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Abstract

Recent multielectrode array recordings in ganglionated plexi of canine atria have opened the way

to the study of population dynamics of intrinsic cardiac neurons. These data provide critical

insights into the role of local processing that these ganglia play in the regulation of cardiac

function. Low firing rates, marked non-stationarity, interplay with the cardiovascular and

pulmonary systems and artifacts generated by myocardial activity create new constraints not

present in brain recordings for which almost all neuronal analysis techniques have been

developed. We adapted and extended the jitter-based synchrony index (SI) to (1) provide a robust

and computationally-efficient tool for assessing the level and statistical significance of SI between

cardiac neurons, (2) estimate the bias on SI resulting from neuronal activity possibly hidden in

myocardial artifacts, (3) quantify the synchrony or anti-synchrony between neuronal activity and

the phase in the cardiac and respiratory cycles. The method was validated on firing time series

from a total of 98 individual neurons identified in 8 dog experiments. SI ranged from −0.14 to

0.66, with 23 pairs of neurons with SI>0.1. The estimated bias due to artifacts was typically < 1%.

Strongly cardiovascular- and pulmonary-related neurons (SI>0.5) were found. Results support the

use of jitter-based synchrony index in the context of intrinsic cardiac neurons.

1. Introduction

The heart receives sympathetic and parasympathetic efferent innervation via the intrinsic

cardiac nervous system (ICNS). Central neurons located in the medulla and in the spinal

cord exert tonic influences on the ICNS (Armour et al. 1994, Ardell 2004). Populations of

afferent neurons distributed throughout atrial and ventricular intrinsic cardiac ganglionated

plexi transduce the milieu of the heart and adjacent major vessels (Armour and Kember

2004). It has been hypothesized that the ICNS acts as a local processor of information to

coordinate regional cardiac indices under the tonic influence of central adrenergic and

cholinergic efferent preganglionic neurons (Ardell 2004, Gray et al. 2004, Armour 1986). Its

largest neuron population is expected to consist of local circuit neurons that are involved in

such processing (Armour 1991, Armour and Ardell 2004), leading to the concept of “little

brain in the heart” (Armour 2007, Armour 2008). The structure and function of the network
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formed by the local circuit neurons (inter-neurons in cardiac intrathoracic ganglia) is

however still largely unknown.

To study this neural network, electrophysiological recordings in ganglionated plexi can be

performed by inserting an electrode in the nervous tissue, enabling the measurement of

extracellular potentials (spikes) generated by neuronal action potentials (Robinson 1968).

Assigning recorded spikes to specific neurons (spike sorting) is a task that can be very

challenging when only a single electrode is used (Lewicki 1998). Electrodes with multiple

closely spaced recording sites enable population recordings with single-unit resolution and

improve the ability to identify artifacts (Buzsaki 2004). While multichannel electrodes are

commonly used in the central nervous system, recordings in intrinsic cardiac ganglia have

been so far essentially limited to one or a few electrodes.

Recently, Beaumont et al. (2013) have simultaneously recorded the activity of 5 to 28

neurons in canine right atrium ganglionated plexi (RAGP) for more than 5 hours using linear

multielectrode array technology. These new data open the way to the investigation of the

organization of RAGP neuronal population and its interactions with the cardiovascular

system. As compared to the analysis of recordings in the cortex, some particularities of the

ICNS create additional challenges: (1) the electrode is placed directly on a beating heart and

moves with it; (2) the electrode also senses the activity of the atrial myocardium just beneath

the RAGP which may mask neuronal activity; (3) the firing rate of intrinsic cardiac neurons

is relatively low (0.1 to 5 Hz typically) which requires careful statistical analysis; (4)

intrinsic cardiac neuron activity is highly non-stationary, notably due to the modulation by

the cardiovascular and pulmonary systems, and sometimes alternates between periods of low

(or even silent) and high activity; (5) owing to low firing rates, synchrony among intrinsic

cardiac neurons could possibly be small, so its quantification needs to remain applicable and

sensitive at low values.

The objective of this paper is to quantify the synchronization between pairs of intrinsic

cardiac neurons, as well as between these neurons and the cardiovascular and pulmonary

systems. Several types of synchrony measures have been defined and used to characterize

neuronal time series recorded in the brain (Brown et al. 2004, Pereda et al. 2005). These

measures were typically based on a cross-correlogram (Perkel et al. 1967), event

synchronization (Quian Quiroga et al. 2002), phase synchronization (Lachaux et al. 1999),

mutual information (Borst and Theunissen 1999, Quian Quiroga and Panzeri 2009), firing

pattern detection (Abeles and Gerstein 1988), principal component analysis (Chapin and

Nicolelis 1999), or parametric modeling (Schneidman et al. 2006), to name a few. The

reliability of the results produced by these measures needed to be assessed by thorough

comparison with carefully generated surrogate data representing a given null hypothesis

(Grun 2009). The majority of the aforementioned techniques assumed either sufficiently

high firing rates (i.e. like in the brain), stationary neuronal activity, Poisson-distributed spike

trains, or exploited the possibility to average over a large number of experiments (neuronal

activity triggered by a stimulus). These assumptions unfortunately do not apply to RAGP

neurons.
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With the aim of providing a robust measure to quantify synchrony, Agmon (2012)

developed a well-normalized synchrony index that is independent of variations in firing rate.

