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Abstract

C. elegans has proven to be a useful model organism for investigating molecular and cellular

aspects of numerous human diseases. More recently, investigators have explored the use of this

organism as a tool for drug discovery. Although earlier drug screens were labor-intensive and low

in throughput, recent advances in high-throughput liquid workflows, imaging platforms and data

analysis software have made C. elegans a viable option for automated high-throughput drug

screens. This review will outline the evolution of C. elegans-based drug screening, discuss the

inherent challenges of using C. elegans, and highlight recent technological advances that have

paved the way for future drug screens.
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Drug discovery using C. elegans

C. elegans is a microscopic soil nematode that has built a solid reputation as a powerful

genetic model organism. Since its first introduction to biology in the early 1960’s, it has

played a pivotal role in elucidating genetic pathways controlling important cellular processes

such as development [1], cell death [2, 3], ageing [4–6] and RNA-mediated interference of

gene expression (RNAi) [7] among others. C. elegans homologs have been identified for

60–80% of human genes [8–12] and counterparts for many human disease-causing genes are

present in C. elegans [12, 13]. For these reasons, C. elegans has been extensively used to
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model complex human diseases including Alzheimer’s disease [14–17], Parkinson’s disease

[18] diabetes [19], Duchenne muscular dystrophy [20, 21] and cancer [22, 23]. In the past

decade, C. elegans has emerged as a tool for drug discovery. The same properties that make

them versatile tools for genetic investigations, for example, small size (~ 1 mm in length),

short generation time (~ 3 days) and ability to produce ~300 offspring in ~3 days, genetic

amenability, and conservation of cellular processes across species, make C. elegans an

excellent candidate for whole organism-based high-throughput screening (HTS). Major

advantages of using C. elegans in HTS include: 1) the ability to model complex human

diseases that can not be easily reproduced in vitro or in unicellular models, 2) the ability to

simultaneously evaluate drug efficacy and absorption, distribution, metabolism, excretion or

toxicity (ADMET) characteristics at the initial stages of the drug discovery pipeline, 3) a

large repertoire of scorable phenotypes, 4) the multi-cellular and multi-organ system

complexity existing in a whole organism improves the chances of identifying drugs that will

ultimately be more efficacious in more complex multicellular organisms such as humans,

and 5) the availability of time-proven genetic tools and genomic resources (e.g., RNAi-

feeding library) simplifies drug target identification. Since several prior reviews have

extensively described various C. elegans disease models and discussed how they can be

elegantly used in drug discovery [13, 24–28], this review will focus on the current status of

drug discovery, challenges associated with C. elegans-based HTS, and how these challenges

are currently being addressed.

Evolution of C. elegans-based drug discovery

Despite an illustrious history as a model genetic organism, C. elegans was overlooked as a

tool for HTS until about a decade ago. This late emergence was due, in part, to culture

conditions that were not easily amenable to HTS protocols. C. elegans lives in the soil and

feeds on microbes. To emulate their natural environment, C. elegans is typically cultured in

the laboratory on agar plates seeded with a lawn of E. coli. The earliest drug testing protocol

incorporated compounds into the agar during plate preparation [1]. This method consumed

large amounts of compounds, was labor-intensive and was not amenable to HTS. Despite

these disadvantages, this approach remained essentially unchanged until recently. Below we

highlight major milestones in C. elegans-based drug discovery (Fig. 1).

The first large-scale drug screen using C. elegans was reported in 2006 [29]. Kwok and

colleagues applied automated worm transfer using a Complex Object Parametric Analyzer

and Sorter (COPAS™ BIOSORT, Union Biometrica) and semi-automated image acquisition

to screen 14,100 small molecules. Compounds were assessed for bioactivity by evaluating a

variety of phenotypes, including slow growth, lethality, uncoordinated movement and other

morphological defects in wild-type animals. Using this approach, 308 bioactive compounds

were identified. Although this was the first example of a large-scale drug screen using C.

elegans, the screen still relied on agar plates (albeit in the 24-well format), and phenotypes

were scored visually.

In 2006, Lehner and colleagues [30] developed an all-liquid workflow to facilitate HTS in

C. elegans in a 96-well format. Although this procedure was initially designed to improve

the throughput of genome-wide RNAi screens, it was instrumental in overcoming a major
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hurdle in C. elegans-based drug discovery. The elimination of agar from the workflow

allowed the use of automated robotic liquid handlers and the integration of automated

imaging platforms. One of the first liquid-based screens was performed by Moy and

colleagues using an Enterococcus faecalis infection model in C. elegans to screen for novel

antimicrobial compounds [31]. 6,000 synthetic compounds and 1,136 natural product

extracts were screened and 16 compounds and 9 extracts that promoted nematode survival

were identified. Since then, several other anti-pathogen screens have been reported [32, 33].

