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Abstract

Purpose—Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer mortality in the

world. Novel diagnostic biomarkers may augment both existing NSCLC screening methods as

well as molecular diagnostic tests of surgical specimens to more accurately stratify and stage

candidates for adjuvant chemotherapy. Hypermethylation of CpG islands is a common and

important alteration in the transition from normal tissue to cancer.

Experimental Design—Following previously validated methods for the discovery of cancer-

specific hypermethylation changes we treated 8 NSCLC cell lines with the hypomethylating agent

deoxyazacitidine or trichostatin A. We validated the findings using a large publically available

database and two independent cohorts of primary samples.

Results—We identified >300 candidate genes. Using The Cancer Genome Atlas (TCGA) and

employing extensive filtering to refine our candidate genes for the greatest ability to distinguish

tumor from normal, we define a three-gene panel, CDO1, HOXA9, and TAC1, which we

subsequently validate in two independent cohorts of primary NSCLC samples. This 3-gene panel

is 100% specific, showing no methylation in 75 TCGA normal and 7 primary normal samples and

is 83–99% sensitive for NSCLC depending on the cohort.

Conclusion—This degree of sensitivity and specificity may be of high value to diagnose the

earliest stages of NSCLC. Addition of this 3-gene panel to other previously validated methylation

biomarkers holds great promise in both early diagnosis and molecular staging of NSCLC.
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Introduction

Non-Small Cell Lung Cancer (NSCLC) is the leading cause of cancer related mortality

worldwide.(1, 2) While improvements in the treatment of advanced stage lung malignancies

have been made, including agents targeting specific genetic aberrations, epigenetic

therapies, and exploiting the potential of the immune system to assert control over tumor

growth, lung cancer remains the main cause of cancer related deaths.(3–5) Cancer-specific

molecular changes have utility not only as targets for therapy but also as biomarkers for the

determination of risk of recurrence for early stage lung cancer. Such prognostic capability

may be due to the biological significance of the alteration or because detection of molecular

alterations in lymph nodes may herald a higher stage of disease than is detectable by current

pathology standards.(6, 7)

There is also much interest in early detection strategies to improve outcomes in lung cancer,

which have culminated in the landmark National Lung Screening Trial (NLST). Although

the 20% relative reduction in lung cancer mortality in the NLST low-dose CT screening arm

is encouraging, it belies a false positive rate among screening results of 96.4% which has

resulted in some pause among clinicians and payers alike for immediate widespread

adoption of the technique.(8) Improved techniques or ancillary testing methods to augment

both the sensitivity and specificity of screening for lung cancer could augment CT

screening.

The most promising non-radiologic ancillary tests involve the detection of cancer-specific

events in tissues or fluids carrying tumor cells or tumor DNA, such as lymph node samples,

sputum, or plasma. Since cancer specific DNA methylation events are common and occur

early in lung cancer progression, recent studies have used nested methylation-specific PCR

(MSP) for detection of promoter methylation in sputum.(9, 10) For example, using PAX5α,

GATA5, and SULF2, genes derived from studies of genes with known biologic importance

in NSCLC demonstrated the ability to predict the outcome of a diagnosis of lung cancer in

two high risk cohorts.(11–14) While these studies demonstrate the feasibility of molecular

detection of altered, cancer-specific DNA methylation in sputum, there remains a need for

improvement in the panel of markers employed. The measure of success expected from a

test lies in the frequency of the event (sensitivity) and the absence of the event in normal

samples (specificity). In this work, we seek to build upon approaches that define the most

highly sensitive and specific markers of cancer, which have often been found to be linked to

polycomb-associated sites in embryonic stem cells, towards the deployment of a clinically

useful assay.(15–17) We hypothesized that the current genes employed in strategies to

assess presence or absence of lung cancer based on sputum and other bodily tissues and

fluids may be augmented by a method combing pre-clinical and population-based studies to

identify the most highly sensitive and specific methylation events in lung cancer.

