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Abstract

The defining motor characteristics of Parkinson’s disease (PD) are mediated by the

neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in

intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol.

Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine

neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic

dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt

vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This

review outlines the many mechanisms by which disruption of vesicular function may contribute to

the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by

pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene

products, variations in the proper compartmentalization of dopamine can wreak havoc on a

functional dopamine pathway. Findings from patient populations, imaging studies, transgenic

models, and mechanistic studies will be presented to document the relationship between impaired
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vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious

effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be

beneficial in the treatment of PD.
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Introduction

The disease James Parkinson first described in 1817 as the Shaking Palsy, which now bears

his name, is the second most common neurodegenerative disorder. Parkinson’s disease (PD)

is defined by its motor symptoms, tremor, rigidity, bradykinesia, but is, in fact, multifaceted

and is associated with nonmotor symptoms as well, including autonomic, cognitive, and

neuropsychiatric disturbances. The motor symptoms of PD are in all likelihood due to

deficits in synaptic dopamine transmission, while the nonmotor symptoms may involve

other neurotransmitters. PD pathology is characterized by deposition of α-synuclein-positive

Lewy bodies in susceptible neurons and neuronal degeneration. However, Lewy pathology

and neurodegeneration do not follow the same pattern of progression. Lewy bodies are, early

on, deposited in the dorsal motor nucleus of the brainstem and spread in an ascending

manner throughout the nervous system, but neurodegeneration is limited to specific areas.

The dopaminergic neurons of the substantia nigra pars compacta (SNpc), which innervate

the dorsal striatum, are preferentially destroyed in the course of the disease. Notably, cell

loss is also observed in the locus ceruleus, in sympathetic neurons of the peripheral nervous

system (releasing norepinephrine), and the dorsal raphe (releasing serotonin) [1, 2].

The key role for vesicular function in PD was first hinted at over 50 years ago. In 1952,

reserpine, an alkaloid isolated from the Indian snakeroot Rauwolfia serpentine, was

introduced to Western medicine and widely prescribed for its antihypertensive and

antipsychotic properties. Despite the beneficial effects of reserpine, side effects include

depression, gastric dysmotility, and extrapyramidal symptoms, “resembling a complete

Parkinson Syndrome” [3]. While the molecular target of reserpine would not be identified

for decades, investigators noted that reserpine depleted dopamine in biological tissue and

caused parkinsonism in rats [4, 5]. Arvid Carlsson found that administration of the dopamine

precursor, L-3,4-dihydroxyphenylalanine (levodopa), rescued the parkinsonian phenotype in

rats [6]. Soon after, Ehringer and Hornykiewicz discovered that striatal dopamine deficiency

was responsible for Parkinsonian motor deficits [7] and in 1961, Birkmayer and

Hornykiewicz intravenously administered levodopa to a PD patient for the first time with

marked success [8]. An oral form of levodopa was approved for the treatment of PD in

1970.

Storage of neurotransmitters relies on the function of synaptic vesicles; disrupting vesicular

function results in decreased release and increased cytoplasmic neurotransmitter, which is

toxic to neurons. The toxicity of cytoplasmic dopamine, in particular, has been studied

extensively and results from oxidative stress stemming from excessive autoxidation and
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enzymatic deamination. Similar mechanisms of toxicity have been studied in the

norepinephrine system, and to a lesser extent, the serotonin system. For the purpose of this

review, we will focus on the vesicular storage of dopamine and ways it is disrupted in PD.

We will both review evidence that defective vesicular function may be a determinant of PD

pathogenesis and examine clinical indices of vesicular function and their potential as

biomarkers for disease progression.

Synaptic Vesicle Function

Vesicles consist of spherical lipid bilayers and a vast array of proteins that mediate their

various functions. Combined biochemical and genomic approaches have led to the

identification of dozens of integral vesicular proteins involved in these activities, as well as

biomolecules that are transiently associated with vesicles throughout their lifecycle [9–13].

The composition and size of synaptic vesicles vary with respect to their neuronal phenotype

and cargo [14]. Synaptic vesicles transport and store a variety of neurotransmitters including

acetylcholine, amino acids (including GABA and glycine, which are inhibitory and

glutamate, which is excitatory), biogenic amines (including DA, NE, and serotonin), and

neuropeptides. By concentrating neurotransmitters into discrete packages for subsequent

release, synaptic vesicles are essential for neurotransmission. The vast majority of

neurotransmitters within a neuron are found stored within vesicles. As such, vesicles must

sequester transmitters against a concentration gradient, using specialized transporters.