In another notable liquid culture screen, Petrascheck and colleagues tested 88,000

compounds for their ability to extend lifespan in adult C. elegans [34, 35]. Worms were

cultured in 96- and 384-wells and treated with drugs for 24 days. Following exposure to

strong light to stimulate movement, the number of live animals in each well was then scored

visually. Using this approach, 48 compounds that extend C. elegans lifespan by 20–60%

were identified. While the above studies incorporated some automation in the workflow,

they all required pain staking manual inspection of wells and assessment of phenotypes.

The first automated high-content drug screen integrating automated worm transfer, image

acquisition and data analysis was reported by our laboratory in 2010 [36]. Transgenic C.

elegans expressing the mutant form of human α1- antitrypsin fused with GFP accumulate

misfolded protein within the endoplasmic reticulum similar to that seen in the liver of

patients with α1-antitrypsin deficiency (ATD). Thus, to identify drugs that enhance

clearance of misfolded proteins, we developed a high-content assay for quantifying protein

accumulation within the intestinal cells of C. elegans. Animals were sorted into 384-well

plates containing small molecules using the COPAS™ BIOSORT. Images were captured

automatically using the high-content screening instrument, Arrayscan VTI (Thermo

Scientific Cellomics). Real-time data analysis was performed using the SpotDetector

BioApplication to quantify the number, area and intensity of the GFP-positive, protein

aggregates (Fig. 2). Using this assay, we conducted a pilot screen of the 1,280 compound

LOPAC library and identified 33 hit compounds that significantly reduced the intracellular

accumulation of misfolded protein aggregates. One compound, fluphenazine, was

subsequently shown to be efficacious in reducing protein aggregates in mammalian cell line-

and mouse-models of ATD (Li et al., submitted).

Recently, a fluorescence-based, ultra high-throughput screen (uHTS) in a 1536-well format

was reported [37]. The investigators used a transgenic C. elegans approach to screen for

small molecule inhibitors of SKN-1. SKN-1 is a transcription factor that orchestrates the

stress response to oxidants and electrophilic xenobiotics and is responsible for multi-drug

resistance in parasitic nematodes. A small molecule inhibitor of SKN-1 could, therefore, be

potentially useful for the treatment of parasitic nematode infections that affect almost one

third of the world’s population. For the screen, the authors used a fluorescence plate reader

to assess the effect of compounds on expression of gst-4::GFP, a well-established target of

SKN-1. In total, 364,000 compounds were screened and 125 specific inhibitors of

gst-4::GFP expression were identified. This study increased the throughput of C. elegans-

based screens by utilizing 1536-well plates; however, a plate reader was used to measure the

overall GFP fluorescence in the wells and no images were captured.
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Chemical genetics using C. elegans

The identification of drug targets and understanding the mechanism of drug action are

critical steps in the drug development process. The availability of powerful forward and

reverse genetic tools makes C. elegans an ideal system for investigating chemical genetics.

For example, in the aforementioned study, Kwok and colleagues identified a bioactive

compound they called nemadipine A [29]. When exposed to worms, nemadipine A induces a

variety of defects including those affecting morphology and egg laying. To identify the

target of nemadipine A, EMS-mutated animals were treated with nemadipine A and animals

no longer responding to the drug (i.e., displaying wild-type phenotype) were isolated.

Animals “resistant” to nemadipine A would harbor mutations in the target protein that

prevent compound action. Using this strategy, the authors identified a number of suppressor

mutations in egl-19, a gene that encodes the only L-type calcium channel α1-subunit in C.

elegans. A closer look at nemadipine A structure revealed similarities with a widely

prescribed anti-hypertension drug, 1,4-dihydropyridine (DHP), known to antagonize the α1-

subunit of L-type calcium channels in humans. This study is an example of how C. elegans

genetics can be used to relatively easily identify drug targets.

The ability to specifically knock down gene expression simply by feeding worms with

bacteria expressing dsRNA has paved the way for genome-scale chemical genetics

investigations. Clozapine is an anti-psychotic drug used to treat treatment-refractory

schizophrenia. However, the molecular mechanism of the drug’s therapeutic and toxic action

is poorly understood. Worms treated with Clozapine display a robust larval arrest phenotype

[38]. To identify suppressors of Clozapine-induced larval arrest, Saur and colleagues [38]

performed a genome-wide RNAi screen. Approximately 40 candidate suppressor genes with

diverse functions were identified suggesting that Clozapine may act on multiple targets or

pathways. Using a candidate gene approach, a α-like nicotinic acetylcholine receptor

(nAChR) homolog, ACR-7, was identified as a potential target of Clozapine.

