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Abstract

During wakefulness, a constant and continuous stream of complex stimuli and self-driven thoughts permeate the human
mind. Here, eleven participants were asked to count down numbers and remember negative or positive autobiographical
episodes of their personal lives, for 32 seconds at a time, during which they could freely engage in the execution of those
tasks. We then examined the possibility of determining from a single whole-brain functional magnetic resonance imaging
scan which one of the two mental tasks each participant was performing at a given point in time. Linear support-vector
machines were used to build within-participant classifiers and across-participants classifiers. The within-participant classifiers
could correctly discriminate scans with an average accuracy as high as 82%, when using data from all individual voxels in
the brain. These results demonstrate that it is possible to accurately classify self-driven mental tasks from whole-brain
activity patterns recorded in a time interval as short as 2 seconds.
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Introduction

Functional magnetic resonance imaging (fMRI) can acquire

data from thousands of different localities (voxels) of the brain at

the same time. Multi-variate pattern analysis (MVPA) [1]

capitalizes on that power by simultaneously looking at changes

in blood-oxygenated dependent (BOLD) signal across different

voxels, as opposed to the traditional univariate analysis that

examines the activity of single voxels independently [2,3]. MVPA

has been used to successfully identify patterns of brain activity that

characterize, for instance, responses to a certain stimulus type [4]

or emotional state [5]. In this study, eleven participants were asked

to engage in self-driven mental tasks - tasks that do not require

attention to or processing of external stimuli - that involved

counting down numbers and remembering negative and positive

autobiographical episodes of their personal lives. For 32 seconds at

a time, participants could solely concentrate on the execution of

the tasks, with no additional experimental duties, such as attending

to visual cues. We expected that these rather long time intervals

would enable participants to more freely and naturally engage in

the execution of the tasks. Though there have been studies that

sought to classify cognitive states using data from the entire brain

under well controlled conditions [6,7], attempts to do that using

experimental designs that allow participants to engage in a stream

of thoughts in a self-driven, self-paced and more naturalistic

manner are still rare [8].

Typically, the first step in studies applying MVPA is feature

selection [9], in which a subset of voxels in the brain is selected to

be considered in the analysis. Feature selection is a sensitive choice

when there are well-defined hypotheses or regions of interest

beforehand [10] but in the absence of those, or if it is reasonable to

expect that information is represented in larger areas of the brain,

it may not be a necessary step for successful classification

[8,10,11]. In this study, because participants were performing

relatively complex tasks, we hypothesized that the cognitive

processes underlying the execution of those tasks would be better

characterized by taking into account the activity in the entire brain

rather than looking at any single region or subset of voxels. We

believe this to be true for the great majority of higher-level

cognitive processes and emotional states [12] as well. Moreover,

because participants had considerably more behavioral freedom

than in typical experiments, and given the notoriously noisy nature

of the BOLD signal, we expected that there would be much less

consistent activation at the single voxel level within and across

participants, potentially making it much more challenging to

describe the underlying neural processes if assuming a priori the

existence of a set of functionally localized, discrete relevant

regions. Differently from studies that averaged BOLD signal over

several scans to enhance the signal-to-noise ratio (SNR) [6,13,14],

we asked whether whole-brain activity patterns contained in a

single fMRI scan, without prior selection of features, could be used

to determine which mental task a participant was performing at a

given point in time.

Materials and Methods

Participants
This study was approved by the Ethics and Safety Committees

of the National Institute of Information and Communications

Technology and ATR Institute International, where the experi-

ments were conducted. We recruited 11 healthy right-handed and
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native speakers of Japanese (21–37 years; 5 males) using the

services of a part-time employment agency. All participants signed

informed consent before participation and were remunerated for

their time.

Task Instructions
Participants performed three types of mental tasks in this study

following the instructions described below (the overall experimen-

tal paradigm is explained in the next section):

a) Countdown task: participants were asked to start counting

down from 100 at a comfortable pace (such as one

subtraction every second), as soon as they were cued. They

were told not to worry about occasional mistakes, and to keep

counting until they heard the auditory cue signaling them to

stop. If they reached 0 during the execution of the task, they

were instructed to start over again from 100.

b) Positive Autobiographical Memory task (PAM): approximate-

ly two weeks before the scheduled date of the study, we asked

participants to prepare a list with at least 5 positive events that

they had experienced in their personal lives. Participants were

told that these events did not necessarily have to be important

landmarks in their lives; they were free to include more

mundane life events in the list as long as they were genuinely

fond of reminiscing about them. To illustrate examples of

positive events, we told participants that such events should

involve people, places or things that they liked and enjoyed,

and should be associated with feelings of happiness,

satisfaction and elation. There were no restrictions regarding

the contents of their memories or the recency of the events on

which the memories were based. On the day of the study,

participants were asked to select items in the list to remember

during the experiment. We asked them to focus on the

circumstances that led to the event, their feelings at that

moment, who they were with and other relevant aspects

surrounding that event, in as much detail as possible. In

addition, during the task we asked participants to maintain a

constant flow of recollections associated with the event until

they were cued to stop. We suggested that participants

avoided switching events too often, as we thought that that

could render the task unnecessarily difficult, but aside from

that, participants were told that they were free to switch to a

different event at their will or if they felt that would facilitate

the execution of the task.

c) Negative Autobiographical Memory task (NAM): likewise

with the positive memories, participants were asked to

prepare beforehand a list with at least 5 negative events that

had occurred in their personal lives. To illustrate examples of

negative events, we told participants that such events should

involve people, places and things that evoked genuine feelings

of sadness, gloominess and dejection. Similarly with the

positive memories, no constraints were imposed on the

contents of the memories; moreover, the events that had

originated them could be from the recent or the more remote

past. On the day of the study, participants were instructed to

choose items from the list of negative events to remember

during the experiment, focusing on the details of that

particular experience, the circumstances that led to that

event, and the feelings that were evoked at that time. Apart

from the valence of the memories, in all other respects the

instructions given in this task were the same as the ones used

in the positive autobiographical memory task.