The so-called jitter-based synchrony index relies on analytical formulas so that its statistical

significance can be assessed without explicit generation of numerous surrogate spike trains.

Furthermore, the analysis does not require the creation of arbitrary time bins that could lead

to missed synchronized firing events. This issue becomes important at lower firing rates.

In this paper, we apply and extend Agmon’s approach to RAGP neurons in order to: (1)

determine the level of synchrony between recorded RAGP neurons; (2) estimate the possible

effect of blanked intervals created by myocardial activity on the synchrony index; (3)

quantify how much input RAGP neurons receive from the cardiovascular and pulmonary

systems.

2. Material and methods

2.1. Neuronal recordings and spike sorting

Eight mongrel dogs underwent bilateral open chest surgery in a study approved by the

Institutional Animal Care and Use Committee of East Tennessee State University and

described in detail in Beaumont et al. (2013). In this protocol, different mechanical,

vascular, and electrical stressors were applied to elicit a neuronal response in the RAGP.

The activity generated by neurons located in the RAGP was recorded for about 5 hours by

means of a multichannel microelectrode array (Linear Microelectrode Array, MicroProbes

Inc., Guithersberg, MD) in situ under anesthesia (α-chloralose) and controlled respiration

(using an artificial respirator). This microelectrode array, consisting of 16 platinum/iridium

electrodes (25 µm diameter electrode with an exposed tip of 2 mm; impedance 0.3–0.5 MΩ
at 1 kHz), was embedded in the right atrial fat that contained the RAGP such that its tip was

placed adjacent to right atrial myocardium. In addition, a bipolar electrode was sewn to the

atrial myocardium close to the RAGP to provide a reference atrial electrogram and assist the

identification of atrial activity in neuronal recordings. Left ventricular chamber pressure was

continuously recorded using a pressure transducer catheter. Respiration cycles were

monitored using a gauge pressure sensor in the exit tube of the respirator. The signals were

digitized at a sampling frequency of 5.26 kHz (neuronal signals) or 0.877 kHz (other

signals) via a Cambridge Electronics Design data acquisition system (model 1401).

Spike sorting was performed and validated using Spike2 software (Beaumont et al. 2013).

Between 5 and 28 different neuronal waveforms were identified in each of the 8 dogs. When

supra-threshold activity was simultaneously present in >2 channels, the spike was classified

as myocardial electrical activity or motion artifact and all channels were blanked in a 26-ms

window around that spike. This identification was validated using the right atrium

electrogram.

The data used in this paper are: (1) for each neuron, the time series of spike timings; (2) the

list of time intervals (26 ms long) that have been blanked in all neuronal signals; (3) the left

ventricular pressure signal; and (4) the respiration pressure signal.
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2.2. Coincidence detection

In the framework of Agmon’s approach, neuron synchronization is analyzed by pair of

neurons. Since the synchrony index is not symmetric, one neuron is considered the reference

and the other one the target (figure 1). During the interval of analysis, the reference neuron

fires at times  and the target neuron at times .

Coincidence is defined as the reference and target neurons both firing within a time window

of duration τs. For each spike i of the reference neuron, the occurrence of a coincidence is

associated with the variable Si:

(1)

such that the number of coincidences is computed as:

(2)

Some of these coincidences may occur by pure chance. These random coincidences are

identified by counting those remaining after random jitter of the spikes of the reference

neuron within time windows of duration 2τJ, with the constraint τJ > τs. If the firing time of

the i-th spike of the reference neuron is uniformly distributed in the interval [ ],

the probability of coincidence is given by (see figure 1)

(3)

where μ(W) is the measure (total length) of the set W. Figure 1A depicts an example where

the corresponding Si and pi values are given. The occurrence  of coincidence after jitter is

a Bernoulli random variable with mean pi. The number of random coincidences is:

(4)

Since the random variables  are independent, the mean of  is  and its

variance is . The exact probability distribution for  can be computed

iteratively by adding the Bernoulli variables  one after the other: if the triangular matrix

Pk,n, with 1 ≤ k ≤ n1 and 0 ≤ n ≤ k, is defined as (Agmon 2012)