Characterization of other suppressor genes and the mammalian homolog of ACR-7 should

shed further light on Clozapine’s polypharmocology and side-effects.

Caveats and challenges with C. elegans-based drug discovery

Although the utility of the worm as a versatile genetic tool is undisputed, there are distinct

limitations to using C. elegans in drug discovery. C. elegans is an invertebrate that lacks

many vital organs and a circulatory system normally found in humans. As such, organ-

specific, bone or blood disorders may be difficult to model in C. elegans. According to

OrthoDisease, an online database of human disease orthologs, out of the 2,259 human

disease genes recently analyzed, only 782 ortholog clusters were identified in C. elegans

[39]. The lack of orthologous human disease genes in C. elegans precludes the study of

certain diseases, particularly those arising from loss-of-gene-function. From a HTS

perspective, this raises the concern that screening campaigns will yield a significant number

of false negatives due to the lack of orthologous targets in C. elegans. Conversely, hits

targeting C. elegans-specific proteins may not be active in humans leading to a large number

of false positives. While this level of uncertainty may be seen as a deterrent to using C.

elegans in HTS, the conservation of fundamental biological pathways between the two
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organisms could be seen as an opportunity to discover novel drugs for diseases for which

clear orthologs exist. Indeed, C. elegans is most useful when the molecular mechanism of

the disease is well understood. For example, osteogenesis imperfecta (commonly known as

brittle bone disease) is caused by mutations in the collagen genes, COL1A1 and COL1A2

[40]. Although C. elegans do not have bones, they do harbor collagen genes, and mutations

in these genes lead to dumpy (dpy - short and stubby) phenotypes [41]. These phenotypes

could be exploited using forward and reverse chemical genetic approaches to identify drugs

that reverse the dpy phenotype. Additionally, even if a disease gene ortholog is not present,

relevant information can still be obtained by expressing human transgenes in C. elegans [42,

43]. For example, mutations in α1- antitrypsin (AT) leads to lung and liver diseases via loss-

of-function and gain-of-function mechanisms, respectively [44, 45]. While the lung disease

associated cannot be effectively modeled in C. elegans due to the absence of lungs and an

obvious worm ortholog of AT, the liver disease due to the accumulation of misfolded

protein can be studied by expressing the mutant AT transgene in the intestine of the worm.

Indeed, using this approach, a high content screen (HCS) for drugs that decrease misfolded

protein accumulation has been successfully performed [36].

C. elegans has traditionally been thought to be a poor candidate for drug testing due to the

relatively inefficient drug uptake caused by the impermeability of the cuticle to non-water

soluble compounds [46–50] and the selective uptake of drugs by the intestine. To complicate

the matter, E. coli (OP50) is typically added to the culture as the primary food source. The

use of live bacteria could potentially lower the effective dose delivered to the worms due to

compound metabolism or degradation by the bacteria. For these reasons, higher initial

compound concentrations (25–100 µM) are typically used in C. elegans-based drug screens.

A recent study, however, suggests that drug uptake by C. elegans is comparable to that of

mice [51]. The study also found that culture and assay methods - liquid vs agar-based

cultures, E. coli preparation and when and how the drugs were added – had significant

effects on drug efficacy. The use of heat-killed, rather than live E. coli increased the uptake

of drugs as measured by higher internal drug concentrations [51]. The killing of E. coli

presumably prevented drug metabolism by the bacteria which in turn increased drug

availability [51]. These factors should be weighed carefully in the assay development, in

order to optimize drug delivery.

The past decade has seen significant advances in culture conditions and assay development

to facilitate the use of C. elegans in HTS. However, an overwhelming obstacle to further

development of C. elegans-based HTS has been limitations in automated image acquisition

and data analysis. There are several reasons why image acquisition and data analysis are

challenging. First, unlike adherent cells in culture that remain static and form relatively

uniform monolayers, worms are relatively large, have multiple layers of cells and are highly

mobile. As such, worms are inherently more difficult to image. Second, most high-

throughput imaging platforms are designed specifically for cell-based assays. Consequently,

data analysis applications are optimized for measuring cellular parameters that are not

always adaptable to C. elegans applications. Third, imaging platforms are extremely

expensive and may be cost-prohibitive to many C. elegans researchers. Below, we

summarize recent advances that are paving the way for C. elegans-based HTS.
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Recent advances in adapting C. elegans to High Content and High

throughput Screening

Automation of animal transfer

The adaptation of C. elegans to an all-liquid workflow has ushered in the way for the

development of HTS in 384- and 1536-well plate formats. A wide range of robotic liquid

handlers can be used to dispense compounds and reagents to wells with relative ease.

