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Abstract

To date, the scientific process for generating, interpreting, and applying knowledge has received 

less informatics attention than operational processes for conducting clinical studies. The activities 

of these scientific processes — the science of clinical research — are centered on the study 

protocol, which is the abstract representation of the scientific design of a clinical study. The 

Ontology of Clinical Research (OCRe) is an OWL 2 model of the entities and relationships of 

study design protocols for the purpose of computationally supporting the design and analysis of 

human studies. OCRe’s modeling is independent of any specific study design or clinical domain. 

It includes a study design typology and a specialized module called ERGO Annotation for 

capturing the meaning of eligibility criteria. In this paper, we describe the key informatics use 

cases of each phase of a study’s scientific lifecycle, present OCRe and the principles behind its 

modeling, and describe applications of OCRe and associated technologies to a range of clinical 

research use cases. OCRe captures the central semantics that underlies the scientific processes of 

clinical research and can serve as an informatics foundation for supporting the entire range of 

knowledge activities that constitute the science of clinical research.
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1. Introduction

Interventional and observational human studies are crucial for advancing our understanding 

of health, disease, and therapy. Clinical research informatics (CRI) is “the use of informatics 

in the discovery and management of new knowledge relating to health and disease” [1]. To 

date, CRI has focused on facilitating conduct of clinical trials and management of clinical 

data for secondary research use. Yet clinical research is fundamentally a scientific pursuit, 

and foundational methods for CRI should support the science of clinical research: asking the 

right question, designing rigorous protocols, conducting protocol-adherent studies, fully 

reporting all results, and finally, making inferences and applying research results to care 

decisions and policy.

The underpinning of this broad range of knowledge tasks is the study protocol as the study’s 

conceptual scientific structure. The planned study protocol drives all key scientific and 

biomedical activities during study execution and analysis, while the executed study protocol 

represents the study activities that actually took place. Early CRI work relegated support of 

protocols to the electronic sharing of text-based study protocol documents. More recently, 

study protocols have been reified into data models (e.g., BRIDG [2,3]) geared towards 

supporting the execution of clinical trials intended for submission to the U.S. Food and Drug 

Administration (FDA) for regulatory approval of therapeutic products, or supporting data 

management of clinical trial results (e.g., OBX [4], CDISC [5]).

To provide knowledge-based support for the scientific tasks of clinical research, the study 

protocol should be modeled in a knowledge representation formalism with clear, consistent 

and declarative semantics that support drawing clinical conclusions from study observations. 

The Ontology of Clinical Research (OCRe) is such a model. OCRe is an OWL 2 ontology of 

human studies, defined as any study collecting or analyzing data about humans that explore 

questions of causation or association [6,7]. OCRe models the entities and relationships of 

study designs to serve as a common semantics for computational approaches to the design 

and analysis of human studies.

In this paper, we describe the motivation methods behind OCRe, present highlights of the 

OCRe model, and review examples of how OCRe supports the science of clinical research. 

Our use cases illustrate why clinical and research informatics need to be more deeply 

integrated [8], to create a “learning health system” [9] that generates best evidence and also 

“drive[s] the process of discovery as a natural outgrowth of patient care” [10]. We posit that 

the study protocol, representing the essence of clinical research, is the epistemological 

foundation for a learning health system and that OCRe, representing study protocol 

elements, is a core informatics foundation for clinical research science.
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2. Motivating Use Cases and Background

To show the value of OCRe across the breadth of clinical research science, we describe its 

role in the five phases of a human study’s idealized scientific lifecycle: 1) review and 

interpretation of results of previous studies to refine a scientific question; 2) design of a new 

study; 3) study execution; 4) results reporting; and 5) interpretation and application of the 

results to clinical care or policy (Figure 1). In a learning health system, clinical practice 

completes the cycle as a source of new scientific questions. The five phases of a study’s 

lifecycle are closely related and iterative (Figure 1).

