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Abstract

While stressful experiences are a part of everyone’s life, they can also exact a major toll on health.

Stressful life experiences are associated with increased substance abuse, and there exists

significant co-morbidity between mental illness and substance use disorders (Volkow & Li, 2004;

Koob & Kreek, 2007; Sinha, 2008). The risk for development of mood or anxiety disorders after

stress is positively associated with the risk for substance use disorders (Sinha, 2008), suggesting

that there are common substrates for vulnerability to addictive and affective disorders.

Understanding the molecular and physiological substrates of stress may lead to improved

therapeutic interventions for the treatment of substance use disorders and mental illnesses.
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Alterations in reward-related behaviors following stress suggest that the brain circuitry

regulating reward and reinforcement may be a critical hub for the effects of stress on

behavior. The ventral tegmental area (VTA) is a key player in the brain’s reward system,

and dysregulation of this brain region has long been implicated in both depression and

addiction (Nestler & Carlezon, 2006; Fields et al., 2007; Kauer & Malenka, 2007; Koob &

Volkow, 2010; Wise & Morales, 2010; Luscher & Malenka, 2011). As the sites of

information storage, synapses of the VTA are poised to be a crucial site of regulation of

reward and aversion by stress. Here we will review recent literature on the role of VTA

circuits and synapses in stress-related disorders.

I. VTA function and structure

Dopaminergic neurons in the VTA project to the prefrontal cortex and nucleus accumbens

(NAc), as well as to the hypothalamus, amygdala, lateral habenula, pallidum, and bed

nucleus of the stria terminalis (BNST) (Kauer & Malenka, 2007; Sesack & Grace, 2010).

These neurons have long been implicated in rewarding and reinforcing processes. Release of
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dopamine from the VTA into the nucleus accumbens is necessary for the rewarding

properties of natural stimuli required for survival, such as food and sex (Kelley & Berridge,

2002) as well as of drugs of abuse (Di Chiara & Imperato, 1988). Recent experiments

utilizing optogenetic tools to activate VTA dopaminergic neurons selectively have

demonstrated that phasic activity of these cells is sufficient to induce robust behavioral

conditioning (Tsai et al., 2009) and optical self-stimulation (Witten et al., 2011). While this

evidence is consistent with the conventional view of dopaminergic neuron activity signaling

rewarding or incentive salient stimuli (Robinson & Berridge, 2000), aversive and stressful

events are also clearly capable of enhancing dopaminergic function within the mesolimbic

system (Tidey & Miczek, 1996; Anstrom & Woodward, 2005; Berton et al., 2006;

Brischoux et al., 2009; Ungless et al., 2010). For example, dopamine release in the NAc and

prefrontal cortex increases during social threat (Tidey and Miczek, 1996), and VTA

dopaminergic neurons are phasically excited by footshock and during acute restraint stress

(Anstrom and Woodward, 2005; Brischoux et al., 2009). The precise meaning of neuronal

signals within the mesolimbic dopamine system is still a topic of debate, but it is clear that

this circuit is crucial for both rewarding and aversive experiences.

The VTA is made up of a mixture of dopaminergic, GABAergic, and glutamatergic neurons.

Roughly 60–65% of these neurons are dopaminergic and 35% GABAergic, with a small

population of glutamatergic neurons (Nair-Roberts et al., 2008; Sesack & Grace, 2010).

Additional complexity is added by the fact that dopaminergic neurons can co-release

glutamate (Stuber et al., 2010; El Mestikawy et al., 2011; Hnasko et al., 2012) or GABA

(Tritsch et al., 2012; Stamatakis et al., 2013). Dopaminergic neurons of the VTA are highly

heterogeneous anatomically and physiologically; however, recent work defining subclasses

based on projection target has identified two useful broad divisions of dopaminergic cells

(Ford et al., 2006; Margolis et al., 2006; Lammel et al., 2008; Margolis et al., 2008;

Lammel et al., 2011; Lammel et al., 2012; Lammel et al., 2013). In VTA slices,

dopaminergic neurons known to project to the lateral shell of the nucleus accumbens exhibit

the electrophysiological properties conventionally used to identify dopaminergic neurons,

including a large h-current (Ih) that contributes to a slow, pacemaker firing rate. These

neurons are found predominantly in the lateral portion of the VTA, and glutamatergic

synapses on these cells have a low AMPA receptor/NMDA receptor ratio under basal

conditions (AMPA/NMDA ratio) (Lammel et al., 2013). In contrast, dopaminergic neurons

projecting to the prefrontal cortex, basolateral amygdala, and core of the nucleus accumbens

exhibit a negligible Ih, rapid firing rate, and a high AMPA/NMDA ratio under basal

conditions, and are predominantly found in the medial VTA (Lammel et al., 2013).

