient) strains of E. faecalis.
cAM373 triggers the process of conjugation, leading to the trans-
fer of the vanA gene from the vancomycin-resistant E. faecalis
(donor) strains to the vancomycin-susceptible E. faecalis (recipi-
ent) strains (93). S. aureus is also known to secrete a peptide,
staph-cAM373 (amino acid sequence AIFILAA), with activity
similar to that of E. faecalis cAM373 (amino acid sequence AIFI
LAS) that triggers the process of conjugation between vancomy-
cin-resistant E. faecalis (donor) and S. aureus (recipient) (94).
This conjugation results in the transfer of the vanA gene from E.
faecalis to S. aureus. Genetic analysis of several vancomycin-resis-
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tant S. aureus (VRSA) strains showed that transposon Tn1546
harboring the vanA gene either jumped into a staphylococcal plas-
mid or integrated into the S. aureus chromosome (16, 91, 95). The
acquisition of vanA by S. aureus resulted in incorporation of D-al-
anyl-D-lactate (D-Ala-D-Lac) precursors into the peptidoglycan
instead of D-alanine-D-alanine (D-Ala-D-Ala). The E. faecalis and
S. aureus cell wall harboring the D-Ala-D-Lac precursors has 1,000-
fold less affinity for vancomycin, a drug that is considered the
last-resort antibiotic to treat methicillin-resistant S. aureus
(MRSA) infections (96). Interactions between these two bacteria
have led to an increase in the numbers of multidrug-resistant
staphylococci.

CONCLUSION

Most infections are polymicrobial in nature and can be seen in
almost every niche in the human body, particularly in mucosal
surfaces, where different species of microorganisms such as bac-
teria, fungi, and viruses coexist as communities. S. aureus is one of
the most common pathogens found in polymicrobial infections.
In polymicrobial infections, S. aureus differentially modulates
host immune responses and disease severity and acquires altered
growth and antibiotic susceptibility patterns. The altered immune
response during polymicrobial infections could be beneficial or
detrimental for S. aureus. For example, influenza virus infection
inhibits Th17-mediated adaptive immune responses (97). Acti-
vated Th17 cells are necessary for protection against S. aureus
infection, because this subset of T cells enhances neutrophil re-
cruitment to sites of infection and kills S. aureus (98, 99). There-
fore, Th17 cell-mediated immune activation is necessary to limit S.
aureus infections. By inhibiting the Th17 cell-mediated immune
response and subsequent neutrophil infiltration, influenza virus
helps S. aureus to colonize and to cause severe secondary bacterial
pneumonia (97, 100). In contrast to the immune suppression me-
diated by influenza virus that aids S. aureus, S. pneumoniae-medi-
ated immune activation is detrimental to S. aureus. The antibody
response generated during S. pneumoniae infection against its
glyceraldehyde-3-phosphate dehydrogenase, although ineffective
in inducing opsonophagocytic killing of S. pneumoniae, can cross-
react with staphylococcal protein 1-pyrroline-5-carboxylate de-
hydrogenase and induce opsonophagocytic killing of S. aureus
(71, 72). S. pneumoniae itself is protected from opsonophagocytic
killing due to its antiopsonic polysaccharide capsule.

Additionally, S. aureus in polymicrobial infections displays en-
hanced persistence and antibiotic tolerance. S. aureus acquired
vancomycin resistance genes from E. faecalis and became resistant
to vancomycin (16, 91, 95). S. aureus, during coinfection with C.
albicans, showed increased vancomycin resistance (13, 101). This
bacterium forms electron transport-deficient small-colony vari-
ants during coinfection with P. aeruginosa (57, 58). These SCVs
persist better than their normal counterparts and are resistant to
aminoglycosides and trimethoprim-sulfamethoxazols (102).

A 23-valent polysaccharide vaccine against S. pneumoniae
which was recently introduced into the market indeed prevented
S. pneumoniae nasopahryangeal colonization, but the vaccinated
individuals were subject to an increased risk of S. aureus nasal
colonization (72). Therefore, prevention of one pathogenic infec-
tion provides opportunities to the competing pathogens to cause
disease. These findings highlight the potential complications that
could arise from conventional treatment and disease prevention
strategies that target a single organism, thereby necessitating the

need to introduce modified therapeutic approaches that take into
account the coinfecting organisms. Several strategies could be
used to address the difficulties in treatment of polymicrobial in-
fections of S. aureus. One could be the use of combined vaccines
against two or more coinfecting microbes; however, such vaccines
are still in the experimental stages. The next approach could be the
judicious use of antimicrobial drugs. A coinfection of S. aureus
and influenza virus should be treated with antiviral and appropri-
ate antibacterial drugs. A third approach is the use of LAB strains
to prevent not all but some of the S. aureus infections. Probiotic
LAB can prevent intestinal and urogenital tract coinfections.
Studies have shown that regular intake of probiotic LAB and fer-
mented milk can even reduce S. aureus colonization in the upper
respiratory tract. Similarly, probiotic LAB species also confer pro-
tection against influenza virus by modulating innate immunity.
Thus, probiotic bacteria can be used to prevent coinfections of S.
aureus and influenza virus.

In summary, S. aureus in polymicrobial infections represents a
clinical challenge greater than that of S. aureus in monomicrobial
infections. The coexisting microbes significantly influence the
outcome of the infection by altering invasion ability, growth, gene
expression, and drug sensitivity patterns. Further investigations
are required to design appropriate treatment strategies to tackle
polymicrobial infections mediated by S. aureus.
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