This remainder of this section presents use cases for each of the five phases. Based on these 

use cases, Section 3 presents the foundational capabilities that would transform informatics 

support for clinical research and describes the OCRe model. Section 4 then applies OCRe to 

selected use.

2.1 Pose a scientific question, retrieve and interpret prior studies

The first step of a clinical study’s lifecycle is highly iterative: potential scientific questions 

are posed and revised many times as prior studies are retrieved and interpreted over time.

2.1.1 Retrieve prior studies—Investigators often frame their research questions using 

the “PICO” mnemonic (for Patient, Intervention, Comparison, Outcome[11], sometimes 

with a T added for outcome timing [12]). For example, a broad initial question about 

vitamin D and cardiovascular risk (e.g., “does vitamin D supplementation reduce LDL 

cholesterol levels?”) could be phrased as Intervention = vitamin D and Outcome = 

cardiovascular endpoints (e.g., hypertension, high cholesterol, body weight). Running this 

PICO query at the PubMed PICO interface [13] returned 265 studies on vitamin D’s effect 

on high cholesterol (hyperlipidemia) at the writing of this paper.

These results are not directly helpful to an investigator because the PICO structures of these 

studies are buried within PDFs. A better search interface might be CTSearch with its 

interactive tag cloud PICO display [14], or interactive visualizations of the scientific 

structure of human studies like the tools that biomedical researchers have for visual 

exploration and query of gene sequences, pathways, and protein structures.

Even so, PICO elements alone are insufficient to support the full retrieval task. Different 

study objectives are best addressed by different study design types [15]. PubMed Clinical 

Queries [16] allows narrowing a search to appropriate study designs (e.g., prospective cohort 

studies to explore the association of vitamin D levels with cardiovascular outcomes, 

randomized controlled trials (RCTs) to explore questions of therapy), but two major 

problems attend this approach. First, this interface returns 2247 citations for a Narrow search 

for Therapy studies of vitamin D. An investigator would still need visualizations that reveal 

PICO and study-design features of large numbers of studies. Second, because there is no 

established study-design taxonomy, design types are poorly indexed in PubMed entries and 

searches by design type are correspondingly inaccurate [17]. There have only been a handful 

of published study-design taxonomies [18–20], including the Cochrane Collaboration’s 

taxonomy [21] and Hartling’s which showed a reliability of κ = 0.45 and is the basis for an 
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AHRQ taxonomy [17]. In Section 3.2.1, we describe our OCRe-based study-design 

typology, which showed a moderate inter-rater agreement of Fleiss’ kappa of 0.46 in a 

preliminary evaluation [22].

2.1.2 Interpret prior studies—Once investigators have retrieved a set of relevant studies 

whose designs are appropriate for the scientific question, they need to assess their 

evidentiary strength [23]. In statistical terms, they need to appraise the “internal validity” of 

each study, including the comparability of comparison groups and the existence and nature 

of follow-up bias [24], Critical appraisal remains somewhat of an art, as many study quality 

scales and bias instruments are poorly correlated, imprecise, and irreproducible [25,26]while 

not predictive of observed effects [27].

Many researchers lack the methodological skills embodied in guides like those from JAMA 

[28], BMJ [29], the Cochrane Collaboration [30], and others [31] to carry out these appraisal 

tasks. While projects like THOMAS [32] and others [33] have developed relevant 

computational methods for automated critical appraisal, no computer-based tools are widely 

available to provide knowledge-based decision support for this critical task. A crisp, 

computable formulation of study design and study-design strength like OCRe would 

underpin this field (see 4.3). In contrast, major clinical research models such as BRIDG and 

CDISC SDTM [34] serve operational and administrative needs, but do not attempt to model 

study validity, confounding, and bias needed for assessing study-design strength.