Experimental Paradigm and Procedure
All participants took part in 12 experimental sessions. In 6

sessions (Type A), participants alternated between the Countdown

task (32 s) and the Negative Autobiographical Memory task (32 s),

with 16-second rest periods interleaved between them; this cycle

was repeated 3 times in each session. In the remaining sessions

(Type B), participants alternated between the Countdown task

(32 s) and the Positive Autobiographical Memory task (32 s), with

16-second rest periods interleaved between them; this cycle was

repeated 3 times in each session. Experimental sessions alternated

between Type A and Type B; five participants started with Type

A, whereas the remaining participants started with Type B.

Auditory cues marked the start and the end of each task; the cue

to start the Countdown task was ‘‘One’’ (male voice, duration

398 ms), while the cues for the Negative and Positive Autobio-

graphical Memory tasks were ‘‘Two’’ (male voice, duration 398 ms)

and ‘‘Three’’ (male voice, duration 398 ms), respectively, for

participants whose first session was a Type A (the cues for the

Negative and Positive Autobiographical Memory tasks were

reversed for the participants whose first session was a Type B).

The cue to stop the task, thus indicating the start of the rest period,

was a pure tone (440 Hz, duration 398 ms). Participants were

instructed about the meaning of each cue before entering the

scanner, and reminded verbally about them at the start of each

session. No specific instructions were given regarding what they

were expected to do during the rest periods other than advising

them to use that time to rest and relax. Participants were asked to

immediately acknowledge the auditory cues by pressing a button,

and immediately begin (or halt) the execution of the task. Only

blocks in which participants acknowledged the task-start cue

within 2000 ms were considered in the subsequent analyses.

Experiments were performed in a darkened room, and partici-

pants were asked to keep their eyes closed during scanning.

Participants had the choice to have breaks in between sessions, if

they felt tired or needed time to regain concentration. Most

participants occasionally chose to have 1-minute breaks over the

course of the experiment. Once outside the scanner, participants

filled out a questionnaire with questions regarding the experiment,

such as task difficulty and task performance. They were asked to

describe the life events that originated the memories remembered

during the experiment, including how much time had passed since

their occurrences. Using a numerical scale (0: low to 10: high),

participants were also asked to rate the pleasantness of the memories

retrieved during the PAM, the unpleasantness of the memories

retrieved during the NAM, as well as the vividness of the respective

memories. Experimental sessions lasted approximately 90 min-

utes, including preparation and debriefing time.

Data Acquisition
Brain imaging data was acquired using a 3T Siemens

Magnetom Trio, A Tim System scanner (Siemens Healthcare,

Erlangen, Germany) equipped with a 12-channel standard head

coil. Participants lay supine in the scanner and wore padded

headphones, from where instructions and auditory cues were

delivered. Behavioral responses (right index finger) were given via

a MRI-compatible response pad connected to a computer that

logged reaction times. The same computer ran a program written

in Presentation (Neurobehavioral Systems, Inc., Albany, CA) that

controlled the delivery of the auditory cues by time-locking it with

the acquisition of functional images. Head motion was minimized

using foam padding on the sides of the head. Right before the start

of the experimental sessions, T2-weighted anatomical images were

acquired in the same plane as the functional images using a turbo

spin echo sequence (TR=6000 ms, TE= 57 ms, FA= 90u,
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FOV=1926192 mm, matrix size = 2566256, in-plane resolution

0.7560.75 mm). In each experimental session, 147 whole-brain

echo-planar functional images were acquired in 33 contiguous

4 mm axial slices parallel to the AC-PC line (TR=2000 ms,

TE= 30 ms, FA= 80u, FOV=1926192 mm, matrix

size = 64664, in-plane resolution 363 mm). Before analyses, the

first 3 scans of each session were discarded to account for magnetic

saturation effects. Whole-brain T1-weighted anatomical images

(1 mm3) were also acquired on a different day prior to the

experiments.

To minimize the effects of physiological noise in the imaging

data, cardiac and respiratory data were recorded during scanning

(AD Instruments, Dunedin, New Zealand). Cardiac data was

monitored using a piezoelectric pulse transducer attached to the

index finger of the participant’s left hand, while respiration was

monitored using a transducer belt strapped around the upper

abdomen. The sampling rate of both signals was 1 kHz; the trigger

signal output by the scanner at the start of each functional image

acquisition was recorded to allow temporal registration of the

physiological data to the imaging data.