Within monoaminergic neurons, the type II vesicular monoamine transporter (VMAT2;

SLC18A2) preferentially transports 1 cytosolic monoamine into the vesicle in exchange for

release of 2 protons into the cytosol [15]. This process is dependent on an electrochemical

gradient generated by the vacuolar ATPase, which transports protons into the vesicle,

acidifying the vesicle lumen and providing substrate for antiport by VMAT2 [15, 16].

Formed in the Golgi apparatus, vesicles are transported to the synaptic terminal via transient

interactions between cytoskeletal and vesicular proteins [17]. At the synaptic terminal,

vesicles exist in distinct pools of various stages in the vesicle cycle; movement between

these pools is dynamically regulated by vesicular proteins that respond to neuronal activity

[18]. A subset of vesicles, comprising the readily releasable pool (RRP), dock at the active

zone of the presynaptic membrane awaiting calcium influx. Calcium induces vesicles to fuse

with the presynaptic membrane and release their contents by exocytic release (Fig. 1a) [18].

Closely associated with the RRP is the larger reserve pool, and collectively these make up

the recycling pool. Most distal to the terminal is the resting pool [19]. From

electrophysiological and morphological observations in cultured hippocampal neurons,

investigators have estimated that there are 6–8 vesicles in the RRP, 17–20 in the reserve

pool, and 180 in the much larger resting pool [20–23]. Docking of RRP vesicles is mediated

by interactions between vesicular and plasmalemmal proteins of the SNARE complex [24],

including synaptotagmins, which are calcium-sensing proteins that initiate membrane fusion

during exocytosis [25, 26]. With prolonged stimulation, vesicles in the reserve pool are

recruited to the RRP. Vesicles fused to the plasma membrane have several possible fates,

including reuse by so-called “kiss-and-stay” (immediate reuse) and “kiss-and-run”

(trafficking to the reserve pool) mechanisms [18, 27, 28]. Vesicle components remaining in

the plasma membrane are recycled or degraded by endosomes.
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Proteins, such as LRRK2 and α-synuclein, which are implicated in PD, may disrupt

vesicular trafficking and function. Mutations in the LRRK2 gene (encoding the leucine-rich

repeat kinase 2), account for the highest proportion of genetic cases of PD [29]. LRRK2 has

a functional kinase domain with a multitude of cellular phospho-targets that may alter

vesicular activities [30]. In addition, the circularized beta-propeller structure of the WD-40

domains in LRRK2 has been shown to interact with cytoskeletal and vesicular proteins.

Mutations in LRRK2 may disrupt vesicular trafficking and endosomal recycling of vesicular

proteins (Fig. 1e) [30].

The physiological role of α-synuclein (encoded by SNCA) remains elusive, though its

genetic and pathological role in PD is well established [31–33]. Monomeric α-synuclein has

been shown to reversibly bind and adjoin vesicle membranes [34]. Based on this and its

presynaptic localization, it is hypothesized that its endogenous function is to regulate

vesicular trafficking between the active zone and cytoplasmic pools. Combining transgenic

models of α-synuclein overexpression and deletion, Scott and Roy observed that α-

synuclein regulates the size of the recycling pool in cultured hippocampal neurons because

overexpression decreased the recycling pool size and deletion increased its size and

enhanced intersynaptic vesicular trafficking [35•]. Rats overexpressing human α-synuclein

have reduced dopamine vesicle density and correlative reductions in motor activity [36•]. In

the context of pathogenesis, fibrilization of α-synuclein forms the primary structural

component of Lewy bodies, and toxic α-synuclein protofibrils form as intermediates in the

fibrilization process [37]. Oxidized dopamine covalently binds α-synuclein, stabilizing these

protofibril intermediates [38] (for a biophysical review of this subject, see [39]). In vitro,

oligomeric α-synuclein can also disrupt SNARE complex formation [40]. Furthermore, α-

synuclein protofibrils have been shown to permeabilize vesicle membranes, which would

facilitate leakage of vesicular dopamine into the cytoplasm and ablate the vesicle

electrochemical gradient [41]. These processes may synergistically interact in PD (Fig. 1d)

and, in part, explain the vulnerability of dopamine neurons in PD.