Here we report the discovery and characterization of genomic changes in DNA methylation

occurring in association with a described biologic program, moving from the study of

individual loci to a comprehensive analysis of alterations in NSCLC with the intention of

uncovering epigenetic events which may predict a cancer’s natural history or be utilized for

the molecular detection of disease. This study provides a method for systematic discovery of
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epigenetic biomarkers which may be used for improving the screening and diagnosis of this

deadly disease.

Materials and Methods

Cell Culture and Treatment

All NSCLC cell lines were purchased from the American Type Culture Collection (ATCC).

H838, H23, H1993, H1568, H2170 and H520 were cultured in RPMI 1640 medium

(Mediatech, Inc.); H1869 was cultured in DMEM/F-12 Medium and SK-MES-1 was

cultured in DMEM (Mediatech, Inc.). Cell lines H838, H23, H1993, H1568 were derived

from adenocarcinomas and H2170, H520, H1869, SK-MES-1 were derived from squamous

cell carcinomas. Cell lines of squamous carcinoma and adenocarcinoma histology are

represented equally so that cancer specific, rather than histology specific markers may be

elicited by the experimental method. All cell culture media were supplemented with 10%

BCS and incubated in humidified air and 5% CO2 at 37°C. For drug treatments, log phase

cells were cultured in growth media containing 10% BCS and 1x penicillin/streptomycin

with 5 μM decitabine (DAC) (Sigma; stock solution: 1mM in PBS) for 96 hours, replacing

fresh media and DAC every 24 hours. Cell treatment with 300 nM Trichostatin A (TSA)

(Sigma; stock solution: 1.5 mM dissolved in ethanol) was performed for 18 hours. Control

cells underwent mock treatment in parallel with addition of equal volumes of PBS or ethanol

without drugs.

Microarray analysis

RNA was harvested from cells in log phase growth using TRIzol (Invitrogen) and the

RNeasy kit with DNase digestion (Qiagen) according to the manufacturer’s instructions.

RNA was quantified using the NanoDrop ND-100 followed by quality assessment with the

2100 Bioanalyzer (Agilent Technologies). RNA concentrations for each sample was greater

than 200ng/μl, with 28S/18S ratios greater than 2.2 and RNA integrity scores of 10 (10

scored as the highest). Sample amplification and labeling procedures were carried out using

the Low RNA Input Fluorescent Linear Amplification Kit (Agilent Technologies). The

labeled cRNA was purified using the RNeasy mini kit (Qiagen) and quantified. RNA spike-

in controls (Agilent Technologies) were added to RNA samples before amplification.

Samples (0.75 μg) labeled with Cy3 or Cy5 were mixed with control targets (Agilent

Technologies), assembled on Oligo Microarray, hybridized and processed according to the

Agilent microarray protocol. Scanning was performed with the Agilent G2505B microarray

scanner using settings recommended by Agilent Technologies. Microarray data are available

in the ArrayExpress database under accession number E-MTAB-1939.

Data analysis for microarray

Quality checks for all arrays included visual inspection for artifacts and the distribution of

signal and background intensity for red and green channels. All arrays passed quality checks

and were used. The statistical platform R and packages from Bioconductor were used for all

computation.(18, 19) The log ratio of red signal to green signal was calculated after

background subtraction and LoEss normalization as implemented in the limma package
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from Bioconductor.(20) Individual arrays were scaled to have the same inter-quartile range

(75th percentile–25th percentile).