Both excitatory and inhibitory synapses control the firing rates and patterns of VTA

dopaminergic neurons. In vivo recordings show that activation of glutamatergic neurons

projecting from the prefrontal cortex to the VTA increases bursting of VTA DA neurons

(Gariano & Groves, 1988; Murase et al., 1993; Tong et al., 1996). Bursting is typically not

observed in dopaminergic neurons in the slice preparation, likely because excitatory

afferents have been severed; however, bath application of NMDA induces bursting (Johnson

et al., 1992; Mereu et al., 1997). GABAergic synapses also play a major role in shaping the

activity of dopaminergic neurons. Both pharmacological and optogenetic studies
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demonstrate that the firing rate of dopaminergic neurons is profoundly reduced by activation

of GABAA receptors on these neurons (Johnson & North, 1992; Paladini & Tepper, 1999;

Tan et al., 2012; van Zessen et al., 2012).

Not surprisingly, the subclasses of neurons projecting to NAc or prefrontal cortex (mPFC)

receive distinct sets of afferent synapses with roles that are being unraveled using

optogenetic activation. Dopaminergic neurons projecting to the accumbens shell receive

excitatory glutamatergic and cholinergic inputs from the laterodorsal tegmental nucleus

(LDT)(Lammel et al., 2012), and inhibitory GABAergic input from the rostromedial

tegmental nucleus (RMTg) (Goncalves et al., 2012; Lammel et al., 2012). The mPFC-

projecting dopaminergic neurons, in contrast, receive glutamatergic input from the lateral

habenula. The lateral habenula also sends excitatory projections to the RMTg, which in turn

inhibits the NAc shell-projecting dopaminergic neurons (Lammel et al., 2012; Stamatakis &

Stuber, 2012). A minority of dopaminergic neurons found in the medial VTA also receive an

inhibitory GABAergic input from the BNST. Although the projection target of these neurons

has not been demonstrated, they lack Ih and are likely to be mPFC-projecting neurons

(Jennings et al., 2013).

In addition to these defined subcircuits of the VTA, several other regions strongly innervate

the VTA, including glutamatergic inputs from the prefrontal cortex and lateral hypothalamus

(Kempadoo et al., 2013) and GABAergic inputs from the ventral pallidum (Hjelmstad et al.,

2013). A small population of dopaminergic neurons also receives excitatory inputs from the

BNST (Jennings et al., 2013). VTA dopaminergic neurons also receive inhibitory input from

GABAergic neurons within the VTA (Tan et al., 2012; van Zessen et al., 2012). The nucleus

accumbens sends a dense GABAergic projection to the VTA (Nauta et al., 1978; Kalivas et

al., 1993), however recent optogenetic studies indicate that these projections make relatively

weak GABAA synapses onto VTA dopaminergic neurons with no identified projection

target (Bocklisch et al., 2013) and make no GABAA or GABAB synapses onto

dopaminergic neurons that project to the nucleus accumbens (Xia et al., 2011). These

findings are consistent with earlier literature suggesting that activating GABAA receptors in

the VTA increases dopamine release locally and in nucleus accumbens (Kalivas et al., 1990;

Klitenick et al., 1992; Xi & Stein, 1998), supporting the idea that activation of GABAergic

afferents from the NAc primarily disinhibits VTA dopaminergic cells.

Considerably less is known about the connectivity and diversity of the non-dopaminergic

neurons of the VTA, but GABAergic neurons within the VTA play a significant role in

modulating dopaminergic cell activity and driving behavior. For example, optogenetic

activation of VTA GABAergic neurons is sufficient to support conditioned place aversion

and to interrupt reward consumption (Tan et al., 2012; van Zessen et al., 2012). VTA

GABAergic neurons innervate local dopaminergic neurons, but also project to the nucleus

accumbens, although there is debate over whether they synapse solely on cholinergic

interneurons (Brown et al., 2012) or on medium spiny neurons as well (Ishikawa et al.,

2013a; Ishikawa et al., 2013b). VTA GABAergic neurons receive inhibitory input from

medium spiny neurons of the nucleus accumbens (Xia et al., 2011; Bocklisch et al., 2013)

and the BNST (Jennings et al., 2013). In addition, roughly half of VTA GABAergic neurons

have excitatory synapses originating in the BNST (Jennings et al., 2013). Furthermore,
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recent studies have identified a population of “hybrid” VTA neurons projecting to the lateral

habenula that are positive for dopaminergic markers, but do not release detectable levels of

dopamine. Instead, these neurons release GABA, which inhibits the lateral habenula and

promotes reward seeking (Stamatakis et al., 2013).

