
The Central Nervous System Sites Mediating the Orexigenic
Actions of Ghrelin

B.L. Mason*, Q. Wang*, and J.M. Zigman
Departments of Internal Medicine (Divisions of Hypothalamic Research and of Endocrinology &
Metabolism) and Psychiatry, The University of Texas Southwestern Medical Center, Dallas,
Texas 75390-9077

B.L. Mason: Brittany.Mason@utsouthwestern.edu; Q. Wang: Qian.Wang5@utsouthwestern.edu; J.M. Zigman:
jeffrey.zigman@utsouthwestern.edu

Abstract

The peptide hormone ghrelin is important for both homeostatic and hedonic eating behaviors, and

its orexigenic actions occur mainly via binding to the only known ghrelin receptor, the growth

hormone secretagogue receptor (GHSR). GHSRs are located in several distinct regions of the

central nervous system. This review discusses those central nervous system sites that have been

found to play critical roles in the orexigenic actions of ghrelin, including hypothalamic nuclei, the

hippocampus, the amygdala, the caudal brain stem, and midbrain dopaminergic neurons.

Hopefully, this review can be used as a stepping stone for the reader wanting to gain a clearer

understanding of the central nervous system sites of direct ghrelin action on feeding behavior, and

as inspiration for future studies to provide an even-more-detailed map of the neurocircuitry

controlling eating and body weight.
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INTRODUCTION

Ghrelin is a peptide hormone synthesized predominantly by specialized endocrine cells of

the stomach (1). Ghrelin undergoes a GOAT (ghrelin O-acyltransferase)-catalyzed

posttranslational addition of an octanoyl group to bind to its receptor, the growth hormone

secretagogue receptor (GHSR; also known as the ghrelin receptor), and thus gains much of

its bioactivity (2, 3). In addition to roles in regulating growth hormone release,

gastrointestinal motility, gastric acid secretion, blood pressure, mood, and blood glucose,

ghrelin has potent effects on eating (1, 4–12). These effects are perhaps most evident during

states of energy insufficiency, which ghrelin signals and to which ghrelin helps respond.
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Circulating ghrelin increases before meals to levels that stimulate food intake when

generated by peripheral administration of the hormone (8). Ghrelin levels also rise following

food deprivation and after many forms of weight loss (9–11, 14–17). Infusions of ghrelin or

GHSR agonists increase body weight via pro-orexigenic actions and/or decreases in energy

expenditure (18–22). Ghrelin also influences body weight by engaging several food-reward

behaviors, by shifting fuel preference away from metabolic utilization of fat as an energy

source, and by increasing the mRNA expression of fat storage–promoting enzymes in white

adipocytes (11, 23–27). Ghrelin’s orexigenic actions are rapid and trigger eating even at

times of minimal spontaneous food intake (8). After an overnight fast, administration of a

GHSR antagonist blocks rebound overeating (28). More chronic treatment with exogenous

ghrelin also enhances feeding and body weight gain, suggesting that ghrelin participates in

long-term body weight regulation (21). Although some studies have demonstrated little to no

effect of genetic interference of ghrelin signaling on body weight and food intake (25, 26),

other studies using genetically modified animal models suggest that intact ghrelin signaling

is required for normal eating behaviors and body weight responses, especially responses to

hedonically rewarding high-fat diets (27–29).

Of note, with the exception of obese individuals with Prader-Willi syndrome, in which

ghrelin levels are high and may contribute to the extreme and debilitating food-seeking

behaviors and hyperphagia characteristic of that disorder, in most obese subjects, ghrelin

levels are lower than in lean individuals (30–32). That said, ghrelin levels do rise after

weight loss from dieting, possibly contributing to rebound weight gain (24). In contrast,

most studies have demonstrated a decline or lack of rise in ghrelin levels in subjects

following weight loss resulting from Roux-en-Y gastric bypass (33). Such an atypical

ghrelin response to the Roux-en-Y procedure, which also affects levels of other

gastrointestinal hormones such as glucagon-like peptide 1 (GLP-1), GLP-2, and peptide YY

(PYY), may be just one mechanism by which that bariatric surgical procedure produces such

a profound and prolonged body weight effect (33).

Ghrelin’s control of many varied behaviors related to eating suggests that one of its major

roles is in shaping appetitive behavior and inducing motivation to seek and consume food

(8). Also, the occurrence of ghrelin within a wide range of species suggests a strong

biological necessity for ghrelin action (34). Furthermore, the known central nervous system

(CNS) sites of GHSR expression, which include several regions previously linked to eating

and reward, support this notion and are visualized in Figure 1 (8).