Methylation and gene expression analysis

RNA was isolated with TRIzol Reagent (Invitrogen) according to the manufacturer’s

instructions. For RT-PCR, 1μg of total RNA was reverse transcribed using SuperScript™

First-Strand Synthesis System for RT-PCR (Invitrogen). For methylation-specific PCR

(MSP) analysis, DNA was extracted following a standard phenol-chloroform extraction

method. Bisulfite modification of genomic DNA was carried out using the EZ DNA

methylation Kit (Zymo Research). Primer sequences specific to unmethylated and

methylated promoter sequences were designed using MSPPrimer.(21) MSP was performed

as previously described.(22) 10 μl of all PCR products were loaded directly onto 2% agarose

gels containing GelStar Nucleic Acid Gel Stain (Cambrex Corp.) and visualized under

ultraviolet illumination. Primer sequences and conditions for MSP are available upon

request.

Human Tissue Analysis

Fifty-nine primary lung cancers were obtained from Johns Hopkins Hospital in Baltimore,

MD (Cohort A) and 30 from Shinshu University Hospital in Matsumoto, Japan (Cohort B).

All tissues were immediately frozen at −80°C after surgical resection. Normal lung cDNA

was purchased from DNA Technologies Inc. Six normal lung tissues were obtained from

individuals without cancer (five from autopsy and one from lung peripheral to a benign

bronchial tumor). Tissue acquisition was conducted under approved guidelines of the

institutional review boards from both institutions. Histological examination was based on

WHO classification criteria.(23) Clinical staging was done according to Mountain and

Dresler’s tumor-node-metastasis classification criteria.(24)

TCGA Analysis Data and Methods

We used the DNA methylation data of 409 lung adenocarcinoma samples with 32 matched

normal samples as well as 227 lung squamous cell carcinoma samples with 43 matched

normal samples from the Cancer Genome Atlas project (TCGA).(25, 26) DNA methylation

was measured on the Illumina HumanMethlation 450K platform.(18, 27)

The analysis of DNA methylation data was performed using R/Bioconductor software with

the limma package and custom routines for data analysis.(18, 19, 28) We selected only those

probes for sites situated within CpG-island promoters of genes unmethylated at their

promoter sites in all normal TCGA samples (β value < 0.2). For each probe we estimated a

t-statistic and p-value by fitting a linear model of its differential methylation between tumor

and normal samples.(29) All probes tested had adjusted p-values less than 1×10−4. Figure 1

shows a heat map of DNA methylation level for each site (in rows) for all tumor and normal

samples (in columns). The columns of the heat map were ordered by unsupervised

clustering, while rows were ordered top-to-bottom by decreasing value of significance for t-

statistic for differential methylation. The sites and corresponding statistics for all probes can

be found in Supplemental Table 1.
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Clustering Analysis

DNA methylation clusters were based on the most variable CpG sites from figure 1 and on

stage I and II samples. Consensus clustering was applied as implemented in the

Bioconductor package ConsensusClusterPlus, with Euclidean distance and partitioning

around medoids (pam) was used to derive clusters. (30, 31)

Survival analyses

P-value was computed from the Cox regression (the coxph function of the survival

package). (32, 33) Kaplan-Meier curves were made with the help of the survfit function

from the same package using TCGA data for stage I and II tumors. The clinical endpoint for

analysis was time to death. TCGA samples are not annotated for therapies received,

therefore no control for treatment in analysis is possible but may be assumed to represent the

standard of care in the United States. Methylation data was obtained by TCGA from fresh

frozen tumors examined by Infinium HumanMethylation 450 as previously described.(25)

Categorization for groups of comparison for survival outcomes is based on Medoid

clustering as described in Clustering Analysis.

Binary DNA Methylation Assessment

We selected the most significant CpG site per gene to define binary DNA methylation. For

each gene, a sample was labeled DNA hypermethylated if the individual β-value of the gene

was greater than three times the standard deviation of the mean of all combined β-values of

normal samples.