Data Preprocessing
Cardiac and respiratory waveforms were visually inspected to

confirm that there were no major problems with the measure-

ments. In-house routines written in Matlab (version R2007a,

Mathworks, Inc., Natick, MA) were used to determine the cardiac

trigger times from the waveforms. RETROICOR [15] was

applied to the imaging data to reduce the effects of cardiac and

respiratory cycles. In addition, clean-up techniques based on

estimated respiratory [16] and cardiac [17] response functions

were employed to regress low-frequency BOLD fluctuations due to

variations in breathing and heart rates. The resulting functional

scans were then preprocessed using SPM 5 (Wellcome Trust

Centre for Neuroimaging, UK, http://www.fil.ion.ucl.ac.uk/

spm/software/spm5): slice timing correction was performed using

the first slice as a reference, followed by realignment and

adjustment of head motion using the first image of each session

as a reference, after realigning the first image of each session to the

first image of the first session (no subjects moved more than the

length of a voxel in any one direction, thus none were excluded

from the analysis); functional and anatomical images were co-

registered using a two-step procedure involving the participant’s

T2- and T1-weighted anatomical images. Functional images were

spatially normalized to the standard stereotaxic Montreal Neuro-

logical Institute (MNI) space by applying the transformation

matrix derived by normalizing the T1-weighted anatomical image

to the SPM 5 templates/T1.nii image. The original voxel size was

kept the same throughout these steps (36364 mm) resulting in

images of size (53, 63, 35) voxels in the (X, Y, Z) dimensions,

respectively, after normalization. From here, two different

processing pipelines were used to prepare the data for the general

linear model (GLM) analysis, and the machine learning based

analysis. Scans used in the GLM analysis were spatially smoothed

using a Gaussian kernel of 8-mm full width at half maximum

(FWHM). For the data used in the machine learning based

analysis, there were four additional steps after the spatial

normalization. First, nuisance variables were regressed from the

BOLD time series of each voxel: the six affine head motion

parameters estimated during the realignment step, the mean time

series of a region corresponding to white matter (3-mm sphere

centered at MNI coordinates x = 26, y =212, z = 35), and

cerebrospinal fluid (CSF) (3-mm sphere centered at MNI

coordinates x = 19, y=233, z = 18), the mean time series across

the whole-brain (global signal), computed by using a binary mask

generated by thresholding the SPM 5 image apriori/grey.nii at 0.22,

plus a constant regressor for each one of the sessions to account for

the mean session effect. Next, the BOLD time series of each voxel

was high-pass filtered (cut-off frequency of 0.008 Hz), and the

voxel values recorded within a session were scaled to a grand mean

of 100. Finally, the BOLD time series of each voxel was

standardized by subtracting the mean and dividing it by the

standard deviation, with both values computed from the time

series of the respective voxel over the entire experiment.

General Linear Model Analysis
At the individual-level, brain activity during the execution of

mental tasks was estimated on a voxel-by-voxel basis using the

GLM implemented in SPM 5. The time series for each voxel was

high-pass filtered to 0.0078 Hz, and serial correlations were

corrected by an autoregressive AR (1) model.

The GLM had two regressors of interest that corresponded to

the two mental tasks performed in each session: Countdown and

Negative Autobiographical Memory tasks (Type A) or Countdown

and Positive Autobiographical Memory tasks (Type B). Regressors

of no interest were the six parameters describing head motion plus

the constant regressors accounting for the mean session effect. The

brain activity elicited during the execution of the tasks was

modeled by a boxcar function of the duration of the task (32 s) at

the onset times of the acknowledged blocks, convolved with the

canonical hemodynamic response function provided in SPM 5.

Linear contrast images were generated for each participant using

pairwise comparisons between tasks or between the task and the

implicit baseline. The participant-specific contrast images of

parameter estimates were used as inputs to a random effects

model to permit group-level inferences [18]. The resulting

statistical maps were submitted to a voxel-level threshold of p,

.005 uncorrected and a cluster extent threshold of p,.05 corrected

for the whole brain. The cluster extent thresholds were determined

for each group-level analysis using the function CorrClusTh.m

(v.1.12) written in Matlab by Thomas Nichols, and were in the

range of 78 to 98 voxels.

Machine Learning Based Scan Classification
The 116 spatial masks in the Automated Anatomical Labeling

library (AAL) [19] were used to determine the voxels to be used in

the analysis. The masks covered cortical regions, subcortical

structures and the cerebellum. BOLD time-series from these

voxels were extracted from the functional images (scans) of each

participant using MarsBaR [20]. There were 40,761 voxels in the

comprehensive mask formed by the 116 regions (voxel size of

36364 mm). Note that by using such a mask, the number of

voxels effectively used to perform the classification is reduced to

approximately 34.9% of the original number (116,865). In fact, the

number of voxels from where signal could be actually extracted

varied across participants (range of 40,068 to 40,761 voxels, with

median 40,688), possibly due to small discrepancies in shape that

remained even after the spatial normalization. No feature selection

[9] was performed in the data: each scan was encoded as an array

of size Dk, where Dk is the number of voxels in the image resulting

from the conjunction between the comprehensive mask and the

functional images of participant k. This amounts to saying that

under this representation scheme, the data unit manipulated by

the classifiers is a ‘‘snapshot’’ of the entire brain consisting of the

BOLD signal value of all voxels recorded in a time interval of

TR=2 seconds.

Machine learning based classifiers were trained and tested using

the whole-brain functional images acquired during the task blocks.

Each task block consisted of 16 scans; because there were 3 blocks
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of each task type in each session, if the participant correctly

responded to all start-task auditory cues in the experiment, there

would be 576 scans for the Countdown task and 288 scans for each

Memory task (Negative and Positive). We used linear support-

vector machines (SVMs) to train the classifiers [21], using the

implementation available in the library LIBSVM version 3.11

[22]. The parameter C [21], which determines the penalty on

misclassified data points, was set to 1 in all runs. The classifiers

were tested on their accuracy of determining which mental task –

out of two possible alternatives – a participant was performing

during the acquisition of individual functional images. Classifica-

tion was performed using scans acquired in sessions of the same

type (Countdown vs. Negative Autobiographical Memory and

Countdown vs. Positive Autobiographical Memory), and also

between scans acquired in different sessions (Negative Autobio-

graphical Memory vs. Positive Autobiographical Memory). Clas-

sification accuracy was examined using a leave-one-session-out

cross validation scheme: scans from one of the sessions were put

aside to assess the classifier’s accuracy after training (test dataset),

while scans from the remaining sessions of the same type were used

to train the classifier (training dataset). This procedure was

repeated so that data from every session served once as a test

dataset. Before training, values in the training dataset were scaled

to the interval [–1, 1]. The same scaling parameters, i.e., the

maximum and minimum of each time course in the training

dataset, were applied to scale the test dataset before assessing the

classifier’s accuracy.

Because the Negative and Positive Autobiographical Memory

tasks were not performed in the same session, when performing

the pairwise classification of the Negative vs. Positive Autobio-

graphical Memory scans, the test dataset in each iteration of the

cross-validation contained scans from two adjacent sessions, i.e.,

sessions 1–2, 3–4, etc.