However, worms are more difficult to transfer with consistency using pipetting instruments

due to their tendency to settle to the bottom and propensity to adhere to pipette tips.

Recently, a method for worm transfer using the BioTek MicroFlo volumetric dispenser has

been described [37]. For applications in which specific animal size, number and

fluorescence intensity are important, a COPAS™ BIOSORT should be used. The BIOSORT

can sort through a mixed population of worms and dispense into wells only those that satisfy

the target criteria. This specificity, however, comes at a cost. It takes 30–60 mins to sort a

384-well plate at a density of 30 worms/well compared to just 30–60 secs using the

MicroFlo. Speed and specificity can be improved if a tightly synchronized population is

obtained prior to sorting/dispensing. An alternative method for sorting worms using a

Fluorescence Activated Cell Sorter (FACS) has recently been described [52]. The method,

called laFACS (for live-animal FACS), allows users to sort >100,000 C. elegans larvae in

less than 1 hour. The ability to turn a common FACS into a worm sorter with a few minor

modifications may be an attractive option for investigators who are not in the market to

purchase a dedicated instrument for worm sorting. The only caveat is that sorting is

restricted to L1 larvae due to a nozzle size limitation.

Automated image acquisition and data analysis

A number of sophisticated high-content imaging platforms are available on the market

today. While existing platforms are designed primarily with cell-based users in mind, they

can nonetheless be useful for imaging whole-organisms with minor adjustments in hardware

and software [36]. To acquire images of worms in a 384-well format, we retrofitted the

ArrayscanVTI with a 2.5x objective and a 0.63x coupler to enable capture of an entire well

in one field (Fig. 2). Similar adjustment could easily be made to other imaging platforms for

high-content imaging of worms.

Perhaps the most challenging aspect of C. elegans-based HTS is analysis of captured images

for automatic scoring phenotypes. Current high-content imaging instruments are best suited

for fluorescence-based imaging and quantifications. As such, simple C. elegans-assays

measuring changes in fluorescent protein expression or localization can be relatively easily

developed using software available for each platform. However, assays requiring

quantitation of more complex phenotypes, such as those involving subtle changes in

morphology, behavior or locomotion are far more difficult and may require specialized

third-party software. Recently, numerous software programs specifically designed for

visualizing and scoring complex worm phenotypes have been developed. CellProfiler

WormToolbox is an open-source, image analysis software developed specifically for C.

elegans [53]. A major challenge in making measurements on individual worms is that they

tend to touch or overlap when imaged in the multi-well formats. WormToolbox can
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computationally “untangle” a cluster of worms so that data from individual worms can be

obtained. In addition to measuring worm size, shape and fluorescence parameters, the

machine-learning algorithm in CellProfiler Analyst can be used to detect subtle and complex

differences in various measurable phenotypes.

Progressive loss of movement, uncoordinated locomotion, paralysis and other movement

defects are common phenotypes in ageing worms and in many other C. elegans disease

models [54–57]. However, these are complex phenotypes that lack robust computational

methods for quantification. To meet this need, a number of laboratories have worked on

developing “worm tracking” systems [58–62]. Multi-Worm Tracker (MWT) is a real-time

computer vision system that can simultaneously quantify the movement behaviors of up to

120 animals per plate at video rates including spontaneous movement, turning events and

response to touch [63]. A tracking software specifically designed for high-throughput

measurements of worm locomotion (swimming or thrashing) in liquid has also been reported

[58, 62]. This software can process well images (either previously recorded or directly

acquired) and computes a covariance matrix using met lab scripts. It takes 30 seconds to

process 30s of movie, and can potentially analyze a 96 well plate in less than 50 minutes

[58].

Bright field images are considerably more difficult to analyze than fluorescent images.

Although fluorescent reporters or dyes can be used to “label” particular cells, organs or the

whole animal, in many cases, such approaches may not be practical or feasible. Recently,

White and colleagues (2013) developed an automated computer vision and machine learning

system for high-throughput quantification of C. elegans developmental stages called

DevStaR (Developmental Stage Recognition) [64]. This software can rapidly segment and

count developmental stages in populations of C. elegans and allows phenotypic analysis of

bright field images with greater accuracy and speed than otherwise possible via manual

analysis. A similar high-throughput software application for computing worm size and shape

from bright field images has been recently been reported [65]. WormSizer is an open-source

software that is useful for detecting relatively subtle phenotypes and morphological changes

that may have been difficult to assess upon visual inspection.