II. Projection-specific plasticity in reward and aversion

Repeated studies of synaptic plasticity in the VTA have consistently shown that

glutamatergic inputs onto dopaminergic neurons are potentiated in brain slices from animals

exposed in vivo to psychostimulants (Ungless et al., 2001; Faleiro et al., 2003; Saal et al.,

2003; Dong et al., 2004; Bellone & Luscher, 2006; Argilli et al., 2008; Chen et al., 2008).

Similar potentiation of glutamatergic synapses onto dopamine neurons is also observed after

in vivo or ex vivo exposure to nicotine, morphine or ethanol (Mansvelder & McGehee, 2000;

Saal et al., 2003).

Cocaine-induced potentiation is mediated by an NMDAR-dependent increase in AMPA

receptors at the synapse, reported as an increased AMPA/NMDA ratio (Ungless et al.,

2001). This increase in AMPA/NMDA ratio corresponds with increased rectification of

AMPA receptor currents and increased sensitivity to polyamines, suggesting an increase in

GluA2-lacking AMPA receptors (Bellone & Luscher 2006; Argilli et al 2008). In addition,

NMDA receptor currents induced by photo-uncaging at single synapses appear to be

reduced by cocaine, further amplifying the change in AMPA/NMDA ratio (Mameli et al.,

2011), although no difference is observed in the response to exogenously applied NMDA

(Ungless et al., 2001). NMDA currents in cocaine-treated animals also are more sensitive to

ifenprodil, a selective inhibitor of GluN2B, and less sensitive to zinc, a selective inhibitor of

GluN2A, suggesting an alteration in the ratio of GluN2A/GluN2B receptors (Yuan et al.,

2013). GluN2A/2B receptor switches often accompany significant changes in circuit

properties, e.g. during developmental critical periods, powerfully altering synaptic Ca2+

entry and synaptic plasticity thresholds (Quinlan et al., 1999; Kopp et al., 2007). Cocaine

treated animals appear to have increased insertion of GluN3a receptors, as indicated by

reduced calcium permeability and magnesium sensitivity (Yuan et al., 2013). Studies in

GluN3a knockout animals and utilizing shRNA to GluN3a indicated that this subunit is

required for the increase in AMPA/NMDA ratio following cocaine (Yuan et al., 2013).

These changes in both NMDARs and AMPARs significantly alter calcium permeability and

calcium dynamics at the synapse, allowing stimulation protocols that are not sufficient for

LTP induction in naïve animals to induce robust LTP following cocaine exposure (Mameli

et al., 2011).

LTP of glutamatergic synapses is long-lasting, persisting for a week after acute exposure to

cocaine (Ungless et al., 2001; Borgland et al., 2004) and for at least three months after

chronic cocaine self-administration (Chen et al., 2008). While operant responding for

naturally rewarding substances such as food or sucrose also potentiates glutamatergic

synapses in the VTA, their effects are much shorter lived with AMPA/NMDA ratios

returning to baseline levels between seven days and three weeks after the final self-

administration session (Chen et al., 2008).
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Dopamine neurons with differing projection targets exhibit differential alterations in

synaptic plasticity following rewarding or aversive stimuli (Lammel et al., 2011). In the

medial VTA, dopamine neurons projecting to the prefrontal cortex show a robust increase in

AMPA/NMDA ratio in response to an aversive stimulus (hindpaw injection of formalin) but

no change in response to a rewarding stimulus (single injection of cocaine). In contrast,

VTA neurons projecting to the medial shell of the nucleus accumbens have an increased

AMPA/NMDA ratio following cocaine injection, but do not change 24 hours after hindpaw

formalin injection. Lateral VTA neurons, which project to the lateral shell of the nucleus

accumbens, exhibit a moderate increase in AMPA/NMDA ratio after both rewarding and

aversive stimuli (Lammel et al., 2011). These data correspond nicely with the projection-

specific functional role of dopamine neurons. Optogenetic stimulation of accumbens-

projecting dopamine neurons supports robust place preference (Lammel et al., 2012),

suggesting that they contribute to reward. In contrast, activation of PFC-projecting

dopamine neurons induces conditioned place aversion suggesting a role in aversion

processing (Lammel et al., 2012).