2.2 Design a new study

There are persistent concerns about the quality of the design of human studies [35]. In 1994, 

Altman called the prevalence of poor medical research a “scandal” [36]. In a 2005 survey, 

13% of NIH grantees acknowledged using “inadequate or inappropriate research designs” 

[37]. Decision support for study design has traditionally revolved around sample size 

planning, pharmacokinetic simulation, complex drug-disease modeling [38], or person/

societal level simulation [39], but has not covered the full breadth of common design 

shortcomings. Investigators would benefit from methodological decision support at the point 

of design on:

• Recommending appropriate study design types based on the research question

• Defining the appropriate study population by querying a library of computable 

designs and comparing the content and selectivity of the investigator’s initial 

criteria with those of related studies

• Identifying biases that should be taken into account at the design phase by querying 

for biases most important for the recommended design

• Identifying potential clinical confounders to be accounted for in the design by 

mining prior articles and outcomes databases

• Drawing on historical cohort identification and past recruitment patterns for sample 

size calculations

Broad tools like Design-a-Trial [40] start to get at these issues but have made little impact in 

part because they require ongoing maintenance of methodological and clinical knowledge 
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bases, and do not incorporate knowledge from prior studies or outcomes data. By modeling 

the notion of bias and confounding into OCRe, we have begun to provide an informatics 

foundation for study design decision support, as discussed in Section 4.3 below.

2.3 Execute the study

Study execution steps include IRB application, study set-up, study registration, recruitment 

and enrollment of participants, protocol execution, and adverse events monitoring and 

reporting. The CRI field has developed many tools and methods for these tasks (reviewed in 

[41]). A computable study protocol model could serve to integrate these tools across the 

study lifecycle phases (Figure 1). In particular, a computable representation of eligibility 

criteria is useful for cohort identification and eligibility determination for study execution 

and for determining the applicability of studies to a target patient or population.

Cohort identification refers to computer-based matching of a study’s eligibility criteria 

against clinical data (e.g., an EHR) to identify a cohort of potentially eligible patients. 

Eligibility determination is the converse problem: matching one patient’s EHR data against 

a database of studies and their eligibility criteria to identify studies that the patient may be 

eligible for. In both cases, a prose criterion needs to be transformed into a computable 

representation, and then matched against EHR data. Complicating this task is the complexity 

of eligibility criteria. In an analysis of 1000 randomly drawn eligibility criteria from 

ClinicalTrials.gov, Ross et al. found significant semantic complexity, with 20% of criteria 

having negation, 30% having two or more complex semantic patterns, and 40% having 

temporal features [42]. Given these complexities, the state of the art in formalizing 

eligibility criteria is still rudimentary [43], as is eligibility determination performance. 

Cuggia found that among 28 papers reporting on clinical trial recruitment support systems, 

most were small scale tests that were not formally evaluated, none matched criteria against 

unstructured patient notes, and very few systems used interoperability standards [44]. OCRe 

includes a model of eligibility criteria capable of capturing much of their observed semantic 

complexity as discussed in 3.3 below.

2.4 Register and report the study

For clinical research to advance care and science, study results and the study designs that 

gave rise to those results must be fully reported. Indeed, transparent, unbiased study 

registration and reporting of interventional studies is a fundamental ethical duty as codified 

in the Declaration of Helsinki [45], and is arguably an ethical duty for observational studies 

as well [46]. OCRe provides a common ontology for describing study designs that can 

complement both registration and study reporting. Study reporting is going “beyond PDF” 

as medical journals move towards publishing full datasets (e.g., BMJ [47], Trials [48], 

Annals of Internal Medicine [49]), and as regulatory agencies like the European Medicines 

Agency begin to require disclosure of individual-patient level data [50]. To ensure retrieval 

of all relevant studies (see 2.5.1), federated data querying will be needed across these data 

sources as well as trial registers and other trial databases (e.g., AHRQ’s Systematic Review 

Data Repository, Cochrane’s Central Register of Studies). OCRe can serve as a well-formed 

semantics for federated data querying of study designs, as we discuss below for the Human 

Studies Database project (4.1.3),
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2.5 Synthesize bodies of evidence and apply to care and policy

While study reporting is the last interaction of an investigator with a study, the study itself 

lives on to be retrieved, interpreted, synthesized with other studies, and applied to clinical 

care or policy. In the Application phase of a study’s lifecycle, we become interested in the 

entire body of evidence for a clinical or policy question, and less interested in single studies 

in isolation [51]. The evidence application subtasks include retrieving evidence, 

synthesizing it, and applying it in a learning health system.