In the current review, we discuss the CNS sites where ghrelin interacts to mediate its actions

on food intake. For clarity, we focus on those CNS regions of direct ghrelin interaction as

opposed to those downstream regions to which the directly engaged neuronal populations

project. With the exception of the vagus nerve, we do not discuss known or potential

peripheral sites of ghrelin action, because, to our knowledge, none has been linked to

ghrelin’s orexigenic actions. In addition, although orexigenic control is a narrow category of

ghrelin action, the ingestion of food is a rather complex behavioral process, including both

homeostatic and hedonic feeding behaviors, and the current review discusses both of these

categories.
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INVOLVEMENT OF GHRELIN IN HOMEOSTATIC AND HEDONIC FEEDING

BEHAVIORS

Homeostatic feeding is thought to be a primitive behavior required for survival, involving

eating easily available food to replenish depleted energy stores (35). Supporting a role for

ghrelin in this homeostatic realm of eating, acute administration of ghrelin potently and

rapidly stimulates feeding. Also, plasma levels of endogenous ghrelin increase upon caloric

restriction of various types and before set meals and decrease following ingestion of food

(8). Both the magnitude and degree of the reduction in plasma ghrelin following food intake

are directly related to the caloric content of the meal, which also affects the timing and

magnitude of the subsequent rise in ghrelin that helps initiate the next meal (36–38). In

addition, circulating ghrelin levels tend to be lower and the orexigenic effects of ghrelin tend

to be blunted in cases of diet-induced obesity (39). GHSR expression occurs in several CNS

nuclei long known to be involved in homeostatic feeding, including several located within

the hypothalamus and the caudal brain stem, among others (40).

Hedonic feeding is seemingly a much more complex process and refers to a set of behaviors

related to the pleasurable aspects of eating. A now vast literature has demonstrated the

ability of both pharmacologically administered ghrelin and naturally elevated ghrelin—such

as that which occurs in response to caloric restriction or to psychosocial stress—to enhance

the rewarding value of fatty and sugary foods such that individuals exert more effort and

learn methods to more efficiently obtain foods with hedonic appeal (41, 42). Established

CNS nuclei mediating food-reward and other reward behaviors include the ventral tegmental

area (VTA), the hippocampus, and the amygdala, among others, all of which contain

GHSRs. A discussion of the specific CNS sites mediating ghrelin action on homeostatic and

hedonic feeding behavior forms the basis of the current review.

Of note, it is still unclear how ghrelin crosses the blood-brain barrier to reach those CNS

sites that are discussed in this review. Nonetheless, ghrelin from the periphery does reach

the brain. For instance, radiolabeled ghrelin injected peripherally is later localized to the

hippocampus, and direct microinjection of a GHSR antagonist into the VTA blocks the

orexigenic actions of peripherally administered ghrelin (43, 44). It is assumed that entry to

the brain occurs via circumventricular organs such as the median eminence, where

capillaries are fenestrated and are thus more permissive to entry into the CNS (45, 46).

However, a specific transporter that can move ghrelin across the blood-brain barrier has yet

to be found (47). Also of interest, several studies have suggested that ghrelin is synthesized

in one or more brain regions, although this finding is not generally reproducible, and thus

the existence of centrally derived ghrelin and its physiological significance are uncertain (1,

48–50).

ACTION OF GHRELIN IN HYPOTHALAMIC FEEDING CENTERS

The hypothalamus is considered to be the master regulator of homeostasis. It consists of

several nuclei, including the arcuate nucleus (ARH), the ventromedial nucleus (VMH), the

paraventricular nucleus (PVH), and the lateral hypothalamic area (LH). Along with other

neighboring hypothalamic regions, these hypothalamic nuclei receive signals from a
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plethora of sensory inputs and circulating nutritional hormones, such as ghrelin and leptin,

and are believed to play pivotal roles in regulating appetite, feeding, and other metabolic

processes (19, 51–54). Histological investigation of GHSR mRNA in the hypothalamus

shows its rich distribution in the ARH, VMH, and PVH in rodents and primates, whereas

some other studies also demonstrate GHSR expression in the LH (40, 48, 55–58). Any site

with GHSR expression holds the potential to be directly engaged by ghrelin. Indeed, biotin-

labeled ghrelin-binding assays and fluorescence-tagged ghrelin in vivo imaging have

indicated that ghrelin can bind specifically to the ARH, PVH, and LH (45, 48).