Cytoplasmic Dopamine Toxicity and VMAT2

Despite the essential role of dopamine to life processes, it is neurotoxic if vesicular storage

is disrupted. Under normal conditions, low levels of dopamine are present in the cytosol

following synthesis from DOPA, plasmalemmal transport by the dopamine transporter

(DAT), and vesicular leak [42]. Cytosolic dopamine is metabolized by enzymatic

deamination or broken down by autoxidation, producing reactive, harmful products.

Efficient transport of dopamine by VMAT2 prevents accumulation of these toxic

byproducts. Thus, the relative expression of DAT to VMAT2 has been suggested as a

determinant of neuronal vulnerability in PD [43, 44].

Enzymatic deamination of dopamine occurs at the mitochondria by monoamine oxidase

(MAO), forming DOPAL, a toxic aldehyde intermediate, as well as H2O2 [45]. DOPAL is

reactive, and it readily forms adducts to cytosolic proteins. Alternatively, it may autoxidize,

generating reactive oxygen species [46]. The toxicity of DOPAL has been thoroughly

studied in vitro [47] and has been shown to cause neurodegeneration in mice [48]. Relative
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DOPAL formation is elevated in the striata of postmortem PD brains [49]. Intraneuronally,

DOPAL is preferentially detoxified by aldehyde dehydrogenase to form DOPAC [45].

While autoxidation of cytosolic dopamine occurs readily in the alkaline environment of the

cytosol, dopamine is stable in the acidic environment of the vesicle. Autoxidation is

particularly deleterious because it yields a reactive dopamine quinone, as well as superoxide,

hydrogen peroxide, and a hydroxyl radical. Furthermore, the dopamine quinone itself is

highly reactive and forms cysteinyl adducts [50], disrupting the function of target proteins

and potentially DNA [51]. Another fate of cytosolic monoamines that is not necessarily

toxic is the formation of neuromelanin, the dark pigment that gives the SNpc its color.

Notably, neuromelanin is also present in the LC, where oxidation of dopamine and NE also

occurs. Neuromelanin forms in the acidic lysosomal compartments, which contain VMAT2

and are capable of monoamine transport. Within the confines of these organelles, dopamine

quinones may instead polymerize, forming neuromelanin, [52]. However, neuromelanin

biosynthesis from autoxidized dopamine is prevented in cultured nigral rat neurons

overexpressing VMAT2, suggesting that the ability to properly store dopamine in vesicles is

critical in this process [53].

Numerous studies have shown that unregulated cytosolic dopamine is neurotoxic [50, 54–

56]. Mice expressing DAT on non-dopaminergic striatal neurons that lack VMAT2 are able

to take up dopamine but not store it in vesicles; these mice exhibit motor deficits and

profound striatal neurodegeneration, accompanied by markers of increased dopamine

oxidation [57]. In vitro experiments have also demonstrated that relative vulnerability of

dopamine neurons in PD may be mediated by levels of cytosolic dopamine [58].

Additionally, transgenic mice with altered expression of VMAT2 (Fig. 1c) have illustrated

how crucial vesicular storage of dopamine is to the integrity of the nigrostriatal system.

Vesicular function is essential and VMAT2 knockout mice die soon after birth.

Heterozygotes develop normally, but have increased sensitivity to amphetamine-induced

locomotion, susceptibility to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity

[59–61], and levodopa induced death of SNpc neurons [58]. VMAT2 hypomorphic mice (~5

% wildtype expression; VMAT2LO) have emerged as a mouse model of PD [62–64, 65•].

These mice develop normally, but undergo progressive nigrostriatal degeneration, α-

synuclein accumulation, as well as motor and nonmotor symptoms of PD [63, 64]. They also

show markers of oxidative stress, including cysteinyl-catechol adducts. Notably,

neurodegeneration occurs only when these mice express α-synuclein [63]. VMAT2LO mice

exhibit levodopa-correctable motor deficits, including reduced stride-length and locomotor

activity, as well as nonmotor symptoms of PD, including anosmia, gastric dysmotility, and

depressive and anxiety-like behaviors. In contrast, PACAP38, a neuropeptide shown to

increase VMAT2 expression, attenuates methamphetamine-induced neurotoxicity in mice,

reduces markers of oxidative stress and neuroinflammation, and suggests that increase

VMAT2 protects against oxidative stress [66].