Datasets were strictly balanced by ensuring that the number of

scans in each class was the same; if a behavioral response was not

registered at the start of a task block, e.g., the 2nd block of the

Negative Autobiographical Memory task, the scans from that

block and the scans from the equivalent block of the counterpart

task, e.g., the 2nd block of the Countdown task in the same session,

or the 2nd block of the Positive Autobiographical Memory task in

the paired session, were excluded from the dataset, regardless of

whether a response was given or not. Note that as a result of this

additional screening, for a few subjects the data used in the scan

classification analysis was a subset of the data used in the GLM

analysis. Classification accuracy was the proportion of correctly

classified scans (c) from the total number of valid scans remaining

after the screening (n). Note that c is computed by pooling the

results of all iterations of the cross-validation. Statistical signifi-

cance was examined using a balanced-block permutation test [23],

that differently from an ordinary permutation test, maintains the

block structure of the experiment when shuffling the labels to

account for the sluggishness of the hemodynamic response. In

addition, to provide a measure of precision, the 95% confidence

interval was computed based on a beta distribution Beta(c+1, e+1),
where e was the total number of incorrectly classified scans [24,25].

In order to verify the effects of using a coarser representation of

brain states, we performed the exact same analysis described above

using the average BOLD signal value over the voxels in each one

of 116 anatomical regions defined by the AAL, instead of using the

individual voxel values. Under this representation scheme, each

scan was encoded as a vector of size Dk=116. Classifiers were

trained and tested using the same cross-validation and data

balancing schemes as before.

Classification accuracy in the across-participants analysis was

examined using a leave-one-subject-out cross-validation scheme: at

each iteration, data from one participant was tested on classifiers

that were trained using the data from the remaining participants,

and this was repeated until scans from all participants were used to

test the classifiers. The number of scans in each class was balanced

at the individual level, therefore, each participant contributed an

equal number of scans from each class. However, that number was

not the same across participants due to differences in the number

of task blocks each participant acknowledged during the exper-

iments. Classification accuracy, its significance and precision were

computed as in the within-participant classification analysis. Here

again, we performed the analysis using the voxel-based and the

region-based representations. Because the number of voxels

covered by the whole-brain images differed across participants,

only the 39,799 voxels that were common to all participants were

taken into consideration in the across-participants analysis.

Results

Behavioral Results
The majority of the participants diligently responded to all

auditory cues signaling the start of a task block. One participant

missed 1 cue, while two other participants missed 4 of the 72 start

cues delivered during the whole experiment. All other participants

had a perfect record. There were no significant differences of

average reaction time for the start-task cue across task types (F(2,

20) = 3.216, p= .0615, repeated measures ANOVA). The debrief-

ing data showed that in average participants remembered 1.8

different events in both the Negative Autobiographical Memory

task (range of 1 to 6), and the Positive Autobiographical Memory

task (range of 1 to 5). Using a scale of 0: low to 10: high, the

average unpleasantness of the negative memories was 7.3 with

standard deviation (SD) 2.9, while their average vividness was 7.5

(SD=1.4) using the same scale. The average pleasantness of the

positive memories was 7.6 (SD=2.2), and their average vividness

was 6.8 (SD=2.1), both using the same scale. (Table S1 lists a

summary of the events recollected during the experiments, as

reported by the participants at debriefing time.).

GLM Analysis Results
In the GLM group-level analysis, we first examined whether

there were voxels where increased BOLD signal was observed

during the execution of each one of the three mental tasks

(Countdown, Negative Autobiographical Memory, Positive Auto-

biographical Memory) compared with the implicit baseline. The

MNI coordinates of the peak voxels of the clusters that survived

the threshold, the values of the T-statistic and the cluster sizes, and

the names of the regions where the peak voxels were located

(according to the AAL library) are listed in Table 1. We then

examined the pairwise contrasts between mental tasks (Table 2).

The contrasts between Countdown versus the Baseline, and

against each one of the Memory tasks indicated an increase in

BOLD signal in voxels of the inferior parietal lobule, a region that

is consistently found to be activated by numerical tasks [26]. The

contrasts between Negative Autobiographical Memory versus the

Baseline and the Countdown task indicated an increase in BOLD

signal in voxels of, among other regions, the inferior frontal gyrus,

a region that has been associated with autobiographical memory

retrieval processes in past studies [27–29].

Within-participant Scan Classification Results
In this analysis we examined whether the information contained

in a single whole-brain functional image can be used to determine
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which of two mental tasks a participant is performing at a given

point in time, using data from the same participant to train the

classifiers. First, the voxel time series of the entire brain were

extracted from the data of five sessions (or ten sessions, in the

classification of memory tasks). Next, portions of the data

corresponding to the blocks where the mental tasks were

performed (acknowledged task blocks) were used to train a linear

SVM classifier. We shifted the onsets of the task blocks by 4 s ( = 2

TRs) when extracting the data to approximately account for the

hemodynamic delay [30]. Finally, the scans from the task blocks of

the remaining session (or two sessions, in the classification of

memory tasks) were used to test the classification accuracy of the

trained linear SVM classifier. This was repeated until all sessions

had been tested, and an aggregate value of the classification

accuracy for that pair of mental tasks was computed. Classifiers

were trained for each task pair, using both the voxel-based

representation scheme (where each voxel is regarded as a feature),

and the region-based representation scheme (where features are

the mean values of 116 anatomical regions).

To verify whether the classification accuracy was above chance

level, a balanced-block permutation test was conducted with 300

and 306 permutations for each participant for the classification

between scans of the Countdown task and the Negative or Positive

Autobiographical Memory tasks, and the classification between

scans of the Negative and Positive Autobiographical Memory

tasks, respectively. The 95% confidence interval was calculated for

each pairwise classification based on the accumulated number of

correctly and incorrectly classified scans across all iterations of the

Table 1. Regions that showed greater activity at a voxel-level threshold of p,.005 (uncorrected) and a cluster extent threshold of
p,.05 (corrected for the whole-brain) when performing the mental tasks compared with the implicit baseline.