2.5.1 Identifying and retrieving whole bodies of evidence—To ensure that clinical 

or policy decisions are made on best available evidence, all relevant studies and their full 

results need to be identified and retrieved. As study results become available through textual 

and database sources such as trial registers, journal publications, and regulatory databases, a 

federated search approach becomes necessary. Because study design greatly affects the 

validity of clinical research results, retrieval of bodies of evidence must also include 

retrieval by study design features. In our Human Studies Database (HSDB) project, we used 

OCRe to demonstrate federated query access to study protocol information from multiple 

academic medical institutions [7] (4.1.3). In 4.2, we also describe how OCRe can be used to 

conceptualize study retrieval as a phenotype-matching problem. The PICO-based phenotype 

of a study comprises its enrolled population, the intervention(s) tested, the outcomes 

assessed, and key clinical and non-clinical covariates (e.g., care setting). This study 

phenotype can be matched to a search query, to another study to determine study similarity, 

or to a patient’s clinical phenotype (e.g., via the EHR) to determine study applicability.

2.5.2 Systematic review—A high quality systematic review of high quality randomized 

trials is now the gold standard clinical evidence for questions of therapy [52]. Systematic 

reviews of other study designs are also critical for evidence-based medicine. Systematic 

reviews are, however, very time and labor intensive and current practices are not sufficient 

to keep up with the flood of new studies [53]. The holy grail of automated systematic 

reviews [54] remains elusive for both technical and methodological reasons. Current 

systems are mainly workflow support tools like the Cochrane Collaboration’s RevMan [55] 

and AHRQ’s SRDR system [56] that do not provide knowledge-based support for 

comparing, critiquing, and meta-analyzing studies. Meta-Analyst, now available as 

OpenMetaAnalyst [57], was one of the earliest decision support systems for meta-analysis 

with a Bayesian model of studies at its core. A fuller model of study designs and their 

attendant biases could offer a foundation for knowledge-based systematic review systems 

and for their interoperation with other phases of the study lifecycle. This is a wide-open area 

for substantial advances in clinical research informatics.

2.5.3 Evidence application and the Learning Health System—Rather than a one-

way pipeline of research evidence to practice, translational medicine embraces the concept 

of a learning health system in which evidence is both applied and generated at the point of 

care. In this vision, the study lifecycle intertwines with the care system, and the informatics 

requirements discussed above become pertinent to frontline health information systems as 

well. Although clinical research and clinical informatics are still more separate than they 

should be [8], research innovations such as “point of care research” [58] embedded n-of-1 
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studies [59,60] and digital epidemiology[61] are knocking down silos between clinical 

research and health care informatics. By modeling study-design features and eventually 

study results, OCRe places human studies in a formally characterized relationship to patient 

data, and provides an epistemologically sound informatics foundation for clinical research 

and the learning health system.

3. The OCRe Ontological Infrastructure

The above use cases describe clinical research as a scientific enterprise with a wide range of 

informatics requirements. We identify the following requirements as representing the 

foundational capabilities that would transform informatics support of clinical research.

1. Ability to describe a study’s PICOT structure and the design of the study that 

facilitates identification and classification of studies in term of their scientific and 

design features (use case 2.1.1)

2. Ability to ensure the completeness and internal coherence of study instances (use 

cases 2.2 and 2.4)

3. Ability to ingest and instantiate study metadata from multiple manual and 

electronic sources (use case 2.4 and also a pre-requisite of requirement 4).