In addition to VMAT2’s protective role against cytoplasmic dopamine toxicity, it also plays

an important role in neuroprotection against exogenous toxicants that may damage

dopamine neurons [16, 67]. The classic dopaminergic toxicant, MPTP, was serendipitously

but tragically discovered to induce chronic parkinsonism in humans after intravenous
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administration [68]. After crossing the blood-brain barrier, MPTP is metabolized by glial

monoamine oxidase to form the toxic metabolite, MPP+, which is then transported into

neurons by the dopamine transporter [69–72]. MPP+ causes neurotoxicity by inhibiting

mitochondrial respiration and triggering cell death. MPP+ is also a substrate for VMAT2

and can be sequestered away from sites of action. In fact, VMAT2 was initially cloned for

its ability to confer resistance to MPP+ toxicity and is evolutionarily related to bacterial

toxin extruding antiporters (TEXANS) [73–75]. In support of this, heterozygote VMAT2

knockout mice have heightened sensitivity to MPTP toxicity [61]. It is conceivable that

VMAT2 expression may modulate the effects of other exogenous toxicants involved in PD

pathogenesis [59, 76].

Pharmacologic Blockade of VMAT2

Carlsson and colleagues’ observation that reserpine induced a parkinsonian phenotype that

was correctable with levodopa was a launching point for pharmacotherapy in PD [6, 77].

Subsequent experimentation revealed that the effects of reserpine were akin to

sympathectomy, in that reserpinized subjects were still responsive to the inotropic and

pressor effects of direct-acting sympathomimetics or adrenergic receptor agonists (directly

acting sympathomimetics, eg, norepinephrine, epinephrine, neosynephrine), but abolished

the effects of indirectly acting sympathomimetics including the phenethylamines,

amphetamine, ephedrine, and tyramine [78, 79]. It was later realized that reserpine and the

aforementioned indirectly acting sympathomimetics all function by inhibiting VMAT2 (Fig.

1b).

Amphetamine (AMPH) and the substituted AMPH derivative methamphetamine (METH)

are catecholamine releasers in the peripheral and central nervous systems. The rewarding

effect of striatal dopamine release is largely responsible for the abuse potential of this class

of drugs. When abused, AMPH and METH are capable of exerting profound dopaminergic

toxicity [84]. AMPH and METH share the same mechanism of action and similar

pharmacokinetic and pharmacodynamic properties [80, 81]. AMPH and METH mediate

dopamine release by competing for vesicular uptake of dopamine by VMAT2. Furthermore,

they are weak bases and may disrupt the electrochemical gradient of the vesicle by accepting

free lumenal protons [81]. The increased level of cytosolic dopamine in turn facilitates non-

exocytic dopamine release into the synaptic terminal by efflux via the dopamine transporter

[81].

Administration of METH in animals causes striatal denervation, including loss of dopamine

transporter expression, gliosis, and autophagic vacuolization [82–84]. In rats, this pathology

is associated with cysteinyl dopamine adducts, suggesting that dopamine oxidation is indeed

involved in METH toxicity [85]. This toxicity is relevant in humans; striatal dopamine

transporter loss in METH-treated baboons is comparable with losses in human METH users

who reported using similar doses of METH [86]. METH-induced striatal DAT loss in

humans is not as severe as losses observed in PD, but it has been shown to persist in patients

3 years after quitting, suggesting long-term damage that may sensitize one to PD [87].

Recently, a retrospective statewide study in California found that patients admitted to the

hospital for an AMPH or METH related incident were significantly more likely to develop
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PD than matched patient controls admitted for appendicitis (hazard ratio=1.75) [88]. In

contrast, the same study showed that patients admitted to the hospital for cocaine-related

incidents did not have an increased likelihood of developing PD. Because cocaine inhibits

DAT and also increases dopamine levels in the synaptic cleft, these findings support the

notion that PD risk may stem from cytosolic dopamine toxicity. In support of this notion,

our lab has shown that VMAT2 expression in mice inversely correlates with their

susceptibility to METH-induced dopaminergic neurotoxicity [66, 89].

Toxicological Blockade of VMAT2

Epidemiological evidence supporting an environmental connection to PD is compelling [90–

99]. As we and others have recently reviewed, several classes of compounds have been

associated with PD pathology, especially halogenated persistent organic pollutants (POPs)

[16, 100, 101]. Halogenated POPs represent a broad class of environmental toxicants that

include organochlorine insecticides, polychlorinated biphenyls (PCBs), and brominated

flame retardants. Higher levels of many organochlorines and PCBs have been reported in

postmortem brain tissue and serum of PD patients [102–106] and epidemiological studies

have linked the compounds to PD [91]. Mechanistic studies into these compounds suggest

that many exert selective toxicity to dopaminergic neurons, inhibit synaptosomal and

vesicular uptake, and cause oxidative stress [107–125]. Taken together, these data suggest

that many compounds epidemiologically linked to PD act by impairing vesicular function

and increasing oxidative stress.