III. Stress and VTA synapses

Both excitatory and inhibitory synapses on VTA dopaminergic neurons express long-term

potentiation (LTP) that is altered by exposure to acute stress(Saal et al., 2003; Dong et al.,

2004; Niehaus et al., 2010; Graziane et al., 2013), reviewed in (Kauer & Malenka, 2007;

Luscher & Malenka, 2011). Parallel changes seen after drug exposure and acute stress may

provide a reason why acute stressors precipitate drug-seeking after abstinence. Like

exposure to drugs of abuse, acute swim stress increases the AMPA/NMDA ratio of

excitatory synapses on VTA dopaminergic neurons (Saal et al., 2003; Dong et al., 2004;

Daftary et al., 2009; Graziane et al., 2013). This increase requires GluA1 receptors, and is

dependent upon activation of NMDA receptors and glucocorticoid receptors (Saal et al.,

2003; Dong et al., 2004) (Figure 1A). AMPA/NMDA ratios are potentiated as soon as 2

hours after stress, and remain potentiated for at least 24 hours (Daftary et al., 2009).

Glucocorticoid receptor activation is sufficient to induce potentiation of these glutamatergic

synapses, as either in vivo or in vitro dexamethasone increases AMPA/NMDA ratio

(Daftary et al., 2009). Local block of both AMPARs and NMDARs in the VTA also

prevents stress-induced dopamine efflux in the prefrontal cortex (Butts & Phillips, 2013).

In addition to glucocorticoids, other stress-modulating signaling molecules such as

corticotrophin releasing factor (CRF) can regulate VTA functioning. CRF is a hypothalamic

peptide that stimulates the hypothalamic-pituitary-adrenal stress response system and signals

the effects of stress throughout the brain (Sarnyai et al., 2001; Bale & Vale, 2004). The

paraventricular nucleus of the hypothalamus, the central amygdala, and the BNST all send

CRF-positive projections to the VTA (Rodaros et al., 2007). While CRF-containing

projections form both glutamatergic and GABAergic synapses, it appears that CRF-

containing synapses on dopaminergic neurons are primarily glutamatergic (Tagliaferro &

Morales, 2008). Both CRF1R and CRF2R receptors are found in the VTA (Van Pett et al.,

2000; Ungless et al., 2003) and CRF promotes firing in both GABAergic and dopaminergic

cells (Korotkova et al., 2006). In dopaminergic neurons, the increase in firing rate occurs

through alterations in the Ih (Wanat et al., 2008). Bath application of CRF to VTA slices
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also enhances NMDAR-mediated currents, but not AMPAR-mediated currents (Ungless et

al., 2003) (Figure 1B). This increase is mediated by CRF2R receptors, and is dependent on

activation of PKC.

Intriguingly, prior exposure to drugs of abuse enhances the effects of CRF on the VTA.

Intra-VTA infusion of CRF increases extracellular glutamate levels in cocaine treated but

not naïve rats (Wang et al., 2005). Compared to cocaine-naïve rats, cocaine-experienced rats

exhibit a greater magnitude and longer lasting potentiation of NMDAR currents induced by

CRF (Hahn et al., 2009). Unlike in naïve animals, in which CRF potentiates NMDAR

currents solely through CRF2R (Ungless et al., 2003), the potentiation in cocaine-

experienced rats is dependent on both CRF receptor subtypes. Furthermore, CRF potentiates

AMPAR currents in cocaine-treated rats, but not in naïve animals. In rats that have self-

administered cocaine, glutamatergic synapses on dopaminergic neurons are already

potentiated, as evidenced by the increased AMPA/NMDA ratio (Chen et al., 2008). That

CRF is able to further potentiate these synapses suggests that CRF and cocaine self-

administration potentiate distinct populations of glutamatergic synapses, or potentiate

excitatory synapses through distinct mechanisms.

CRF also plays an important role in reinstatement of drug seeking after footshock.

Footshock increases CRF levels in the VTA and causes a CRF-dependent increase in

extracellular glutamate (Wang et al., 2005). Intra-VTA infusion of CRF is also sufficient to

reinstate cocaine seeking, an effect that is blocked by a glutamate receptor antagonist (Wang

et al., 2005). Footshock-induced reinstatement can be prevented by infusion of antagonists

of CRF receptors or of AMPARs and NMDARs into the VTA (Wang et al., 2005).

Subsequent work demonstrated that a CRF2R antagonist, but not a CRF1R antagonist (Wang

et al., 2007) prevented footshock-induced reinstatement of cocaine seeking. Increased

NMDAR currents and footshock-induced reinstatement also both require CRF binding

protein (Ungless et al., 2003; Wang et al., 2007).