(5)

then  for 0 ≤ n ≤ n1, and obviously . This distribution

will be used in the subsection 2.4 to test the statistical significance of coincidences.
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2.3. Synchrony index

Agmon’s synchrony index SI is defined as

(6)

where β = τJ / (τJ − τs) if τJ ≥ 2τs and 2 otherwise. The factor β ensures that SI can reach its

maximal value of 1 in case of perfect synchrony. Agmon (2012) demonstrated that the

choice τJ = 2τs is the largest value for τJ that also guarantees maximal range of SI between

−1 (anti-synchrony), 0 (no synchrony) and 1 (perfect synchrony). To illustrate that result,

figure 1B shows the SI resulting from a single reference spike relative to one target spike

plotted as a function of the target spike position for τJ/τs ratios of 1.5, 2 and 2.5. A ratio of 2

appears to be optimal, making it possible for SI to reach 1 in the case of perfect synchrony

(delay = 0) and still attain a value of −1 for a delay of ±τs. Accordingly, we will use τJ =

2τs, and thus β = 2, for the rest of the paper, letting only one adjustable parameter (τs).

2.4. Synchrony detection

To test the hypothesis that the synchrony is not due to chance, the observed coincidence

count is compared to the distribution of random coincidences. The p-value is defined as the

probability that  when SI > 0 and the probability that  when SI < 0. The p-

value can be computed using the exact distribution of  (equation (5)). With low firing

rates, pi values are often zero. Here, whenever the number of non-zero pi is smaller than

1000, we use the exact distribution for better accuracy. Otherwise, the distribution is

approximately normal and to speed up computations the p-value is related to the Z-score:

(7)

For instance, p < 0.01 becomes Z > 2.326.

To roughly estimate how many spikes are necessary to perform the analysis, note that

(8)

Since  is the sum of n1 terms, we may define . The variable sJ is bounded by:

(9)

The upper bound stems from the fact that 4pi (1 − pi) ≤ 1. For the lower bound, consider first

the spike i of the reference neuron. If Si = 1, then from equation (3), 1/2 ≤ pi ≤ 1; indeed pi =

1/2 if there is a single single spike at a distance < τJ from spike i and pi > 1/2 when there are

multiple spikes in this interval, see figure 1A. Therefore, β(Si − pi) ≤ 4pi(1 − pi), with β = 2

as usual. If Si = 0, β(Si − pi) ≤ 0 ≤ 4pi(1 − pi). After summation over i, we obtain the

inequality (9).
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In the case of anti-synchrony (SI < 0), we still have  under reasonable

assumptions. If Si = 1, β(pi − Si) ≤ 0 ≤ 4pi(1 − pi). If Si = 0 and pi ≤ 1/2, then β(pi − Si) ≤

4pi(1 − pi) is verified, but not when Si = 0 and pi > 1/2. This case only occurs when two (or

more) spikes of the target neuron are at a distance between τs and 2τs from spike i, one on

each side. This might lead to −2 ≤ SI ≤ −1 in extreme cases. In our data, however, this

situation (Si = 0, pi > 1/2) only occurred in less than 0.06% of the spikes in anti-

synchronized pairs (because of the low firing rates), so  was experimentally

true.

In order to reach 1% significance (Z > Zth = 2.326), n1 needs to be larger than a threshold nth

(10)

Using the inequality (9), nth is bounded by:

(11)

which gives the order of magnitude of the minimal signal length needed to identify a

synchrony index of SI between a pair of neurons. Note that when nth is small, the

approximation by a normal distribution may not be accurate. Figure 2 shows for all pairs of

neurons in each dog the minimal number of spikes nth that would be needed to measure SI

with 1% significance, computed using (10) with sJ and SI calculated from all available

spikes in these signals. For all pairs of neurons investigated, nth lies between the theoretical

bounds (11), typically closer to the lower bound.

2.5. Effect of blanked intervals

When a set of short intervals are blanked due to the presence of large myocardial electrical

activity or motion artifacts, the presence of spikes in these intervals may affect the measure

of synchrony. We aim at quantifying this effect.

In the worst case scenario, these additional spikes would be purely randomly distributed.

Suppose there are nb sorted disjoint blanked intervals [ak, bk] with ak < bk < ak+1 < bk+1.

Spikes will be added only in the target neuron, not the reference neuron (each spike of the

reference neuron is treated independently, so no interference between them is possible). This

also avoids an artificial increase of synchrony that would occur if additional spikes were

added to multiple neurons within the same blanked interval. In each interval [ak, bk], the

probability πk of presence of a spike may be estimated from the local firing rate rk as πk = 1

−exp(−rk(bk − ak)), assuming a Poisson distribution on very short scale. Short interval

lengths (typically 26 ms) and low firing rates make it very unlikely to have more than one

spike in a blanked interval. Here, the local firing rate rk is estimated based on the average

firing rate in a 4-sec window around the blanked interval.