Contrast MNI coordinates T-statistic Cluster size (voxels) Region name

Countdown 45, 212, 52 8.08 591 L Postcentral gyrus

vs. –9, 0, 60 6.67 152 L SMA

Baseline 48, 215, 52 5.75 299 R Precentral gyrus

NAM vs. 42, 27, 216 11.18 123 R Inf. frontal gyrus

Baseline –3, 60, 20 8.47 598 L Sup. medial gyrus

–39, 24, 216 8.36 244 L Inf. frontal gyrus

–6, 254, 20 7.38 1325 L Precuneus

24, 275, 236 7.18 221 R Cerebellum

9, 242, 244 4.36 115 R Cerebellum

PAM vs. –12, 260, 12 7.5 337 L Calcarine gyrus

Baseline 12, 245, 244 6.7 120 R Cerebellum

–9, 45, 44 5.84 166 L Sup. medial gyrus

doi:10.1371/journal.pone.0097296.t001

Table 2. Regions with distinct activation in the direct comparison between mental tasks at a voxel-level threshold of p,.005
(uncorrected) and a cluster extent threshold of p,.05 (corrected for the whole-brain).

Contrast MNI coordinates T-statistic Cluster size (voxels) Region name

NAM vs. –9, 57, 28 9.66 888 L Sup. medial gyrus

Countdown 21, 278, 236 8.28 2734 R Cerebellum

–42, 24, 216 5.59 176 L Inf. frontal gyrus

–51, 269, 24 5.4 125 L Angular gyrus

42, 33, 212 5.09 99 R Inf. frontal gyrus

Countdown 54, 236, 52 8.97 728 R Inf. parietal lobule

vs. NAM –51, 233, 40 8.84 607 L Inf. parietal lobule

PAM vs. –39, 239, 24 10.63 3043 -

Countdown –21, 33, 48 8.55 276 L Sup. frontal gyrus

Countdown 54, 236, 52 16.36 951 R Inf. parietal lobule

vs. PAM –60, 0, 12 14.77 797 L Rolandic operculum

45, 251, 28 6.56 174 R Inf. temporal gyrus

–24, 260, 24 5.98 119 L Lingual gyrus

–45, 245, 48 4.93 164 L Inf. parietal lobule

NAM vs. PAM –9, 60, 32 5.71 129 L Sup medial gyrus

PAM vs. NAM – – – –

doi:10.1371/journal.pone.0097296.t002
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cross-validation. The individual mean classification accuracies are

shown in Figures 1 and 2, for the voxel-based and region-based

representations, respectively. The figures also show the results for

the balanced-block permutation tests (asterisks when p,.05) and

the 95% confidence interval (error bars).

As shown in Figures 1 and 2, linear SVM classifiers were

successful in discriminating Countdown scans from Negative

Memory scans significantly above chance level for all participants,

using the voxel-based representation scheme (two participants

failed to achieve significance when using the region-based

representation scheme). Moreover, classifiers were successful in

discriminating Countdown scans from Positive Memory scans

significantly above chance level for all participants but two, using

the voxel-based representation scheme (one participant failed to

achieve significance when using the region-based representation

scheme). When discriminating scans between Negative Memory

and Positive Memory using the voxel-based representation,

classifiers from five participants failed to achieve accuracy

significantly above chance level (n.s., balanced-block permutation

test). When using the region-based representation, classifiers failed

to correctly categorize the scans of five participants (n.s., balanced-

block permutation test).

The mean and standard deviation across participants of the

individual within-participant accuracies for the Countdown vs.

Negative Autobiographical Memory discrimination task were

82.0%67.3 (voxel-based representation) and 75.3%69.3 (region-

based representation). In the Countdown vs. Positive Autobio-

graphical Memory, the mean and standard deviation were

79.4%68.1 (voxel-based representation) and 74.0%66.1 (region-

based representation). In the classification of Memory scans

(Negative vs. Positive), the mean and standard deviation were

65.1%69.2 (voxel-based representation) and 60.8%67.8 (region-

based representation). Using the Mann-Whitney-Wilcoxon test, we

verified whether the observed differences in the individual

classification accuracy between the two representation schemes

were significant within each participant. For all task pairs,

classification accuracy was significantly higher (p,.05) when using

the voxel-based representation scheme (p = .00049, Countdown vs.

Negative Autobiographical Memory; p = .00098, Countdown vs.

Positive Autobiographical Memory; p = .023, Negative vs. Positive

Autobiographical Memory). Figure 3 shows the average confusion

matrices of the within-participant classifiers for each one of the

task pairs, for both the region-based and voxel-based representa-

tion schemes.

Because we are using linear SVMs, it is possible to calculate the

discriminating volume [7,9] to which a classifier has converged after

training, by re-projecting the results of the training back into the

space of features, which in this case are the voxels or regions in the

brain. The discriminating volume shows the spatial organization of

the most discriminating voxels or regions, i.e., those that drive the

output of the classifier when determining whether a scan belongs

to the positive class (e.g., Countdown) or to the negative class (e.g.,

Negative Autobiographical Memory). As a general rule, voxels

(regions) in the discriminating volume that have greater absolute

values are more informative than voxels (regions) with lower

absolute values; moreover, the sign of the voxel (region) value tells

whether enhanced BOLD activity in that voxel (region), when

comparing the two classes, will drive the classifier output towards

the positive or the negative class. We used the results from the

within-participant classifiers using the voxel-based representation

scheme to calculate the mean discriminating volume over all

participants for a given pair of mental tasks. We first computed

each participant’s mean discriminating volume by averaging the

standardized (unit-variance) discriminating volumes that resulted

from each iteration of the cross-validation. We then spatially

smoothed each participant’s mean discriminating volume using a

Gaussian kernel of 8-mm FWHM, and averaged the resulting

voxel-level values over all participants to obtain the mean

discriminating volume. To measure the similarity between the

results of the GLM analysis and the mean discriminating volumes,

we calculated Pearson’s correlation coefficient between the T-

statistic values (by voxel) in the unthresholded group-level GLM

statistical maps, and the values in the mean discriminating volume

elicited by the within-participant classifiers trained to discriminate

the same two classes. The GLM statistical map when contrasting

task 1 vs. task 2 indicates the voxels where increases in BOLD

signal are associated with the execution of task 1 (positive values)

or task 2 (negative values). The correlation coefficient was

r = 0.653 (p,.0001) for the Countdown vs. Negative Autobio-

graphical Memory, r=0.618 (p,.0001) for the Countdown vs.