The dynorphin/kappa opioid receptor (KOR) system is an additional downstream mediator

of the stress response that alters VTA synapses (reviewed in (Van’t Veer & Carlezon, 2013).

Afferents from several dynorphin-expressing brain regions including the nucleus

accumbens, hypothalamus, amygdala and BNST project to the VTA (Fallon et al., 1985;

Meredith, 1999; Dong & Swanson, 2003; Chartoff et al., 2009; Poulin et al., 2009). KORs

are expressed in the VTA (Speciale et al., 1993; Arvidsson et al., 1995; Mansour et al.,

1996) and dynorphin levels and kappa receptor phosphorylation are increased after stress

(Nabeshima et al., 1992; Land et al., 2008). KORs have been strongly implicated in stress

and aversion related behaviors (Bals-Kubik et al., 1993; Beardsley et al., 2005; Valdez et

al., 2007; Land et al., 2008; Land et al., 2009; Beardsley et al., 2010; Bruchas et al., 2010;

Van’t Veer & Carlezon, 2013), particularly in stress-induced drug seeking (McLaughlin et

al., 2003; Beardsley et al., 2005; McLaughlin et al., 2006; Carey et al., 2007; Redila &

Chavkin, 2008; Beardsley et al., 2010; Sperling et al., 2010; Graziane et al., 2013; Van’t

Veer et al., 2013)

KORs profoundly affect VTA synaptic transmission. Bath application of a KOR agonist to

VTA slices transiently decreases EPSC amplitude on dopaminergic and GABAergic neurons

Polter and Kauer Page 6

Eur J Neurosci. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



(Margolis et al., 2005), IPSCs on BLA-projecting dopaminergic neurons (Ford et al., 2006),

and dopamine-mediated IPSCs (Ford et al., 2007). Our recent studies show that activation of

KORs also entirely blocks LTP at GABAergic synapses (LTPGABA) on VTA dopaminergic

neurons 24 hours after acute cold water swim stress (Nugent et al., 2007; Nugent et al.,

2009; Niehaus et al., 2010; Graziane et al., 2013) (Figure 1C). However, administration of

the KOR antagonist nor-BNI prevents the block of LTPGABA by stress without preventing

potentiation of excitatory synapses by stress. Linking this finding to drug self-

administration, intra-VTA delivery of nor-BNI also prevents reinstatement of cocaine

seeking after the same cold water swim stress (Graziane et al., 2013). These data indicate

that stress affects excitatory and inhibitory VTA synapses through distinct pathways, and

that reinstatement can be prevented without restoring excitatory synapses to their pre-stress

state.

Stress also alters delta opioid peptide effects on VTA synapses. In VTA slices from naïve

animals, bath application of a delta opioid receptor (δOR) agonist depresses GABAA

receptor-mediated IPSCs (Margolis et al., 2011). In slices from animals exposed to

footshock, however; a subset of cells exhibits an enhancement of GABAA synaptic currents

following application of a δOR agonist. This enhancement primarily occurs in TH+/Ih+

dopamine neurons. Enhancement of IPSCs by the δOR agonist occurs via postsynaptic

modifications, and is dependent on AKT-mediated trafficking of GABAA receptors to the

cell surface.

Many intriguing questions remain regarding the regulation of VTA synapses by stress. In

contrast to regulation of VTA synapses by cocaine, surprisingly little is known about the

mechanism by which stress increases AMPA/NMDA ratios and if stress alters glutamate

receptor subunit composition. Additionally, while early work found that either chronic

restraint stress or chronic unpredictable stress increases expression of GluA1 and NMDAR1

subunits in VTA (Fitzgerald et al., 1996), few studies since have investigated the effects of

chronic stress on VTA synapses. Future studies in this area will be particularly valuable,

given that human experience consists of a complex variety of stressors of varying intensities

and duration. There is also very little known about effects of stress on projection-target

specific dopamine neurons. As mentioned above, hindpaw formalin injection increases

AMPA/NMDA ratio selectively on dopamine neurons projecting to the PFC, a circuit

alteration that can be interpreted as a stress response. It will be of interest to ascertain

whether similar neuroadaptations follow more complex stressors, such as those linked to

reinstatement of drug seeking (cold water swim or footshock) or to chronic stress conditions,

and whether stress-induced alteration in other forms of plasticity, such as plasticity of

GABAergic synapses or potentiation of NMDA receptors by CRF is also restricted to

defined subtypes of dopamine neurons.