The presence (= 1) or absence (= 0) of a spike in the interval [ak, bk] is denoted by ξk and its

position by xk = ak + λk (bk − ak) where λk ∈ [0, 1]. We assume that ξk is a Bernoulli
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random variable with mean πk and that λk is uniformly distributed in the interval [0, 1]. The

synchrony index taking into account these additional spikes is a random variable SIb = SIb

({ξl, λl}l=1,…,nb). Its mean is defined as:

(12)

Its variance can be defined the same way. This integral can be estimated using a Monte-

Carlo approach. Due to large integration space dimension, many realizations of the random

process are needed, resulting in long computational times. We will therefore seek an

analytical formula.

If the blanked windows are sufficiently far from each other (ak+1 − bk > 2τs + 2τJ), the

probability of coincidence of a spike in the reference neuron can only be affected by adding

a spike in one single specific blanked window. What happens in the other blanked windows

is irrelevant to this spike. Under these assumptions, and because we do not add spikes to the

reference neuron (n1 remains the same), SIb can be decomposed into the sum of the

synchrony index in the absence of blanked intervals (SI) and the separate, statistically

independent effects of each window:

(13)

where  depends only on the possible addition of a spike in the interval [al, bl]. The

mean and the variance of SIb become:

(14)

(15)

since var(XY) = var(X)var(Y)+〈X〉2var(Y)+〈Y〉2var(X) for two independent variables X and Y.

The mean and variance of  are defined as:

(16)

To analytically compute these integrals, first note that the synchrony index SI is a piecewise

linear function of the firing times { } and { }, as in the example of figure 1B. Suppose a

spike is added to the target neuron at time t. Discontinuities in value or slope of SIb as a

function of t can only occur: (1) when the additional spike creates a new coincidence,

; (2) when the coincidence window of the additional spike intersects with a jitter

window, ; (3) when the coincidence window of the additional spike
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intersects with another coincidence window, . The set of possible discontinuities

is therefore:

(17)

where ±ε indicates a possible discontinuity in value (we chose ε = 10−9). The set of

discontinuities in the blanked interval [al, bl] is

(18)

where the bounds of the blanked interval have been added and all points have been sorted.

The set Dl subdivides [al, bl] into ml sub-intervals [ ] in which  is an affine

function. After the transform , the function  in each sub-

interval  is expressed as:

(19)

Then, the integrals can be computed analytically on each sub-interval and summed up:

(20)

(21)

These formulas are exact in the limit ε → 0, the error being bounded by ε (the jump is

always ≤ 1). Note that ml is independent from ε.

2.6. Synchrony with respiratory inputs

Since respiration is mechanically controlled in our dog experiments, the duration of

respiration cycles and the air pressure waveform associated with inspiration and expiration

are very stable. To detect peak inspiratory pressure, the respiratory signal is first low-pass

filtered and down-sampled at 50 Hz. Baseline correction is performed using a min-max filter

(over a sliding time window of 8 s). Peaks are detected by thresholding. This provides for

each dog a time series of peak inspiratory pressure .

Respiratory phase ϕr(t) is computed by setting , by linearly interpolating the

phase in-between, and taking the value modulo 2π. This ensures that the phase is uniformly

distributed over time. Then, synchrony between a neuronal time series  and

respiratory inputs can be assessed either by constructing the histogram of the values ,

or by computing the synchrony index between  and . The respiration
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time series is treated as the “target neuron”. The corresponding SI represents the fraction of

firings near peak inspiratory pressure (after correction for random coincidences).

2.7. Synchrony with cardiovascular inputs

In contrast with respiration, heart rate and blood pressure waveform are not always stable in

our experiments. A more sophisticated approach is needed to define the cardiac phase. First,

the left ventricular pressure (LVP) signal is low-pass filtered (cutoff at 10 Hz; used only to

derive the phase), and corrected for baseline wandering using a min-max filter over a time

window of 1 s (the mean between the min and max envelopes is averaged over 5 s sliding

windows and subtracted), giving a signal PLV (t). Following an approach often used in

cardiac electrophysiology (Iyer and Gray 2001), the cardiac phase ϕc(t) is defined as:

(22)

where atan2 denotes the four-quadrant inverse tangent. We used P0 = 0 since the mean of

the filtered signal PLV (t) is close to zero, and Δt = 50 ms, a value close to the rising time of

LVP. The resulting phase is shifted by a constant so that peak LVP approximately

corresponds to ϕc = π. Finally, the phase signal is sorted in each cardiac cycle to ensure that

ϕc(t) is strictly increasing even during diastole in the presence of noise.