Intracerebroventricular injection of ghrelin and/or GHSR agonists into the third ventricle

stimulates food intake and robustly induces c-fos—a marker of neuronal activation—in the

ARH, PVH, dorsomedial hypothalamic nucleus (DMH), and LH, with a smaller c-fos

induction in the VMH (19, 29, 59, 60). This ghrelin-induced activation seems to be

independent of food intake because similar c-fos expression levels are also observed in these

nuclei when animals are food restricted following ghrelin administration (59). The

importance of GHSR in mediating the orexigenic actions of ghrelin is highlighted in GHSR-

knockout models, in which there is absence of both ghrelin-triggered hyperphagia and

hypothalamic c-fos induction (29, 61). Collectively, these studies suggest that ghrelin

performs its functions in promoting feeding via direct actions on one or more hypothalamic

nuclei. More detailed evidence is provided below.

Arcuate Nucleus

Out of all the potential CNS sites of direct ghrelin action, the ARH has been investigated the

most. The ARH contains two major feeding-related neuronal subtypes. These include

orexigenic agouti-related peptide (AgRP)/neuropeptide Y (NPY) neurons and anorexigenic

pro-opiomelanocortin (POMC) neurons, in which the precursor polypeptide, POMC, is

processed to several neuropeptides, including α-melanocyte-stimulating hormone (α-MSH),

an agonist of melanocortin receptors 3 and 4 (MC3R and MC4R). The general importance of

the ARH to feeding is well demonstrated by the severe reduction in food intake and body

weight resulting from ablation of AgRP neurons in adult mice and by the rapid induction in

food intake resulting from either optogenetic or pharmacogenetic activation of AgRP

neurons (62–64). Meanwhile, optogenetic stimulation of POMC neurons inhibits food intake

in mice (63). Importantly, comparison of the orexigenic effects of direct ghrelin

microinjections into the ARH versus several other hypothalamic nuclei demonstrates that the

lowest doses of ghrelin are most powerful when administered to the ARH (22). Also of note,

the feeding-stimulating effect of both peripheral and central ghrelin applications is abrogated

in animals with ARH lesions (65, 66).

The majority of GHSRs within the ARH are located on AgRP neurons; there are very few

GHSRs on POMC neurons (67). Even before ghrelin was discovered, peripheral delivery of

a GHSR agonist was shown to induce c-fos activity within the ARH, predominantly in

AgRP neurons (68). Both central administration and peripheral administration of ghrelin

have the same effect (19, 29, 59, 60, 69, 70). Additionally, central ghrelin application

augments gene transcription of the orexigenic neuropeptides NPY and AgRP, and ghrelin

increases electrical activity of AgRP neurons (48, 71–75). Ghrelin also increases PKA-

dependent Ca2+ influx from NPY-containing, isolated ARH neurons (76). AgRP, NPY, and
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the inhibitory neurotransmitter GABA have been implicated in ghrelin action at the ARH. In

particular, in NPY-deficient mice, the effect of peripheral ghrelin administration in

stimulating appetite is attenuated, and this effect is completely abolished in NPY/AgRP

double-knockout animals (77). In addition, antibodies and antagonists of both NPY and

AgRP cancel ghrelin-induced feeding (20, 78, 79). Ghrelin-stimulated hyperphagia

disappears upon disruption of GABA release from these AgRP neurons (80). Also, in mice

that have experienced AgRP neuronal ablation during the neonatal stage, the usual feeding

response to peripheral administration of ghrelin is lacking (81, 82). Altogether, these data

support the hypothesis that ghrelin excites AgRP neurons, which in turn stimulates acute

feeding behavior following the release of NPY, AgRP, and GABA.

Several studies have investigated possible postsynaptic targets of ghrelin-engaged AgRP

neurons, with many data pointing to ARH POMC neurons. As such, application of ghrelin to

hypothalamic brain slices increases the frequency of spontaneous GABA release from AgRP

neurons onto POMC neurons and leads to hyperpolarization of these POMC neurons (48,

80). Also, ghrelin-induced feeding is blunted in POMC-knockout mice (83).