IV. Stress and Addiction

Animal models have long suggested an interaction between stress and drug-seeking

behavior. Acute and chronic stress protocols increase self-administration of

psychostimulants, opiates, and, in some studies, alcohol (Hadaway et al., 1979; Piazza et al.,

1990; Ramsey & Van Ree, 1993; Goeders & Guerin, 1994; Shaham & Stewart, 1994; Haney
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et al., 1995; Miczek & Mutschler, 1996; Piazza & Le Moal, 1996; Kosten et al., 2000;

Sinha, 2001; Boyce-Rustay et al., 2007; Moffett et al., 2007; Sinha, 2008; Ambroggi et al.,

2009; Becker et al., 2011). Additionally, stress reinstates drug-seeking in animals that have

extinguished self-administration (Shaham et al., 1994; Shaham & Stewart, 1995; Erb et al.,

1996; Le et al., 1998; Shaham et al., 2003; Conrad et al., 2010). Taken together, these

studies show that stress significantly alters an animal’s behavior towards addictive drugs,

both by increasing initial drug intake and by restoring previously-extinguished drug-seeking

behavior.

Social defeat stress, a psychosocial stressor in which rodents are defeated by a conspecific

aggressor, has been used as a model of escalated drug-seeking after stress (Miczek et al.,

2008). After exposure to an aggressor, defeated animals exhibit increased self-

administration of cocaine during a 24 hour binge session and decreased latency to self-

administration of cocaine during a binge session (Tidey & Miczek, 1997; Covington &

Miczek, 2001; 2005). Defeated animals also have increased conditioned place preference for

cocaine (McLaughlin et al., 2006), and increased alcohol preference (Croft et al., 2005;

Dong et al., 2011). Social defeat increases activity of dopaminergic neurons in the VTA,

reflected in increased dopamine release in the nucleus accumbens (Tidey & Miczek, 1996).

Furthermore, changes in behavioral responses to cocaine after social defeat can be reversed

by intra-VTA infusion of an NMDAR antagonist or the CRF-1 antagonist, antalarmin (Croft

et al., 2005; Covington et al., 2008).

The VTA is required for stress-induced reinstatement of drug seeking. Inactivation of the

VTA with baclofen and muscimol prevents footshock induced reinstatement (McFarland et

al., 2004), and as discussed above, intra-VTA injections of a KOR antagonist also prevents

swim stress-induced reinstatement (Graziane et al., 2013). Similarly, the BNST-VTA

pathway is important for reinstatement of place preference by swim stress (Briand et al.,

2010). A number of other areas essential for reinstatement including the BNST, PFC, and

NAc, converge on the VTA, suggesting that the VTA may be a crucial intersection point

between stress and drug seeking (McFarland et al., 2004). Caution should be taken,

however, in generalizing circuitry of reinstatement between distinct stressors, underscored

by the apparent differences in reinstatement patterns after different stressors. For example,

footshock causes a rapid, robust reinstatement (McFarland et al., 2004; Wang et al., 2005)

that occurs in the same context where drugs are self-administered, while cold water swim

stress, which is contextually and temporally separated from drug self-administration,

induces a more mild reinstatement that lasts for several days (Conrad et al., 2010).

Further investigation of mechanisms by which stress modifies synapses in the VTA may

prove a rich vein for identifying novel treatment targets for addiction. Important molecular

players in stress-induced drug seeking such as CRF receptors and the dynorphin-KOR

system significantly alter excitatory and inhibitory synapses. Further defining these

pathways, as well as finding new ways to manipulate VTA synapses, in animals and

eventually in humans, may prove highly beneficial in treating addiction.
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V. Depression

Anhedonia and appetite disturbance are core symptoms of depression that involve alterations

in reward signaling, suggesting that stress-induced disruptions of the brain’s reward circuitry

may underlie some symptoms of depression (Nestler & Carlezon, 2006). Several studies of

VTA dopaminergic neurons in depression have utilized the chronic social defeat stress

model. In this model, repeated exposure to aggressive animals over a ten day period results

in decreased social interaction, decreased sucrose preference, and a number of other

behavioral abnormalities that may be related to major depressive disorder (Krishnan et al.,

2007). This behavioral model has several intriguing features. First, only a subset of animals

exhibit these behavioral changes (termed susceptible animals), while the others are

behaviorally unaffected (resilient), despite a fairly homogeneous genetic background.

Second, the abnormal behaviors observed in susceptible animals can be reversed after a two-

week but not a single-dose antidepressant treatment (Cao et al., 2010). Many behavioral

consequences of chronic social defeat stress seem to be encoded by alterations in VTA

function.