Other technological advances

A novel high-throughput assay for monitoring of nematode motility was recently developed

using a real-time cell-monitoring device, xCELLigence [66]. This system monitors electrical

resistance using gold micro-electrodes integrated on the bottom of reusable 96-well tissue

culture E-plates [66] to accurately and objectively assess nematode motility. Using this

assay, the authors assessed the effectiveness of anthelmintic drugs and obtained IC50 values.

Although the assay was initially developed for assessing parasite motility, it should be

relatively easy to adapt this system for monitoring motility and viability of C. elegans.

An economical alternative to expensive automated microscope-based screening platforms is

WormScan [67]. WormScan uses a standard flatbed scanner to monitor C. elegans

movement. Two consecutive scans are taken, and movement is measured by the open-source

Image J program. WormScan is useful for measuring mortality, movement, fecundity and

size. Recently, WormScan was further improved to become a “Lifespan Machine”, which
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combines multiple flatbed scanners with custom image processing and data validation

software to automate the collection of lifespan data. This system allows hourly observation

of thousands of nematodes over the course of several weeks [68].

Microfluidic devices have recently emerged as potentially powerful tools for high-

throughput analysis of C. elegans [69]. These devices are useful in isolating worms,

delivering chemicals with simple microscale manipulations, and observing worms in parallel

or in series in a high throughput fashion [29, 70–73]. This technology has opened up new

experimental possibilities for studying drug effects on animal behavior, calcium imaging of

neuron activity, memory and learning, as well as tissue regeneration after injury. Since

microfluidic devices can deliver a continuous supply of food, drugs and even gases to the

immobilized animal, brightfield and fluorescent images of live-animals can be acquired for

several days. Micropillars can also be inserted to create an artificial soil environment for

movement assays [74, 75] and force sensors can be installed to measure forces and

mechanical properties of worm locomotion [76, 77]. As microfluidic devices are further

refined, they will no doubt open new possibilities for novel and more complex C. elegans-

based HTS.

Closing remarks

While C. elegans has been extensively used as a genetic model organism for almost half a

century, the use of this model system in high-throughput drug discovery began less than a

decade ago. Since then, significant progress has been made in each step of the HTS

workflow from automated worm transfer to image acquisition and data analysis. In the next

several years it will be important to develop more innovative HTS instrumentation and

software to specifically address the limitations of image acquisition and data analysis for

assessing complex phenotypes. As more C. elegans-specific technology becomes available,

C. elegans will become an even more attractive model system for HTS campaigns.

Numerous proof-of-principle studies have already demonstrated the versatility of C. elegans

in compound screening, drug target identification and in deciphering mechanisms of drug

action [29, 33, 36–38, 78]. Furthermore, an increasing number of companies are utilizing C.

elegans models in various stages of the drug discovery pipeline and a handful of drugs are

currently undergoing clinical trials. Although it is too early to say whether C. elegans-based

HTS campaigns will lead to the development of effective therapies for human diseases.

Given the progress made thus far, we predict that C. elegans will become an important tool

in the drug discovery process.
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Figure 1. Historical timeline of C. elegans-based drug discovery
C. elegans was first used for drug testing in 1974 [1] but not as a tool for HTS until recently.

Timeline shows major milestones (A). Common instruments currently used for phenotypic

assessment of C. elegans (B).
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Figure 2. High-content assay for the quantification of misfolded protein accumulation using C.
elegans
Using a C. elegans model of α1-antitrypsin (AT) deficiency, a high-content assay was

developed to quantify accumulation of misfolded AT protein in the intestinal cells of the

worm using the ArrayScanVTI. A three-channel assay was used to acquire brightfield (A and

D) and fluorescence (B, C, E and F) images of transgenic animals expressing wild-type

(ATM) and mutant (ATZ). The SpotDetector BioApplication was then used to quantify: 1)

number of animals in each well using the mRFP (red) head marker (B and E) and, 2) the

amount of misfolded protein accumulation (GFP-positive spots) in the intestine (C and F).

Wild-type AT (ATM) is efficiently secreted and does not accumulate in the intestine (C). In

contrast, mutant AT (ATZ) fails to get secreted and instead accumulates as large globules

(F). This assay was used to conduct a high-content screen for drugs that alter misfolded

protein accumulation (Adapted from Gosai et al., [36]).
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