Genetic Variability of SLC18A2 in PD

Given the role of VMAT2 in regulating cytosolic dopamine toxicity, mutations affecting the

function or expression of the transporter (Fig. 1c) might be expected to affect susceptibility

to PD. Genetic mutations in the coding region of SLC18A2 are extremely rare, reflecting the

essential nature of VMAT2 function in an evolutionary context. A recent report identified a

crippling movement disorder in members of a consanguineous Saudi Arabian family

carrying a recessive mutation in the coding region SLC18A2 resulting in a P387L

substitution in the fifth luminal loop of VMAT2 [126•]. Affected individuals developed

infantile-onset parkinsonism, severe cognitive impairment, mood disturbance, and

autonomic dysfunction. Heterozygote parents were unaffected by the disorder, but were

clinically depressed, consistent with a reduction in brain monoamines. The homozygous

patients exhibited reductions in CSF and urinary monoamines, but increased monoamine

metabolites. The investigators found that P387L mutation virtually abolished VMAT2

function in transfected cells. Treatment with the dopamine receptor agonist pramiprexole

dramatically improved symptoms in all patients, though efficacy appeared to correlate

inversely with age. Other coding mutations have been identified in humans, though they are

very rare and have not been associated with neurological outcomes [127, 128].

While SLC18A2 has very little variability in the coding regions, the gene has a large and

highly polymorphic promoter sequence (17.4 kb) [127, 129]. This high variability results in

many low frequency haplotypes and renders genetic risk assessment difficult. Thus, studies

of SLC18A2 haplotype and PD risk have been inconclusive [127, 130]. However, analyses
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of the functional consequences of promoter polymorphisms have provided useful

information. Glatt and colleagues [131] screened the most prevalent promoter haplotypes in

an American population and identified those that increased transcriptional activity of

SLC18A2 in vitro. Collectively, gain-of-function haplotypes were found to be protective

against risk of PD in women; the effect was particularly robust in women homozygous for

gain-of-function haplotypes (odds ratio= 0.37). In a more recent study in Italy, investigators

identified 2 SNPs within the promoter that conferred protection against PD, presumably by

increasing VMAT2 expression [132•]. The variability of the SLC18A2 promoter suggests

that genetic and epigenetic influences may contribute to variable VMAT2 expression and

risk of PD within populations.

VMAT2 Imaging in PD

Positron emission tomography (PET) ligands of striatal dopamine terminal markers have

been used to monitor the progression of PD and response to therapeutic treatments. VMAT2

has emerged as a reliable marker of striatal innervation in PD [76, 133, 134]. High-affinity

radioligands for DAT and the fluorinated DOPA analog, 18F-DOPA, have been utilized for

PET scans, but their binding substrates were found to be modulated by levodopa and

dopamine agonists. For instance, changes in DAT binding by β-CIT in response to

pramipexole (increased binding) and levodopa (reduced binding) had been mistakenly

interpreted as changes in striatal innervation, when in fact DAT membrane expression is

modified by these therapies [135, 136]. 18F-DOPA PET signal does not reliably correlate

with striatal innervation because expression of AADC, for which 18F-DOPA is a substrate,

increases in response to neuronal damage [137–140]. In contrast to DAT, VMAT2

expression is not modified by the PD therapeutics levodopa or selegiline [138, 141]. Bohnen

and colleagues demonstrated that striatal C11-dihydrotetrabenazine binding correlated

reliably to clinically rated (UPDRSIII) motor deficits in PD patients [133]. Another VMAT2

radioligand, F-18-AV-133 (a tetrabenazine derivative), is also now used to study

nigrostriatal degeneration [142, 143]. While VMAT2 radioligand binding conveniently

correlates to nigrostriatal denervation, it does not provide direct evidence of vesicular

function or VMAT2 activity.

VMAT2 as a Peripheral Biomarker of PD

Studies examining VMAT2 in the human periphery may provide insight into how to

measure central VMAT2 activity in PD. VMAT2 mediates the storage and release of

norepinephrine in postganglionic neurons of the sympathetic nervous system. Sympathetic

denervation commonly occurs in PD; orthostatic hypotension is a comorbid feature,

affecting 30 % of PD patients [144, 145]. In vivo imaging of sympathetic denervation in PD

patients is accomplished with radiolabeled ligands for both the norepinephrine transporter

(expressed at the plasma membrane of sympathetic neurons) and VMAT2 [146–150].