Positive Autobiographical Memory, and r=0.461 (p,.0001) for

the Negative Autobiographical Memory vs. Positive Autobio-

Figure 1. Within-participant classification accuracy in percent,
using the voxel-based representation combined with linear
SVMs, for each participant (P1–P11). Asterisks indicate p,.05 from
a balanced-block permutation test, and the error bars are the 95%
confidence intervals computed based on a beta distribution.
doi:10.1371/journal.pone.0097296.g001

Figure 2. Within-participant classification accuracy in percent,
using the region-based representation combined with linear
SVMs, for each participant (P1–P11). Asterisks indicate p,.05 from
a balanced-block permutation test, and the error bars are the 95%
confidence intervals computed based on a beta distribution.
doi:10.1371/journal.pone.0097296.g002
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graphical Memory. Figures 4, 5, and 6 show the mean

discriminating volumes for the Countdown vs. Negative Autobio-

graphical Memory, Countdown vs. Positive Autobiographical

Memory, and Negative Autobiographical Memory vs. Positive

Autobiographical Memory, together with the respective unthre-

sholded statistical maps generated by the group-level GLM

analysis for the contrast involving the same pair of tasks. Both

data are shown overlaid on top of the SPM 5 anatomical image

single_subj_T1.nii, limited to the axial slices from MNI z=212 to

64.

Figure 7 shows the time courses of the mean output over all

participants of the trained linear SVM classifiers when discrim-

inating all scans contained in a Type A (left) or Type B (right)

session. The time courses include the scans corresponding to the

rest periods in between task blocks, which were not used to train or

test the classifiers. The output of the classifier is positive when the

trained classifier judges that the input test scan belongs to the

positive class; likewise, the output is negative when the trained

classifier judges that the input test scan belongs to the negative class.

In the analysis, the positive class was arbitrarily set to be the

Countdown task, and the negatives class was either the Negative or

the Positive Autobiographical Memory task (switching the

assignment should not affect the results). The time courses were

computed by first normalizing the values output by the classifier in

each iteration of the cross-validation to the interval [–1, 1], and

then calculating a mean time course for each participant. Those

values were then used to calculate the mean output over all

participants, which are shown in the figure.

Across-participants Scan Classification Results
In this analysis, we examined the viability of classifying whole-

brain functional images of a participant performing a mental task

using a linear SVM classifier trained on data recorded from other

participants. For that purpose, a leave-one-participant-out cross-

validation scheme was employed to verify the classification

accuracy of the trained classifiers. Data from all 11 participants

were included in the training rotation, using both representation

schemes, for all task pairs.

As before, the aggregate classification accuracy for each pair of

mental tasks was computed as the number of correctly classified

scans across all participants divided by the total number of tested

scans. The significance of the classification accuracy was verified

using a balanced-block permutation test with 132 permutations for

the classification between scans of the Countdown task and the

Negative or Positive Autobiographical Memory task, and 110

permutations for the classification between scans of the Negative

and Positive Autobiographical Memory task. We also computed

the 95% confidence interval based on the total number of correctly

and incorrectly classified scans across all participants.

Using the voxel-based representation, the aggregate classifica-

tion accuracy across participants for the Countdown vs. Negative

Autobiographical Memory was 70.1%, which was significantly

above chance (p,.05, balanced-block permutation test), with the

95% confidence interval ranging from 69.0 to 71.3%. For the

Countdown vs. Positive Autobiographical Memory, the aggregate

classification accuracy was 68.4% (p,.05, balanced-block permu-

tation test), with the 95% confidence interval ranging from 67.3 to

69.6%. For the Negative vs. Positive Autobiographical Memory,

the aggregate classification accuracy was 53.4% (n.s., balanced-

block permutation test). Using the region-based representation, the

aggregate classification accuracy for the Countdown vs. Negative

Autobiographical Memory was 71.1%, which was significantly

above chance (p,.05, balanced-block permutation test), with the

95% confidence interval ranging from 69.9 to 72.2%. For the

Countdown vs. Positive Autobiographical Memory, the aggregate

classification accuracy was 68.9% (marginally significant at

p= .055, balanced-block permutation test), and for the Negative

vs. Positive Autobiographical Memory, the aggregate classification

accuracy was 56.2% (n.s., balanced-block permutation test). These

results are summarized in Figure 8.

Figure 3. Average confusion matrices for the within-participant classifiers of each one of the task pairs using the voxel-based
representation scheme (top) and the region-based representation scheme (bottom). NAM: Negative Autobiographical Memory task; PAM:
Positive Autobiographical Memory task.
doi:10.1371/journal.pone.0097296.g003
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The mean and standard deviation of the individual classification

accuracies, i.e., the classification accuracy attained when testing

each participant’s dataset, were 70.0%67.1 and 70.8%69.2 for

the Countdown vs. Negative Autobiographical Memory, using the

voxel- and region-based representation schemes, respectively. For

the Countdown vs. Positive Autobiographical Memory, the mean

and standard deviation were 68.4%67.7 and 68.7%67.4, using

the voxel- and region-based representation schemes, respectively.