Although the prevailing perspective is that ghrelin initiates feeding due to its direct effects

on increasing the electrical activity of AgRP neurons, alternative models have also been

proposed. For instance, several data suggest that the effect of ghrelin on ARH AgRP

neurons may instead involve indirect actions via presynaptic glutamatergic inputs.

Electrophysiological recordings of AgRP neurons have demonstrated that ghrelin

upregulates miniature excitatory synaptic current (mEPSC) frequency emanating from

presynaptic glutamatergic axons (84). Future experiments are needed to further determine

the importance of these indirect effects of ghrelin on AgRP neuronal activity in relation to

the direct effects of ghrelin.

Paraventricular Nucleus

The PVH integrates information from many other CNS regions, including the ARH and

caudal brain stem, to regulate feeding (54, 85–88). Not only does GHSR expression occur in

the PVH, but also intra-PVH ghrelin injection stimulates acute feeding and induces c-fos in

the PVH (22, 89, 90). Direct administration of either a serotonin or an MC3/4R agonist into

the PVH blocks intra-PVH ghrelin-induced hyperphagia (91–93). Also, lesions of the PVH

exaggerate food intake induced by peripheral ghrelin delivery (94).

Ventromedial Nucleus

In the rat, GHSRs are highly expressed in all regions of the VMH, whereas in the mouse,

GHSR expression is far less prominent, and in lemurs, such expression is absent (40, 56). In

the rat, direct VMH microinjection of ghrelin triggers food intake, and central ghrelin

administration induces c-fos expression in the VMH, thus fitting with electrophysiological

data demonstrating the ability of ghrelin to activate the majority of the VMH neurons (22,

95). Intracerebroventricular injection of ghrelin also activates the AMPK pathway in the rat,

thus decreasing fatty acid synthase expression specifically in the VMH; when this AMPK

signaling cascade is blocked in the VMH, the effect of central ghrelin is reduced (96). Also

suggestive of a role of VMH in ghrelin action, peripheral injection of ghrelin increases
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arousal and activity in anticipation of a meal (food-anticipatory activity) in wild-type mice,

but not in GHSR-knockout mice (97–99).

Lateral Hypothalamic Area

GHSR expression in the LH has been demonstrated by some but not all studies (40, 55, 56).

Microinjection of ghrelin directly into the LH stimulates feeding, although much higher

doses of ghrelin are required to achieve that effect compared with the amounts needed in

intra-ARH, -PVH, and -VMH injections (22, 100). Ghrelin treatment also leads to

depolarization of dispersed LH orexin neurons (101). Furthermore, suggestive of at least an

indirect effect of LH orexin neurons on ghrelin action, ghrelin-induced intake of freely

available food, ghrelin-induced food-reward behavior [including operant responding for

fatty food (a measure of motivation to obtain foods that are liked)], and ghrelin-induced

conditioned place preference (CPP) for fatty food (in which animals spend more time in an

environment in which they have been trained to find liked foods) are blocked in orexin-

deficient mice and/or wild-type mice administered orexin receptor antagonists (28, 102). An

indirect effect of orexin neurons in mediating ghrelin action is supported by the observation

that ghrelin-responsive neurons extensively overlap with orexin-responsive neurons in ARH

AgRP/NPY neurons (76, 103).

LINKING THE LIMBIC SYSTEM WITH FEEDING CONTROL VIA GHRELIN

Hippocampus

As part of the limbic system, the hippocampus is believed to play an important role in

feeding regulation, especially that which is associated with learning and emotion. GHSR

mRNA is abundantly expressed in the hippocampus, and c-fos is significantly activated in

the dentate gyrus and in other hippocampal regions after lateral ventricular injection of

ghrelin (19, 104–106). Peripherally administered ghrelin gains access to the CNS and

reaches hippocampal formations, where it binds, promotes dendritic spine formation, and

generates long-term potentiation (43). Delivery of ghrelin into the hippocampus increases

food intake, with specific effects on increasing meal frequency, combined with improved

memory retention (107, 108). Ghrelin delivered to the ventral hippocampus in ad lib–fed rats

increases spontaneous meals initiated by a discrete cue that was previously associated with

meal access when the rats were food deprived (cue-potentiated feeding) (108). These effects

on complex eating behavior are consistent with the known functions of the hippocampus in

regulating cognition.