Figure 3 illustrates this process in two time segments with different heart rates in the same

experiment. The mean LVP profile as a function of phase (panel C) constructed using the

whole raw LVP signal shows little variability, thus demonstrating the robustness of the

cardiac phase definition. Note that the LVP profile is distorted, that is, the cardiac phase is

not uniformly distributed over time. For instance, LVP spends more time near phase 0

(diastole) that near phase π/2 (isovolumetric contraction).

From the cardiac phase signal, a time series can be generated for each value of the phase:

{ } is defined as {t | ϕc(t) = ϕ}, the time instants corresponding to the same stage in the

cardiac cycle. The monotonicity of ϕc(t) ensures that { } contains exactly one spike per

cardiac cycle. The synchrony index between these time series and each of the neuronal time

series  quantifies how much neuron firings tend to be synchronized with a

particular cardiac phase (cardiovascular time series being treated as the “target neuron”).

Another approach extending previous works (Beaumont et al. 2013) consists in computing

the histogram of the values . Histogram equalization with respect to the histogram of

ϕc(t) is however needed. For that purpose, the count in each bin is divided by the time ϕc(t)

spends in that bin.

2.8. Implementation

The analysis software was implemented as a Matlab toolbox, with some critical parts of the

code written in C and integrated as mex files. The synchrony index function was validated

against Agmon’s program. After optimization, computing the synchrony index and p-value

for 756 pairs of neurons (28 neurons from one dog; 4270 spikes/neuron on average) takes

about 0.14 s on a standard computer. On the same data set, the estimation of the effect of

blanked intervals (32,000 intervals of duration 26 ms) over the same 756 pairs takes 2.1 s
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using the analytical formula (equation (14)). With the Monte-Carlo approach (equation

(12)), it takes about one day per million realizations.

3. Results

3.1. Synchrony between intrinsic cardiac neurons

The only adjustable parameter in the synchrony index (SI) computation is τs, representing

the half-duration of the coincidence window. To avoid overestimating the synchrony

between neurons, we aim at identifying the smallest value of τs that provides sufficient

robustness. Figure 4A shows in four dogs the histogram of time delay between each spike of

each neuron and the nearest spike in any other neuron. The distributions for delays > 40 ms

are relatively flat, suggesting that these are random coincidences and that τs ≤ 40 ms would

be appropriate.

This hypothesis is supported by figure 4B where the SI is calculated for each pair of neurons

for τs values between 15 and 80 ms. For most pairs, SI converges to a stationary value when

τs > 40 ms. This observation is quantified on figure 4C where the root mean square (RMS)

difference in SI relative to the SI plateau value of each pair is plotted against τs. When τs is

increased beyond 40 ms, there is not much gain in terms of RMS difference.

The distribution of SI values calculated for all pairs of neurons from all the experiments

considered in this study is shown on figure 5A with τs set to 40 ms. Pairs of neurons with SI

associated with a p-value > 0.01 are discarded. Most pairs of neurons are weakly

synchronized (|SI| < 0.1), although no pair has |SI| < 0.002 (it would require more data to

reach statistical significance). Note that (weakly) anti-synchronized (SI < 0) pairs are also

observed. In the histogram, about 11% of statistically significant synchrony are such that SI

> 0.1.

From figure 4, it seems that τs = 60 ms would provide an even more robust estimate. Figure

5B compares the cumulative distribution functions (CDF) of SI values computed with τs =

30, 40 and 60 ms. By the Kolmogorov-Smirnov test, the difference between the CDFs with

τs = 30 and 40 ms is statistically significant (p = 0.04), while the difference between τs = 40

and 60 ms is not (p = 0.41). The bias in |SI| obtained by increasing τs from 40 to 60 ms is

0.009 ± 0.029. As a result, more synchronized pairs have SI > 0.1 for τs = 60 ms (15% vs

11%).

3.2. Effect of blanked intervals on synchrony index

Figure 5C displays the effect of blanked intervals (due to myocardial activity) on synchrony

index. The bias on SI, obtained by comparing SI with 〈SIb〉 resulting from the analytical

formula (14), is plotted against SI. Spikes randomly added within the blanked intervals

slightly reduce the SI. The mean bias is −0.001, with a standard deviation of 0.0017. For SI