Studies distinguishing between animals that are resilient and susceptible to social defeat

have found that dopaminergic neurons in susceptible mice, but not resilient mice, exhibit

increased firing rates (Berton et al., 2006; Krishnan et al., 2007; Cao et al., 2010; Razzoli et

al., 2011). The alteration in firing rate is pathway specific, with accumbens-projecting

neurons exhibiting an increased firing rate in susceptible animals and PFC-projecting

neurons exhibiting a decreased firing rate (Chaudhury et al., 2013) (recall that NAc shell-

projecting dopaminergic neurons contribute to conditioned place reinforcement, while

mPFC-projecting neurons contribute to conditioned place aversion (Lammel et al., 2012)).

Most significantly, normalizing the firing rate of dopaminergic neurons reverses the social

interaction deficits and sucrose preference deficits of susceptible mice (Krishnan et al.,

2007; Cao et al., 2010; Chaudhury et al., 2013). These studies indicate a causal, projection-

specific role for dopaminergic neurons in expression of anhedonic behavior after social

defeat stress, and suggest the possibility that alterations in dopaminergic neurons and

synapses on these cells also play a causal role in depression in human patients.

However, the role of VTA dopaminergic neurons in stress responding appears to be more

complex. A recent study utilizing the chronic mild stress model in mice and rats over a

longer time period found a markedly different result, instead reporting a decrease in

dopaminergic neuron bursting after stress. Animals were exposed to randomly chosen

unpredictable stressors such as crowding, isolation, and food deprivation, twice a day for

eight to twelve weeks. Optogenetically stimulating VTA dopaminergic neurons reversed the

stress-induced behavioral deficits in sucrose preference, the tail suspension test, and the

forced swim test (Tye et al., 2013). Although dopaminergic neurons in this study were not

distinguished by projection target, the antidepressant effect of stimulating dopaminergic

neurons was blocked by dopamine receptor antagonists in the NAc, suggesting that

accumbens-projecting neurons played a role. Thus, in one study, susceptible mice that had

undergone social defeat stress exhibited reduced dopamine cell firing rate and decreased

sucrose preference, both alleviated by driving dopamine cell firing (Chaudhury et al., 2013),

while in the second study, stressed mice instead had reduced dopamine neuron firing and
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decreased sucrose preference, both alleviated by driving dopamine neuron firing (Tye et al.,

2013). If driving dopaminergic neurons in opposite directions in fact restores sucrose

preference, either the dopaminergic cells were in different “states” following the two distinct

stress protocols, or the somewhat different temporal windows over which sucrose preference

was tested contributed to the differences. Clearly, future work will help to identify the

relevant differences between stress protocols, species, and methods of optogenetic

stimulation. What is obvious from this body of work is the essential role of the VTA-nucleus

accumbens circuit in stress-related and depression-related behaviors such as anhedonia.

It remains unknown whether VTA synapses are altered in depression models. The discovery

that the NMDAR antagonist ketamine has a rapid antidepressant effect has increased interest

in synaptic mechanisms of antidepressant action (Zarate et al., 2006; Li et al., 2010; Autry et

al., 2011; Mathews & Zarate, 2013). It will be intriguing to see whether VTA synapses are

required for effectiveness of the rapid-acting antidepressants, and whether alterations in

these synapses are necessary to promote the development of depressive-like behaviors in

animal models. It will be of particular interest to investigate specific sources of synapses

onto VTA dopaminergic neurons that are known to be implicated in depression. As one

example, the lateral habenula, which sends projections to the VTA (Lammel et al., 2012),

has been implicated in depression, and deep brain stimulation of this region was shown to

induce remission in a patient with severe treatment refractory depression (Sartorius et al.,

2010). This role for the habenula in depression is also seen in animal models, where

potentiated excitatory synapses on VTA-projecting neurons were seen in the rat acute and

congenital learned helplessness models of depression (Li et al., 2011). Deep brain

stimulation in these animals, using the same protocol that showed efficacy in the human

patient, suppressed excitatory synapses on habenula neurons and reversed the helpless

phenotype of the rats (Li et al., 2011).