Results

Functional Identification of Cancer-Specific, Hypermethylated Genes in NSCLC Cell Lines

Based on a previously designed method to unmask epigenetically silenced cancer-specific,

DNA-hypermethylated genes, we treated eight NSCLC cell lines with either the DNA-

methylation and DNMT inhibitor, DAC, or the HDAC class I/II histone deacetylase

inhibitor, TSA. (34, 35) Gene expression changes determined using Affymetrix microarray

for DAC or TSA treated cells were compared with mock treated cells. This method enables

the identification of genes induced specifically by DAC, an important distinction as DAC

has the capacity to induce gene re-expression of loci silenced predominantly by

hypermethylation while TSA alone will fail to induce re-expression.(34) The objective of

methylation biomarker discovery by DAC-specific re-expression is to generate a list of

genes likely to be silenced by methylation of promoter CpG islands. DAC-specific re-

expression for a gene is defined as a greater than 2.0 fold re-expression on a microarray with

DAC treatment compared to mock treated cells, less than 1.4 fold re-expression with TSA

treatment compared to mock treated cells, and no basal expression in mock treated cells as

previously described.(34, 35) To find genes which would be expected to have higher

frequencies of methylation in lung cancer, we refined this list to require the preceding

criteria in at least two of eight cell lines. A total of 305 genes were determined to be up-

regulated by DAC using these criteria from eight NSCLC cell lines. (Supplemental Figure 1)
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Refining a Diagnostic 3-Gene Panel of Cancer-Specific, Hypermethylated Genes in NSCLC
Using the Cancer Genome Atlas Dataset

The comprehensive analysis of 305 genes in primary tumors to determine their utility would

represent a challenging task without additional informatics filters to select the most

promising candidates. To refine this list of genes, we applied this functionally derived gene

list to primary tumors characterized in the TCGA lung cancer project, and then validated the

findings in two, independent single-institution cohorts of primary NSCLC tumors (Table 1).

We first tested for tumor specificity among the TCGA tumors, comparing DNA methylation

between lung tumors and normal lung tissue. Of the 305 DAC up-regulated genes, 63 genes

with a total of 172 annotated CpG island promoter probes on the Infinium 450K array had a

statistically significant ability to differentiate tumor versus normal in TCGA samples as

estimated by a linear regression model. In addition, these genes had extremely low

methylation (β-values) in TCGA normal samples, thereby defining a group of DAC-

responsive, cancer-specific methylated genes. Data using these probes are represented in a

heatmap where rows are ordered from top to bottom by p-values based on the ability of an

individual methylation array probe to distinguish tumor vs. normal. Columns are ordered by

unsupervised hierarchical clustering. (Figure 1, Supplemental Table 1) Maximum estimated

p-value for each probe was 1×10−4. CDO1, HOXA9, and TAC1 were notable for extremely

high rates of DNA methylation in tumors and low methylation in normal samples, and were

most effective in distinguishing tumor versus normal based on p-value of linear logistic

regression model.

Binary methylation values as determined by the single best methylation probe from the

promoter CpG islands of CDO1, HOXA9, and TAC1, and plotted for all NSCLC stages

together as well as for stage I alone. (Figure 2, Supplemental Figure 2, Supplemental Table

1). Sensitivity is not limited by histology or tumor stage in the TCGA dataset. In fact,

methylation of at least one of these 3 genes is 98.9% sensitive for tumors stage I–IV and

98.7% sensitive for stage I tumors alone. HOXA9 alone is methylated in 97% of NSCLC

TCGA samples. There are limited descriptions of DNA methylation of these genes in human

lung cancer in previous studies. While TAC1 promoter methylation has not been described

in lung malignancies, highly prevalent HOX cluster gene methylation, including HOXA9,

has been reported in cell lines and a small number of squamous stage I tumors (n=4) as well

as a pool of mixed stage and mixed histology tumors (n=20).(17, 36) HOXA9

hypermethylation has been described as a potential screening test in combination with SOX1

hypermethylation and DDR1 hypomethylation as assayed by pyrosequencing.(37) CDO1

has been reported as a methylated gene in squamous lung tumors (n=30).(38) CDO1 and

TAC1 have been described as high-prevalence cancer-specific methylated genes in breast

cancer.(35) However, no previous study has described the sensitivity and specificity for a

combination of these genes in a large population of NSCLC tumors and validation cohorts.