> 0.1, this corresponds to a relative error of <1%. Therefore, blanking atrial myocardial

artifacts is not expected to significantly affect the identification of well-synchronized

neurons.
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To validate our analytical formula for estimating the effect of blanked intervals, we

evaluated the integral (12) using a Monte-Carlo approach. For every pair of neurons, each

realization of the process consisted in randomly inserting a spike (with probability πk) in

each interval [ak, bk] (position uniformly distributed) of the target neuron, followed by a

recalculation of the SI on the whole signal. Examples of distributions resulting from 10,000

random realizations of the SI are shown on figure 6A for 5 pairs of neurons with different

levels of synchrony. The shape of the distributions supports their characterization by their

mean and standard deviation. The Monte-Carlo estimate of the integral with 1,500,000

realizations is compared to the analytical formula in figures 6B–C using a Bland-Altman

plot. A large number of realizations is required since the dimension of the integration

domain is of the order of 10,000. The small differences observed (<0.1% for the mean and

<1% for the standard deviation) support the use of our analytical approach, thus

considerably reducing computational expense. The interference between blanked intervals

(i.e., when the condition ak+1 − bk > 2τs + 2τJ is not satisfied, which occurs in about 2% of

the blanked intervals) typically slightly decreases the synchrony index and increases its

variability (figures 6B–C). When these intervals are discarded (i.e., πk is set to 0 where ak+1

− bk < 2τs + 2τJ), the analytical formula and the Monte-Carlo estimate give essentially the

same result (figures 6D–E).

3.3. Synchrony with respiratory inputs

The synchronization of neurons with the respiratory signal was investigated in the first two

hours of each recordings, before the experiment involves too many confounding factors

(Beaumont et al. 2013). Figure 7 shows examples of neuronal activity synchronized and

anti-synchronized with (inhibited by) respiration. Histograms of spike count as a function of

respiratory phase (panels B and E) clearly demonstrate the effect of respiratory inputs. In

panel B, neurons 1, 2 and 3 fire more frequently during high respiration pressure, with

neuron 2 showing the sharpest phase locking. A subgroup of neurons have a clear propensity

to fire when the respiration pressure is low (panel E). To facilitate automatic classification of

respiratory-related neuronal activity, the synchrony index with respect to respiration can be

computed (panels C and F). The relation between SI and τs suggests that the value τs = 1.5 s

is appropriate to compute the SI since the value reaches a plateau. The resulting SI at τs =

1.5 s ranged from −0.4 to 0.8. Note that at longer τs, the SI would come back to zero because

random coincidences become unavoidable when τs is longer than half the respiratory period.

3.4. Synchrony with cardiovascular inputs

Intrinsic cardiac neurons are known to receive inputs from the cardiovascular system (Ardell

2004), notably through baroreceptors. To quantify this effect and classify neurons according

to their synchrony with cardiovascular input, histograms of spike count as a function of

cardiac phase is shown in figure 8 for three types of neurons (Beaumont et al. 2013):

cardiovascular-related neurons firing during a specific phase of the cardiac cycle (panel A),

cardiovascular-related neurons firing during more than one phase of the cardiac cycle (panel

C), and non-cardiovascular-related neurons (panel E). The synchrony index curves as a

function of cardiac phase (panels A,C,E) are in agreement with the histograms. In addition,

these curves improve phase resolution and provide a p-value to assess statistical

significance. Note that in panel A, the three neurons appear to fire at a different level of
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LVP. In the investigated population of 98 neurons, 56 were cardiovascular-related. Among

those, 21 exhibited strong synchrony (SI > 0.5; panel A) at some phase value, while 35 were

also synchronized with LVP, but to a lesser extent (panel B). The remaining 42 neurons had

low synchrony values (SI < 0.2; panel C) or their firing rate was too low to reach statistical

significance. From the sensitivity study for the parameter τs (panels B,D,F), the choice τs =

40 ms seems reasonable. The coincidence window (2τs = 80 ms) is of the order of

magnitude of the rising time of LVP (figure 3).

4. Discussion and conclusion

We have adapted and extended Agmon’s jitter-based synchrony index for its application to

intrinsic cardiac neurons. The main advantages of this measure of synchrony in our context

are: (1) since the index is adequately normalized between −1 and 1, it enables the

comparison between experiments, e.g. pooling data from different dogs; (2) synchrony

detection is performed through a well-defined p-value computed using an analytical

formula, without the need to run time-consuming tests on many realizations of surrogate

data; (3) there is no stationarity assumption (jitter-based surrogates preserve local firing rate)

and the index is almost independent from firing rate (Agmon 2012), which can vary a lot in

intrinsic cardiac neurons, notably in response to cardiovascular events (Beaumont et al.

2013); (4) the method does not rely on inter-spike intervals, so the presence of short blanked

intervals is not a problem, and the analysis of multiple time segments (e.g. successive

episodes of arrhythmia) may be pooled together to increase statistical significance. In

addition, we have developed a technique for taking into account the uncertainty resulting

from the presence of blanked intervals, and have derived theoretical bounds to estimate the

signal duration needed for statistical analysis.