Amygdala

GHSRs are also highly expressed in the amygdala, another important part of the limbic

system (109–111). Ghrelin treatment decreases the frequency of mEPSCs in pyramidal-like

amygdalar neurons (110). Also, intra-amygdala administration of ghrelin stimulates regular

chow intake and decreases anxiety-like behavior in food-restricted rats, although this

ghrelin-induced feeding response has not been reproduced by all investigators (107, 110). A

recent study also implies that ghrelin’s effects on cue-potentiated feeding behavior occur, at

the least, via indirect action on the amygdala (111).
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HINDBRAIN REGIONS MEDIATING THE OREXIGENIC EFFECT OF GHRELIN

In addition to hypothalamic and limbic system sites of ghrelin-induced food intake,

expression of GHSRs in all three regions of the dorsal vagal complex (DVC)—the area

postrema (AP), nucleus of the solitary tract (NTS), and dorsal motor nucleus of the vagus—

suggests a role of the caudal brain stem in ghrelin action (112, 113). Infusion of ghrelin into

the third ventricle (to probe both hypothalamic and more-caudal targets) or the fourth

ventricle (to probe brain stem targets) potently induces hyperphagia, as does direct injection

of ghrelin into the DVC (114). Importantly, the hyperphagia achieved by microinjection of

ghrelin into the DVC can be elicited by using a dose much lower than the lowest effective

dose previously shown to induce hyperphagia upon microinjection into the ARH (22, 114).

Fourth-ventricular ghrelin delivery also increases number of meals and the size of meals

during the first few hours after treatment and decreases the time until first-meal onset (114).

Upon its infusion into the fourth ventricle, ghrelin induces c-fos expression in the NTS, but

not in the ARH or PVH, and it does not activate tyrosine hydroxylase (TH)-containing

neurons in the brain stem (115). Ghrelin also induces c-fos expression in the NTS and in

either the AP or the dorsal motor nucleus when it is infused into the lateral ventricle (59,

116). Fourth-ventricle infusion of ghrelin also increases NPY mRNA levels in the ARH

(117).

Selective expression of GHSRs in mouse hindbrain cells accomplished by using Cre-lox

technology does not result in an acute orexigenic response to peripherally administered

ghrelin, indicating that hindbrain expression of ghrelin receptors is insufficient to mediate

this effect of ghrelin (118). These mice do, however, demonstrate a muted lowering of

fasting blood glucose that is similar to the glycemic response to fasting observed in wild-

type mice and that is unlike the more marked lowering of blood glucose following overnight

fasting of mice with global GHSR deletion (118).

Several studies have looked more directly at a possible role for the vagus nerve in mediating

ghrelin’s actions on feeding, with mixed results. Presumably, these effects could include

interaction with GHSRs on sensory vagal afferent neurons, which transmit information from

the periphery to the CNS, in addition to interaction with GHSRs located on vagal efferent

neurons, as discussed above. GHSR mRNA has been localized to the nodose ganglion,

which houses the cell bodies of sensory vagal afferent neurons, and thus GHSR protein

could presumably be expressed anywhere along those neurons, including where they

innervate the gastrointestinal tract (119). In some studies, blockade of gastric vagal afferents

via perivagal administration of the neurotoxin capsaicin prevents ghrelin-induced feeding

(120), whereas administration of peripheral ghrelin to vagotomized mice fails to induce food

intake (20). These latter studies suggest a necessity for vagal communication in transferring

the peripheral ghrelin signal to central sites of appetite regulation. This communication

presumably travels directly through the NTS to the ARH through a mainly noradrenergic

pathway that is mediated via α1- and β2-adrenoreceptors, as suggested by peripheral ghrelin

administration–induced increases in NTS dopamine β hydroxylase mRNA, by a subsequent

increase in noradrenaline in the ARH, and by an ensuing activation of ARH NPY neurons

(116). Similarly, in humans who have undergone truncal vagotomy, peripherally
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administered ghrelin fails to induce food intake (121). Countering the assertion that gut

vagal afferents are required for the orexigenic effect of peripherally administered ghrelin,

another study has demonstrated that in rats that have undergone a subdiaphragmatic vagal

deafferentiation (a more selective procedure in which abdominal vagal afferents are

disconnected), administration of peripheral ghrelin still induces feeding (120–122).