In addition to their diagnostic utility, we examined the potential prognostic significance of

this functionally derived list of cancer-specific methylation. As would be expected from a

list of genes with an extremely high prevalence of methylation and no described biologic

role in lung cancer, none of the 63 genes examined individually was associated with survival

outcome in TCGA. (Data not shown) In order to examine whether methylation of these
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genes taken as a group reflect biological differences in tumors, we clustered all TCGA lung

cancer samples using medoid clustering, a method for defining optimal numbers of groups

within a data set. When taken together, the 63 cancer-specific hypermethylated genes form

three groups, adenocarcinoma-predominant, squamous-predominant, and a mixed group.

These clusters demonstrate a marginal association with survival in the TCGA tumors

(p=0.04). (Supplemental Figure 3) From our previously published markers of outcome in

early stage, resected lung cancer our strongest associations with outcome came from

questions pertaining to cancer-specific methylation confirmed in lymph nodes, thus a

diagnostic or staging paradigm. As the TCGA contains only samples of primary tumors and

no associated lymph nodes, there is no ability to assess concordance of methylation between

tumor and lymph node. When examining tumor-only questions from our previous work, we

find general agreement with the moderate prognostic capacity of methylation of 4 genes

when examined in tumor only, highlighting the need to refine a highly sensitive and specific

diagnostic markers for the molecular staging of NSCLC.(6) (Supplemental Figure 4)

Association of Progenitor Cell Polycomb-Associated Genes with Cancer-Specific
Methylation Marks

Previous studies have suggested that genes with polycomb marks in chromatin surrounding

the transcription start sites are predisposed to aberrant DNA methylation silencing in cancer.

(15, 39, 40) In embryonic stem (ES) cells, polycomb association occurs in the context of

bivalent chromatin marks containing both active histone 3 lysine 4 trimethylation

(H3K4me3) and repressive histone 3 lysine 27 trimethylation (H3K27me3) marks. Of the 63

cancer-specific hypermethylated genes, 45 (71.4%) are considered bivalent genes silenced

by polycomb repressive complex in progenitor cell states, a rate much higher than the

presence of these marks among all genes (21% using estimated 4413 bivalent genes among

an estimated 21,000 total human genes, p <0.0001). (15, 38) CDO1, HOXA9, and TAC1, are

all polycomb-associated in ES cells. (Figure 1, Supplementary Table 1)

Validating the Diagnostic Utility of a 3-Gene Panel in Two Cohorts of Primary Tissue

To confirm the high prevalence of DNA methylation for these genes in other primary lung

tumors, we then validated the sensitivity of these 3 genes in two, independent cohorts of

NSCLC tumor samples using MSP. (Table 1, Figure 3) Primers for CDO1, HOXA9, and

TAC1 were designed and tested on tumor samples from cohorts in the U.S. and Japan. As

was observed for these genes on the Infinium platform within TCGA data, there was no

methylation in seven normal lung samples when examined using MSP. In contrast to normal

lung, among the American cohort A and Japanese cohort B, respectively, 94.9% and 83.3%

of the tumor samples were methylated for at least one of these 3 genes. Since this 3-gene

panel has near-zero methylation β-values by Infinium and MSP in normal tissues and is

found to have stage-independent hypermethylation in cancer, these genes fulfill critical

characteristics for designing a threshold for methylation in clinical assays and for identifying

the earliest stages of NSCLC. (Figure 3)
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Discussion

Using an experimental model to derive a list of candidate cancer-specific, hypermethylated,

polycomb-associated genes in lung cancer, we validated a 3-gene test in a large publicly

available database and two independent cohorts to describe a highly-sensitive, highly-

specific diagnostic test for NSCLC. In the present study, we use a functional approach to

identify three genes, CDO1, HOXA9, and, TAC1 in which we describe cancer-specific DNA

methylation without regard for the biologic implication of that cancer-specific methylation.