VI. The VTA: a stress hub? Conclusions and future directions

Early on, it was clear that brief acute stress produces changes in VTA synapses that parallel

those caused by addictive drugs (Saal et al., 2003). Since this time, the parallels have

continued to be observed at the synaptic level, although it is clear that synapses on discrete

subpopulations of dopamine neurons are differentially altered by drug exposure or by a brief

stressor. Newer data addressing the links between behaviors and optogenetic activation of

VTA dopamine neurons have clarified a key role of these neurons: to detect stress and

modify behaviors accordingly. The management of stress by the reward/reinforcement

circuitry may provide a unifying concept linking addiction-related behaviors with

depression-related behaviors. In light of the high rate of co-morbidity between depression

and addiction, targeting stress responses within the VTA may represent a highly useful

therapeutic target for both disorders.

Chronic exposure to drugs of abuse persistently alters brain circuitry and synapses, perhaps

accounting for the difficulty in returning to the pre-addicted state. Similarly, animal models

of affective disorders have shown lasting differences in circuitry, and mood disorders are

often chronic, recurrent illnesses. While reversing the cellular and molecular changes that

occur after drug exposure or exposure to stressors may not be possible, there is growing
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evidence that these changes throughout the brain can be circumvented or counterbalanced by

therapeutic neuroadaptations or treatments (Mameli et al., 2007; Wang et al., 2007; Conrad

et al., 2008; Wee et al., 2009; Russo et al., 2012; Chaudhury et al., 2013; Graziane et al.,

2013; Kallupi et al., 2013; Loweth et al., 2013; Tye et al., 2013).

Stressors have multiple effects on cells and circuits. Some of these may be persistent and

have negative consequences on behavior, e.g anhedonia or metabolic effects. However,

some downstream sequelae of stress may be positive or protective (Russo et al., 2012). The

exact balance of these positive and negative consequences can vary considerably within a

population. While all individuals experience the negative consequences of stress, the

severity will depend on the individual. Conversely, the positive effects of stress occur

independently of the negative effects, and do not necessarily reverse them. Some positive

effects of stress may occur only a subset of individuals, granting them resilience to stressors.

Resilience to stress may therefore represent a set of active mechanisms by which the

negative consequences of stress can be compensated for and overcome, suggesting the

importance of differences in individual behavioral responses to a given stress protocol in

animal models of addiction and mood disorders. While studies continue to unravel

mechanisms by which stress impacts behavior, stress is only one of several interacting

factors contributing to the development of addiction and mental illness. Our growing

understanding of genetic and environmental factors that contribute to predispositions to

illness will allow us to integrate our understanding of how stressors act to trigger

maladaptive responses.

Recent years have seen rapid and exciting advances in the neuroscience of stress, reward and

aversion. This new knowledge has the potential to significantly impact our understanding of

addiction and depression, but many questions remain. We are gaining a solid understanding

of the regulation of synapses on VTA dopaminergic neurons, but much less is known about

the synapses on other neurons of this region that have key functional roles in driving

behavior. Optogenetic tools provide a tremendous opportunity for precise correlations of

specific cell populations with complex behaviors, and will continue to identify neural

pathways and cell types involved in specific behaviors. The complexity of the data already

arising from optogenetic studies of the mesolimbic dopamine circuitry simply emphasizes

the complexity of the behaviors relevant to human addiction and depression. As tools and

approaches are refined, we will develop a more sophisticated understanding of how to

modify circuits that have been altered in the addicted or depressed brain, and how to limit

the negative effects of further stressful experience. Pinpointing signaling molecules and

receptors that control synapses within these specific circuits will provide pharmacological

tools as well as potential sites for deep brain and transcranial magnetic stimulation through

which these circuits can be targeted for treatment of disease.
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Figure 1.
Modulation of VTA synaptic plasticity by stress systems. A) At excitatory synapses, stress-

induced activation of glucocorticoid receptors leads to an increase in the AMPA and NMDA

ratio. B) CRF potentiates NMDA currents through activation of CRF2 receptors and

downstream activation of PLC and PKC. C) Inhibitory synapses are potentiated via the

retrograde messenger nitric oxide and activation of cGMP signaling. This plasticity is

blocked by stress through activation of kappa opioid receptors. From (Saal et al., 2003;

Ungless et al., 2003; Nugent et al., 2007; Daftary et al., 2009; Nugent et al., 2009; Niehaus

et al., 2010; Graziane et al., 2013)

GC: glucocorticoid, GR: glucocorticoid receptor, CRF: corticotrophin releasing factor, CRF-

BP: CRF-binding protein, CRF2R: CRF receptor type 2, PLC: phospholipase C, PKC:

protein kinase C,NOS: nitric oxide synathase, NO: nitric oxide, cGMP: cyclic guanosine

monophosphate, κOR: kappa opioid receptor, dyn: dynorphin, PKG: protein kinase G
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