For the classification of Memory scans, the mean and standard

deviation were 52.1%63.3 and 52.7%65.2, for the voxel- and

region-based representation schemes, respectively. Using the

Mann-Whitney-Wilcoxon test, we verified whether there were

significant differences in classification accuracy by comparing the

classification accuracies obtained in each round of the leave-one-

Figure 4. Left: Mean discriminating volume of the within-participant classifiers trained to separate scans from the Countdown and
Negative Autobiographical Memory tasks. Reddish tones indicate voxels where increased BOLD signal most consistently characterized the
Countdown task, as opposed to the Negative Autobiographical Memory task, according to the training results of the linear SVM classifiers. Likewise,
bluish tones indicate voxels where increased BOLD signal most consistently characterized the Negative Autobiographical, as opposed to the
Countdown task. Right: Unthresholded statistical map (T-statistic values) of the contrast Countdown vs. Negative Autobiographical Memory obtained
from the GLM group-level analysis. Reddish tones indicate areas of the brain where increased BOLD signal was observed during the Countdown task
relative to the Negative Autobiographical Memory task, and bluish tones indicate areas where the reverse effect was observed. Both maps are
overlaid on a template anatomical image. Shown are axial slices from MNI z=212 to 64.
doi:10.1371/journal.pone.0097296.g004

Figure 5. Left: Mean discriminating volume of the within-participant classifiers trained to separate scans from the Countdown and
Positive Autobiographical Memory tasks. Reddish tones indicate voxels where increased BOLD signal most consistently characterized the
Countdown task, as opposed to the Positive Autobiographical Memory task, according to the training results of the linear SVM classifiers. Likewise,
bluish tones indicate voxels where increased BOLD signal most consistently characterized the Positive Autobiographical Memory task, as opposed to
the Countdown task. Right: Unthresholded statistical map (T-statistic values) of the contrast Countdown vs. Positive Autobiographical Memory
obtained from the GLM group-level analysis. Reddish tones indicate areas of the brain where increased BOLD signal was observed during the
Countdown task relative to the Positive Autobiographical Memory task, and bluish tones indicate areas where the reverse effect was observed. Both
maps are overlaid on a template anatomical image. Shown are axial slices from MNI z=212 to 64.
doi:10.1371/journal.pone.0097296.g005
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subject-out cross-validation under each representation scheme.

Differently from the within-participant results, in the across-

participants classification no differences were found for any of the

task pairs.

Discussion

In this study, we verified the feasibility of using whole-brain

fMRI data acquired in a time as short as 2 seconds to determine

which mental task, out of two alternatives, a participant was

performing at a given point in time, without prior selection of

features. Though the classification of single brain scans has been

done before ([1] and references therein), in typical studies

participants have to comply with well-controlled external stimulus

presentations meant to schedule, induce, or elicit specific

emotional or cognitive states (for instance, [7,31,32]). In the

current study, the experiment was organized in a blocked fashion

that is common to imagery tasks [33–36], but within each block

participants could engage in a continuous stream of thoughts in a

self-driven and natural way, without having to continuously attend

to external stimuli, e.g., as in [5]. Accounts of the events

recollected during the experiments, according to reports obtained

at debriefing time (Table S1), showed that participants engaged in

remembering personal episodes that though unquestionably

Figure 6. Left: Mean discriminating volume of the within-participant classifiers trained to separate scans from the Negative
Autobiographical Memory and Positive Autobiographical Memory tasks. Reddish tones indicate voxels where increased BOLD signal most
consistently characterized the Negative Autobiographical task, as opposed to the Positive Autobiographical Memory task, according to the training
results of the linear SVM classifiers. Likewise, bluish tones indicate voxels where increased BOLD signal most consistently characterized the Positive
Autobiographical task, as opposed to the Negative Autobiographical task. Right: Unthresholded statistical map (T-statistic values) of the contrast
Negative Autobiographical Memory vs. Positive Autobiographical Memory obtained from the GLM group-level analysis. Reddish tones indicate areas
of the brain where increased BOLD signal was observed during the Negative Autobiographical Memory task, and bluish tones indicate areas where
the reverse effect was observed. Both maps are overlaid on a template anatomical image. Shown are axial slices from MNI z=212 to 64.
doi:10.1371/journal.pone.0097296.g006

Figure 7. The blue lines show the time courses of the mean output over all participants of the linear SVM classifiers when trained to
discriminate scans of Type A (left) or Type B (right) sessions. The horizontal axis is the time in seconds. If the output of the classifier is
positive, the corresponding input (test scan) is judged to belong to the positive class. Likewise, if the ouput of the classifier is negative, the
corresponding input is judged to belong to the negative class. The red blocks correspond to the scans where the participants were asked to perform
the Countdown task (positive class), the green blocks correspond to the scans where participants were asked to perform the Negative
Autobiographical Memory task (negative class), and the yellow blocks correspond to the scans where participants were asked to perform the Positive
Autobiographical Memory task (negative class). The shaded area indicates the standard deviation of the outputs of the classifiers over all participants.
doi:10.1371/journal.pone.0097296.g007
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relevant, are much less graphically vivid than imagery strategies

used by participants in other studies [5]. The current results

indicate that it is possible to distinguish much more nuanced

emotional states from whole-brain imaging data acquired when

participants engage in a self-driven, self-paced stream of thoughts.

A similar experiment was reported in [8] involving the

classification of single scans in real-time while a participant

alternated between having happy and sad thoughts. However, the

reported results were obtained from a single well-experienced

participant, so no across-participants analysis was performed. Our

study suggests that the results extend to a larger population,

indicating that it is possible to achieve fairly high classification

accuracy rates of single whole-brain scans in settings where

participants perform relatively complex mental tasks.

The motivation of classifying whole-brain activity patterns, be

they encoded using a voxel-based or a region-based representation

scheme, is based on the assumption that higher-level cognitive

processes are simultaneously supported by several different regions

of the brain. If that is the case, the modular metaphor of brain

functional organization might not be sufficient to examine, identify

or classify the neural mechanisms underlying such processes. We

examined a posteriori the possibility that the within-participant

scan classification between the Countdown task and the Negative

or Positive Memory task was being solely driven by activity

patterns in the inferior parietal lobule, a region that was

consistently associated with the Countdown task, relative to the

Memory tasks (Table 2). The results indicate that this was not the

case, showing that information relevant for classification was

distributed in other areas of the brain as well (see File S1).