The computation of SI depends on a single parameter, τs. Sensitivity analysis was

systematically performed to find the smallest value of τs that gives sufficient robustness; τs

= 40 ms was chosen. Larger values (e.g. τs = 60 ms) could be used to further improve

robustness, with limited impact on SI values (figure 5B). Too large values for τs may

however overestimate the SI and rely on synchrony windows beyond physiological

relevance. More generally, it would be advisable to perform a sensitivity analysis for each

specific application of the synchrony index, as the time scale of the underlying physiological

processes may vary.

Note that SI only quantifies synchrony. It does not provide any information about causality.

Constructing the histogram of time delay between the activations of two neurons may

provide such evidence, as illustrated by one example in Beaumont et al. (2013), but

synchrony may be due to a common input, for instance from the vagal nerve. A way to

further investigate this issue would be to analyze the timing of the coincidences between

these neurons in relation to cardiac or respiratory activity. This analysis may also rely on the

synchrony index, as we did for left ventricular pressure.

Synchrony indices were computed over the entire signal. This measures long-term

synchronization between the activity of neurons. At a shorter time scale, however,

synchrony may be stronger or weaker, depending notably on changes in autonomic, central,

Longpré et al. Page 12

Physiol Meas. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cardiovascular and pulmonary inputs, or upon application of specific stressors. Figure 2

shows that with a firing rate of 1 Hz, a few minutes of neuronal activity are needed to

identify synchrony index in the 0.1–0.2 range (at 1% significance), while shorter signals

may be sufficient when synchrony is stronger. When firing rate is even slower (e.g. baseline

activity in an anesthetized animal), longer time intervals would be required for the analysis.

In our data, the presence of blanked intervals due to myocardial activity masking neuronal

activity introduced only a very minor negative bias to the synchrony index and small

uncertainty (standard deviation). This stems from the fact that the total length of blanked

intervals contributed to about 2–3% of signal duration. Note that it would be possible to

estimate the relative contributions of artifacts and myocardial activity to the bias of

synchrony index. Since the artifacts typically represented < 10% of the blanked intervals,

they are expected to have very little influence on the SI. Estimating the effect of blanking

becomes more critical during an atrial arrhythmia, where up to 15–20% of the signal may

have to be blanked. Salavatian et al. (2013) explored the possibility of canceling artifacts or

atrial activity instead of blanking them. This opens the way for extensions of our technique.

Instead of relying on local rate, the probability πk of observing a spike in the blanked

interval may be updated after artifact cancellation. In the best case scenario, cancellation

would be perfectly reliable and no blanked interval would be necessary. Realistically, in

many cases, πk may be set to zero if there is clearly no supra-threshold activity. When a

neuronal activity is detected but its waveform extracted from within the artifact is too

corrupted for reliable classification, the position λk would be fixed while the probability of

occurrence ξk would be equiprobable among neurons of that channel. The uncertainty on the

synchrony index would be further reduced after incorporating this information.

The synchrony index can also be used to identify and quantify synchronization with

respiratory and cardiovascular inputs. Other possible applications include assessing direct

response to nerve stimulation. The SI values obtained are qualitatively in agreement with

histograms as used in Beaumont et al. (2013). A critical advantage over histogram-based

methods is that the occurrence of random coincidences is taken into account and statistical

significance can be determined. This is particularly important when a neuron receives inputs

from multiple sources (e.g. inter-neuron), resulting in a lower SI value. In addition, avoiding

the use of bins enables higher time resolution, while replacing bin size with another

parameter, τs, that can be related to physiological parameters such as the rising time of left

ventricular pressure.

The investigated population of intracardiac neurons has been hypothesized to be mostly

composed of local circuit neurons (Beaumont et al. 2013). These neurons are believed to

receive, process and coordinate multiple secondary inputs (e.g. cardiovascular, respiratory,

regional control) dynamically. The synchrony index provides a tool to estimate how much

input a (presumably) local circuit neuron indirectly receives from baroreceptors. This leads

to a better classification and characterization of the neuron population. The synchrony index

could also form the basis for the analysis and the quantification of neuron population

dynamics in control conditions as well as in response to clinically-relevant interventions,

such as (possibly long-term) vagal nerve stimulation, that may affect the coherence of

intrinsic cardiac neuron activity. This would enable us to determine if these interventions
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have a direct effect on the intrinsic cardiac nervous system or if their mechanisms rely on

different pathways.

In summary, our results support the use of jitter-based synchrony index in the context of

intrinsic cardiac neurons. Analytical formulas were derived for computing the distribution of

synchrony index of surrogates, the p-value, the minimum signal length needed to reach

statistical significance and the effect of blanked intervals, which makes this approach robust

and computationally efficient.
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Figure 1.