When examining diagnostic sensitivity, we find a remarkable concordance between TCGA

samples, derived entirely from American hospitals, and our American validation cohort with

sensitivities of 98.9% and 94.9% respectively. Diagnostic sensitivity in the Japanese cohort

is similar but lower at 83.3%. While some variation may be due to sampling, we can also

reasonably hypothesize that this reflects other established differences in the NSCLC

populations of American and Japan and highlights the need to tailor a test precisely to target

populations. While an 83% sensitivity of detection far exceeds any mutational detection

approach currently available, it may be possible to provide an even better 3-gene test if these

genes were chosen from among highly methylated genes determined from analysis of lung

cancers in Japanese populations.

Additionally, we have explored whether these cancer-specific alterations may have

prognostic value. As might be expected, these genes without an established role in the

pathogenesis of lung cancer and/or an extremely high prevalence of methylation prove to be

of no prognostic value when examined individually. Indeed, in our previously published

study of 4 genes, there was limited prognostic value when knowledge of methylation status

is known for the tumor only. Additionally, our previous study suggested that the presence of

cancer-specific methylation in histologically negative lymph nodes, particularly mediastinal

(N2) nodes, was most prognostic of recurrence and lung cancer associated.(6)

An interesting characteristic of the genes elicited by this functional screen for novel cancer-

specific biomarkers is a high degree of overlap with polycomb-associated genes. Histone 3

lysine 4 and 27 trimethylation (H3K4me3 and H3K27me3) define a bivalent chromatin state

that denotes a low-transcriptional, poised state for a group of genes in progenitor and stem

cells highly enriched for developmental processes.(41) These genes, largely active during

development of differentiated tissues, are down-regulated by the polycomb repressive

complex when a chromatin bivalent state exists and are largely devoid of DNA methylation.

These loci are particularly vulnerable to DNA methylation during the process of

carcinogenesis.(15) While the mechanism that underlies epigenetic silencing transitioning

from the polycomb repressive complex to DNA methylation would suggest little or no

alteration in gene expression in some cases, assaying these methylation changes remains

useful as highly sensitive and specific hallmarks of tumor tissue and are therefore excellent

candidates as diagnostic biomarkers. Additionally, because different stem and progenitor

populations show variation in distribution of chromatin-bivalency, the methylation marks at

polycomb associated DNA may signal subtle differences in the cell of origin.

For the molecular detection of disease in lymph nodes for staging and for approaches for

early detection involving sputum, plasma or fine needle aspirates, molecular alterations
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present in the vast majority of tumors will be the most sensitive and efficient means of

detection. Through the characterization of hypermethylated loci reported here, we have

developed a highly-sensitive, highly-specific test for identifying cases of NSCLC which

may serve these purposes. A 3-gene methylation assay with sensitivity in tumors

approaching 100% may allow for the detection or diagnosis of disease in tissues remote

from the primary tumor without specific knowledge of methylation of those genes in the

tumor itself. The present study demonstrates the performance of a 3-gene test in primary

tumor samples for which inadequate diagnostic methods currently exist. With improvements

in detection of DNA methylation in blood and sputum, the sensitivity of detection in

additional types of biospecimens including plasma and sputum samples can now be tested.