The presumed drawback of using whole-brain data from a

machine learning perspective is that the number of features

(voxels) is much higher than the typical number of samples (scans)

collected in a study, leading to a problem known as the ‘curse of

dimensionality’. The practical consequence is that in such cases,

classifiers are usually expected to generalize very poorly. However,

in theory, the generalization ability of SVMs is not bound by the

number of features in the space [21,37]. Though feature selection

has been employed to implement real-time classification of fMRI

scans during positive and negative imagery [5], the fairly high

classification accuracies obtained in this study indicates that it may

not be a required step. Moreover, reducing the number of features

does not always result in improvements in classification accuracy

[10,11], at least in the context of brain imaging data.

When discriminating scans between Countdown and Negative/

Positive Autobiographical Memory tasks using the voxel-based

representation scheme, the mean classification accuracies of the

within-participant linear SVM classifiers were in the range of 59.4

to 95.1%. These results were significantly higher than the mean

classification accuracies obtained when using the region-based

representation scheme (range of 58.3 to 91.5%). In the arguably

much more challenging task of discriminating scans between

Negative and Positive Autobiographical Memory tasks, the

classification accuracies were overall lower but still the voxel-

based representation scheme (range of 49.4 to 77.2%) outper-

formed the region-based representation scheme (range of 47.5 to

71.5%). Given that the signal-to-noise ratio (SNR) of fMRI data is

notoriously low, one might have expected the exact opposite

result, since averaging the signal over a group of voxels can

potentially lead to a better SNR, and by moving from a voxel-

based to a region-based representation scheme the number of

features drops dramatically. However, these results suggest that for

the purposes of distinguishing between mental tasks, the fine-

grained, voxel-level BOLD activity carries relevant information for

classification, which is partially lost when voxel-level values are

averaged over much larger and coarser anatomically-defined

regions, affecting the performance of the classifiers. However, it is

possible that differences between the voxel-based and region-based

representation schemes will decrease if instead of an anatomical

library, a functionally-derived segmentation method is used to

determine the brain regions [38]. Moreover, it is interesting to

note that differences in performance between the two represen-

tation schemes disappear in the across-participants classification

results. Whereas a within-participant classifier must delineate a

boundary that separates the scans in two classes based on the

whole-brain pattern regularities of a single participant, across-

participants classification must achieve the same by extracting

regularities that are common to a group of individuals. The

absence of differences between representation schemes in the

across-participants classification results indicates that commonal-

ities become much less evident when the training datasets contain

data from several participants; when classifying whole-brain

activity patterns of freely performed mental tasks, the linear

SVM only capitalizes on the voxel-level information when dealing

with data limited to a particular individual. Thus, to improve

generalizability, across-participants classifiers should rely on data

representations that abstract from the voxel-level data, such as

measures of functional connectivity across different regions in the

brain [38,39].

Successful classification of brain imaging data, especially when

employing data-driven machine learning techniques, does not

necessarily imply that classification is driven by the activity of

voxels that are relevant to the execution of the task in a

physiological or cognitive sense. Because the SVMs transversally

look at the activity of thousands of voxels at the same time, there is

always a chance that classification will rely on whole-brain

patterns of activity that are useful for discrimination purposes

but are not meaningfully associated with the underlying cognitive

processes of interest. We performed a GLM analysis using the

same dataset that indicated distinct activity in regions that are

broadly in line with past studies [26–29]. We then measured the

similarity between the unthresholded statistical maps generated by

the GLM analysis with the discriminating volumes generated by

the SVMs, and found that the values are highly correlated. Taken

Figure 8. Across-participants classification accuracy in percent,
using the voxel-based and the region-based representations
combined with linear SVMs. Asterisks indicate p,.05 from a
balanced-block permutation test, and the error bars are the 95%
confidence intervals computed based on a beta distribution.
doi:10.1371/journal.pone.0097296.g008
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at face value, these results indicate that the spatial distribution of

the voxels driving the classification is consistent with the results of

the GLM analysis, at least at the most basic level of changes in

BOLD signal.

There are a few limitations of this study. First and foremost,

minimum control was exerted during the performance of the tasks.

Attention levels were not controlled within or across blocks of the

same task type, nor they were equalized across tasks. Likewise, we

did not control for difficulty across tasks, notably between the

Negative and Positive Autobiographical Memory tasks, or the

vividness and recency of the retrieved memories. This lack of

uniformity could be especially critical when classifying scans

across-participants. If the main purpose of this study had been

solely the functional localization of brain areas involved in the

execution of those tasks, under the lenses of conventional studies,

such limitations would potentially disallow the interpretation of the

results. However, in this study we deliberately chose a design

where participants could perform the task under less constrained

conditions, since the primary goal of the study was to address the

question of whether it is possible to determine which mental task a

participant is performing by examining whole-brain activity

patterns that are evoked when one is more naturally engaged in

executing a cognitive task. The underlying motivation is the view

that experimental settings that attempt to finely control every

possible aspect in play may be often grasping an incomplete view

of the processes that take place in the real world [40]. That is likely

to be especially true when examining the neural bases of higher-

level cognitive-emotional processes.

Another limitation of this study is that, strictly speaking, there is

no objective assessment that the participants were conforming to

the instructions they were given, i.e., that they were executing the

mental tasks they were asked to do. Results from the within-

participant classification suggest that at the individual level,

participants were at least performing distinct mental tasks at every

other block. However, there are no guarantees that task execution

was consistent across all participants, and that could be affecting

the results of the across-participants classification.

The ability to classify single whole-brain scans extends the

possibility of developing systems to communicate with patients

who are fully conscious but unable to behaviorally respond to or

interact with the external world [35,36,41,42]. Real-time exten-

sions of the current framework could be used in a fMRI-based

conversational system [43], where answers are obtained from the

patient on-site, and subsequent questions are defined based upon

the answers. Sacrificing interpretability for the sake of improved

classification accuracy, non-linear kernels such as the Gaussian

radial basis function could be employed in place of the linear

kernel used in the current study.

Supporting Information

Table S1 Summary of some of the personal events recollected

by the participants (P1–P11) during the Negative and Positive

Autobiographical Memory mental tasks, reported at debriefing

time.

(DOC)
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(DOC)
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