Sympathetic denervation may occur prior to the onset of motor symptoms of PD, with

noradrenergic denervation of the heart paralleling the dopaminergic denervation of the

striatum [149, 151].
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A novel approach pairing analysis of myocardial 18F-DA uptake and arterial 18F-DOPAC

formation can provide an in vivo index of vesicular activity [152]. 18F-DA uptake is

dependent on the presence of intact noradrenergic terminals, and MAO metabolism of 18F-

DA to 18F-DOPAC is in competition with vesicular uptake [153]. Thus, one can determine

both the extent of cardiac noradrenergic innervation (by PET imaging) and the relative

uptake activity in vesicles (by measuring relative 18 F-DOPAC formation) with these

combined methods. Goldstein and colleagues performed this analysis in patient cohorts

including those with PD with orthostatic hypotension, pure autonomic failure (a Lewy body

disease featuring orthostatic hypotension without parkinsonism), multiple systems atrophy

(a non-Lewy body synucleinopathy that clinically resembles PD), and healthy controls. The

authors concluded that myocardial vesicular function was impaired only in patients with

Lewy body diseases (PD with orthostatic hypotension and in pure autonomic failure),

consistent with the effects of pathogenic α-synuclein in disrupting vesicular function [39,

154].

VMAT2 is also present in platelets and may serve as a peripheral biomarker of

monoaminergic vesicular function. Platelets express proteins involved in the storage and

metabolism of serotonin, including the serotonin transporter (SERT), VMAT2, and

monoamine oxidase. These blood cells have been used as models of serotonin neurons

[155]. Profiles of imipramine binding to platelet SERT have been used as peripheral

biomarkers of serotonergic neurotransmission in the brain [156–160]. Similarly, platelet

VMAT2 levels may serve as a peripheral biomarker of central VMAT2 expression.

Alterations in VMAT2 dihydrotetrabenazine binding in platelets have been linked to cases

of depression, juvenile behavior disorders, and schizophrenia [161–169]. Platelet SLC18A2

mRNA levels may also be predictive of PD. In 39 PD patients vs 39 healthy control

subjects, the relative quantity of SLC18A2 mRNA in platelets was decreased by 23 % in the

PD patients [170]. Therefore, assessing platelet expression of VMAT2 may prove useful as a

noninvasive biomarker of PD risk.

Conclusions

We have summarized ways in which alterations in vesicular storage of dopamine influences

neuronal viability and susceptibility to neurodegeneration in PD. All disruptions of vesicular

storage discussed have the overall effect of increasing cytosolic dopamine. In sporadic PD, it

is conceivable that a combination of genetic and epigenetic factors decrease levels of

functional VMAT2 while environmental exposure to compounds that alter vesicular

function may have this same effect. Therefore, measuring vesicular uptake capacity in

human patients may represent a useful measure of PD risk. Furthermore, interventions

aimed at increasing vesicular function may be beneficial in the treatment of PD and may

even be neuroprotective. These warrant a closer look in controlled trials.
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Fig. 1.
Mechanisms of vesicular disruption in Parkinson’s disease. After synthesis, dopamine is

transported into vesicles. Cytoplasmic dopamine can be oxidized; in excess, this can lead to

cellular injury. a, Vesicles in the readily releasable pool dock at the presynaptic membrane.

In response to an action potential and calcium influx, vesicle membranes fuse to the plasma

membrane and release their contents into the synaptic space. Dopamine is then reclaimed by

the dopamine transporter (DAT) and then subsequently repackaged into the vesicle. b,

Pharmacological inhibition of VMAT2 prevents uptake of dopamine leading to a depleted

vesicle and reduced release. c, Genetic reduction of VMAT2 expression via promoter

polymorphisms in humans or genetic manipulation in mice (upper vesicle) or VMAT2

function as noted in [126•] (lower vesicle) causes a reduction in vesicular filling and

subsequent release. d, α-synuclein can form pores in the vesicle and cause depletion of

dopamine from the vesicle or interact with cytoplasmic dopamine to form toxic species. e,

Altered trafficking of the vesicle to the presynaptic membrane has been proposed to occur in

the presence of overabundant α-synuclein or mutated LRRK2
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