INTERACTION OF GHRELIN WITH MIDBRAIN DOPAMINERGIC REWARD

CIRCUITRY

Much evidence exists for a role of midbrain dopaminergic reward circuits in ghrelin’s

actions on both homeostatic and hedonic feeding behaviors. Receptors for ghrelin are highly

expressed in the VTA and the substantia nigra (40, 44, 55) within both dopaminergic (TH-

immunoreactive) neurons (40, 44) and GABAergic neurons (44). Centrally administered

ghrelin and peripherally administered ghrelin induce dopamine release in the nucleus

accumbens, to which VTA neurons project, and ghrelin increases action potential frequency

in VTA dopamine neurons (123–126). Direct microinjection of ghrelin into the VTA

increases intake of freely available food, whereas direct VTA microinjection of a GHSR

antagonist decreases food intake in response to intraperitoneal ghrelin (44, 127). Selective

knockdown of GHSR in rats, as achieved by transgenic expression of antisense GHSR

driven by a TH promoter, results in reduced free-feeding food intake compared with such

intake in wild-type controls and in failure of a GHSR agonist to induce food intake (128).

Conversely, selective expression of GHSRs in dopaminergic neurons in the VTA and in a

subset of other catecholaminergic cells, as achieved by using Cre-lox technology, partially

restores food intake after peripheral administration of ghrelin (104). Also of note is the

ability of administered ghrelin to induce CPP for high-fat diet, a behavioral task frequently

used with drugs of abuse, in which an animal gravitates toward a chamber (place), with a

particular set of visual and tactile cues previously associated with the pleasurable high-fat-

diet reward (28, 129). The administration of ghrelin can induce CPP in wild-type mice, but

not in GHSR-null animals, and this effect is fully restored in mice with selective expression

of GHSRs in catecholaminergic neurons (28).

CONCLUSIONS

Ghrelin signaling in the CNS is critical for modulating both homeostatic feeding and

hedonic feeding. Much evidence supports the hypothesis that the ARH plays a direct role in

ghrelin-regulated homeostatic feeding and that the VTA directly mediates ghrelin-induced

hedonic eating. Increasing evidence also suggests the involvement of other hypothalamic

regions, the brain stem, the hippocampus, and the amygdala in ghrelin’s first-order appetite-

stimulating actions. Indeed, ghrelin’s actions on homeostatic and hedonic eating likely

involve a distributed network of multiple brain sites, some of which may be more directly

engaged by ghrelin than are others. A next big challenge in the field of CNS control of

ghrelin action will be to further dissect this complex network to better determine those CNS

sites that are most critical for ghrelin’s effects, for instance, which sites are sufficient for and

which sites are required for ghrelin’s varied orexigenic effects.
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Glossary

GHSR growth hormone secretagogue receptor; also known as the ghrelin receptor

CNS central nervous system

VTA ventral tegmental area

ARH arcuate nucleus of the hypothalamus

VMH ventromedial nucleus of the hypothalamus

PVH paraventricular nucleus of the hypothalamus

LH lateral hypothalamic area

AgRP agouti-related peptide

POMC pro-opiomelanocortin

DVC dorsal vagal complex

NTS nucleus of the solitary tract

TH tyrosine hydroxylase
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SUMMARY POINTS

1. Ghrelin potently stimulates homeostatic feeding and induces food-reward

behaviors via GHSRs in the CNS.

2. Ghrelin activates AgRP neurons in the ARH, where it can stimulate acute

feeding behavior following the release of NPY, AgRP, and GABA.

3. Other evidence points to roles of other hypothalamic sites, including the VMH,

PVH, and LH, in directly mediating ghrelin-induced food intake.

4. GHSRs in the hippocampus and amygdala mediate more complex behaviors

related to food intake, including cue-potentiated feeding.

5. DVC GHSRs have the capacity to contribute to the orexigenic effect of ghrelin,

although they do not appear to be sufficient for this action.

6. GHSRs in VTA dopaminergic neurons mediate ghrelin-induced homeostatic

feeding and ghrelin-engaged food-reward behavior.
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Figure 1.
The central nervous system sites of known direct ghrelin action are indicated here,

superimposed onto a photomicrograph of a whole mouse brain. They include several

hypothalamic nuclei (ARH, PVH, VMH, and LH), the hippocampus, the amygdala, the

VTA, and the dorsal vagal complex [including AP, NTS, and DMN]. Abbreviations: AP,

area postrema; ARH, arcuate nucleus of the hypothalamus; DMN, dorsal motor nucleus of

the vagus; LH, lateral hypothalamic area; NTS, nucleus of the solitary tract; PVH,

paraventricular nucleus of the hypothalamus; VMH, ventromedial nucleus of the

hypothalamus; VTA, ventral tegmental area.
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