Coincidence detection and synchrony index. (A) Two spike trains (target neuron  and

reference neuron . Gray rectangles around spikes of the target neuron represent windows

for detecting coincidences (Si = 1) and those around spikes of the reference neuron represent

jitter windows. The intersection between these two sets of windows (shown as horizontal

gray lines) is associated with the pi values. Values of Si and pi are given below each spike of

the reference neuron assuming πJ/τs = 2. (B) Synchrony index of two spikes as a function of

the time interval between them (τs = 40 ms). Solid black line: πJ/τs = 2; solid gray line:

πJ/τs = 1.5; dashed gray line: πJ/τs = 2.5.
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Figure 2.
Number of spikes necessary to measure SI with 1% significance. Theoretical bounds are

shown as solid lines. Dots are estimates based on experimental values for sJ and SI.
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Figure 3.
Determination of cardiac phase from left ventricular pressure (LVP). (A) LVP signal and

corresponding cardiac phase in two time segments with slow (signals on the left) and fast

(signals on the right) heart rates in the same dog. (B) Reconstruction of the cardiac phase.

Solid line: slow heart rate signal from panel A; dashed line: fast heart rate. (C) Mean (solid

line) and standard deviation (dashed lines) of LVP profile as a function of phase. Statistics

are computed over the whole LVP signal.
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Figure 4.
Determination of appropriate values for τs. (A) Histogram of time delay between each spike

and the nearest spike in any other neuron. In each dog, the distribution is constructed using

all neurons. (B) SI as a function of τs for all pairs of neurons with statistically significant

synchrony (p < 0.01). Pairs of neurons with SI < 0.05 when τs > 40 ms are not shown. (C)

Convergence of SI values (pairs of neurons from panel B), computed as the root mean

square (RMS) difference between SI at τs and its plateau value at τs = 80 ms.
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Figure 5.
(A) Histogram of SI values obtained in all pairs of neurons in all dogs using τs = 40 ms.

Pairs are included only when synchrony is significant at p < 0.01 level. (B) Empirical

cumulative distribution function (CDF) of SI values computed using τs = 30 ms (dotted

line), τs = 40 ms (plain line), τs = 60 ms (dashed line). (C) Effect of blanked intervals on SI

using the analytical formula: bias as a function of SI. Vertical gray lines represent the

standard deviation of SIb. Horizontal dotted lines denote the mean bias as well as the 95%

confidence interval.
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Figure 6.
Estimating the effect of blanked intervals on SI. (A) Distribution of SIb values obtained after

10,000 realizations of random insertions of spikes within the blanked intervals. Mean and

standard deviation (std) of SIb are indicated below each distribution. (B) Bland-Altman plot

showing the difference in mean(SIb) between the Monte-Carlo (MC) formula (12) computed

using 150 runs of 10,000 realizations and the analytical (A) formula (14). The mean over

these 150 runs (dots) and their standard error of the mean (error bar) are shown. Horizontal

dotted lines indicate the mean bias and 95% confidence interval. (C) Same Bland-Altman
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plot as panel B for the standard deviation of SIb. (D)–(E) Same plots as panels B–C after

blanked intervals too close to each other (ak+1 − bk < 2τs + 2τJ) have been discarded.
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Figure 7.
Synchrony with respiratory inputs. (A) Spike train time series of three selected neurons

synchronized with respiration, aligned with the respiration signal. (B) Histograms of ,

i.e. the respiratory phase at the time of each spike. The vertical dotted lines indicate a 3-s

time window around peak inspiratory pressure (phase = 0). (C) SI with respect to respiration

as a function of τs. The thicker lines represent the three selected neurons. Non-statistically

significant SI values (p > 0.01) are not shown. (D) Spike train time series of three selected

neurons anti-synchronized with respiration, aligned with the respiration signal (in a different

dog from panel A). (E) Histograms of , i.e. the respiratory phase at the time of each

spike. (F) SI with respect to respiration as a function of τs in neurons anti-synchronized with

respiration.
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Figure 8.

Synchrony with cardiovascular inputs. (A) Histogram of , i.e. the cardiac phase at the

time of each spike, for three cardiovascular-related neurons firing during one specific phase

of the cardiac cycle. Thick solid lines show the synchrony index (for three values of τs = 20,

30 and 40 ms) as a function of cardiac phase. Non-significant data points (p > 0.01) are

discarded. The thin solid line represents the profile of left ventricular pressure as a function

of cardiac phase. (B) Peak value of the synchrony index (SI) with respect to cardiac phase as

a function of τs for a set of neurons of the type shown in panel A. (C) Same as panel A for

cardiovascular-related neurons firing at more than one phase of the cardiac cycle. (D) Same

as panel B for neurons of the type of panel C. (E) Same as panel A for non-cardiovascular-

related neurons. (F) Same as panel B for neurons of the type of panel E.
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