(42)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Translational Relevance

Lung cancer remains the leading cause of cancer related mortality in the world. The

likelihood of mortality related to the disease increases dramatically with the stage of

disease. Using a validated experimental method of eliciting frequently methylated genes

in cancer which we then examine in hundreds of lung cancer samples in The Cancer

Genome Atlas and two, independent cohorts, we describe DNA methylation of one or

more of CDO1, HOXA9, and TAC1 as nearly universal in lung cancer in the United

States. Such a highly sensitive and specific molecular marker of disease may play a

significant role in improving early detection strategies and decreasing NSCLC morbidity

and mortality.
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Figure 1. Cancer Specific DNA Methylation Discriminates NSCLC Tumors from Normal Lung
Samples
Methylation data are derived from 636 NSCLC in the Cancer Genome Atlas representing

227 lung squamous carcinomas with 43 matched normal samples and 409 lung non-

squamous carcinomas with 32 matched normal samples. Columns represent tumor or normal

tissue samples. Rows represent individual methylation probes from the Infinium methylation

array. The ability of each probe to discriminate tumor versus normal and an associated t-

statistic was estimated by a linear model for each CpG island promoter probe. Only probes

with significant p-values are included in the heatmap. Rows are ordered from top-to-bottom

by p-value. All p-values are < 0.0001. Probes with mean Beta-values >0.2 in normal

samples were excluded from the analysis. Of the 305 genes exhibiting DAC-specific

upregulation, 63 genes represented by 172 methylation probes met the preceding criteria.

Columns are ordered by unsupervised hierarchical clustering. A few tumors cluster with

normal samples. This is consistent with prior TCGA analyses that demonstrate “normal-

like” methylation patterns in a subset of tumors.
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Figure 2. DNA Methylation of CDO1, HOXA9, and TAC1 is Highly Sensitive for NSCLC in the
Cancer Genome Atlas
A single Infinium methylation probe with the best discriminative capacity between tumor

and normal samples was selected for each of the 3 genes. A sample is considered methylated

for a gene if its β-value was larger than three times the standard deviation of the mean of β-

values of normal samples. Methylation of at least one gene-promoter among CDO1,

HOXA9, and TAC1 by Infinium array identifies 98.9% of NSCLC cases in 636 cases in The

Cancer Genome Atlas.
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Figure 3. Validation of the Sensitivity of Methylation-Specific PCR for 3 Genes in Two
Independent Cohorts
Methylation of at least one gene-promoter among CDO1, HOXA9, or TAC1 by methylation-

specific PCR identifies 94.9% of NSCLC cases in 59-patient United States cohort A and

83.3% of NSCLC cases from the independent 30-patient Japanese cohort B.
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Table 1
Clinico-pathological Characteristics of Patient Cohorts

The Cancer Genome Atlas is a publicly available data base that contains DNA methylation data for hundreds

of primary Non-Small Cell Lung Cancer (NSCLC) patients. Cohort A consists of resected NSCLC patients

from Johns Hopkins Hospital in Baltimore, MD. Cohort B consists of resected NSCLC patients from Shinshu

University Hospital in Matsumoto, Japan.

Cohort

TCGA (n = 636) A (n = 59) B (n = 30)

Age Average (years) 68 65.8 64.1

Sex F (%) 238 (37.4%) 27 (45.8%) 11 (36.7%)

M (%) 306 (48.1%) 32 (54.2%) 19 (63.3%)

NA 92 (14.5%) 0 0

Smoking Ever 466 (73.3%) 47 (79.7%) NA

Never 61 (9.6%) 4 (6.8%) NA

NA 109 (17.1%) 8 (13.6%) NA

Histology Adeno 409 (64.3%) 36 (61.0%) 21 (70%)

SCC 227 (35.7%) 23 (39.0%) 9 (30%)

Stage Ia 125 (19.7%) 16 (27.1%) 3 (10%)

Ib 159 (25.0%) 20 (33.9%) 4 (13.3%)

IIa 58 (9.1%) 1 (1.7%) 3 (10%)

IIb 84 (13.2%) 9 (15.3%) 6 (20%)

IIIa 78 (12.2%) 7 (11.9%) 7 (23.3%)

IIIb 14 (2.2%) 3 (5.1%) 4 (13.3%)

IV 17 (2.7%) 3 (5.1%) 3 (10%)

NA 101 (15.9%) 0 0
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