4. Ability to query for ontology-conformant study instances within or between 

institutions, using concepts from the ontology as well as from controlled 

vocabularies (use cases 2.1.1 and 2.5.1)

5. Ability to assist or enable selected tasks in the execution of a study (use case 2.3)

6. Ability for investigators to visualize and assess the strengths and weaknesses of 

study designs either singly or in the aggregate (use cases 2.1.2 and 2.5.1)

7. Ability to incorporate assessments of evidentiary strength into results 

interpretation, synthesis, and application (use cases 2.1.2 and 2.5)

At the core of these capabilities is a unifying representation of the study protocol. We wish 

to classify and query studies by their PICOT characteristics and by their design 

characteristics. We wish to constrain relationships among components of study protocols by 

placing various types of restrictions. We decided that description logic, in the modern form 

of Web Ontology Language (OWL), provides the most expressive and tractable knowledge 

representation formalism for capturing the formal semantics of study protocols.

The first three requirements above call directly for an ontological infrastructure upon which 

specific methods can be developed to address the use cases described in Section 2. At the 

center of our framework is an Ontology of Clinical Research (OCRe) and, as part of it, a 

study design typology that serves as the reference semantics for reasoning and data sharing. 

We developed OCRe to satisfy the first two requirements directly, and also developed a 

suite of OCRe-based approaches to address the other requirements: a data representation 

format and data acquisition methods for requirement #3; data federation technologies for 

requirement #4; an eligibility criteria annotation method for requirement #4 and #5; 

Sim et al. Page 7

J Biomed Inform. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



visualization methods for requirement #6; and representational and analytic methods for 

requirement #7.

In this section, we first review the ground methods and principles behind the development of 

OCRe. Then we describe OCRe’s major components, including a study-design typology and 

ERGO Annotation for capturing eligibility criteria. Finally, we describe how XML schemas 

can be generated from OCRe and used for data acquisition and use-case–specific querying.

3.1 Methods and principles of modeling

Rector[62] makes a distinction between representations of the world (models of meaning) 

versus data structures (information models). Models of meaning make formal statements 

about entities and relationship in the world. Information models (e.g., Health Level 7 

Reference Information Model [63]) specify which data structures are valid for the purpose of 

exchanging and reusing them in different information systems. Usually models of meanings 

are formulated as ontologies using logic-based representations such as OWL. Information 

models may be represented in OWL or object-oriented languages such as Unified Modeling 

Language (UML). While most other CRI models, e.g., CDISC’s Study Design Model [34], 

are information models, OCRe encapsulates both models of meaning and information 

models. On one hand, we conceptualize a study as a real-world entity and we use the OWL 

formalism to make assertions about the structural components and features of human studies 

as well as assertions about particular studies. The core structures of a study protocol, 

including the design typology, design features, subgroups in the study, and interventions and 

exposures, are readily captured in the OWL formalism. On the other hand, some aspects of 

study design – eligibility criteria in particular – are difficult to formulate ontologically and 

are better modeled using an information model approach.

To illustrate, the eligibility criteria of a study define the target population of the study in 

terms of descriptions that may involve prior assessments, treatments, and test results and 

their temporal relationships. An ontological modeling of such descriptions is extremely 

complex and non-scalable. Instead of attempting to formalize such complex descriptions, we 

defined an information model called ERGO Annotation that allows us to annotate the 

criteria more simply but still capture the essential meaning of the criteria. These annotations, 

while not direct assertions about the world like others in OCRe, are data structures that 

allow the application of natural language processing (NLP) methods to automate the 

recognition of coded concepts and relations in free-text eligibility criteria and that can be 

transformed into computable formats to satisfy use cases from the lifecycle of studies that 

require the characterization of subject populations. Recently, we re-formulated ERGO 

Annotation, previously represented in Protégé’s frame language, as a component of the 

OWL-based OCRe, and extended the syntax to capture temporal and non-temporal 

constraints on entities and events referenced in eligibility criteria. Representing such 

informational model entities in OWL serves two purposes: 1) it enables, within a single 

representation, the transformations of the annotations into OWL expressions so that we can 

reason about a study’s target population; and 2) it completes the representation of a study in 

a single formalism so that applications can reason about a study’s target population together 
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with other components of the study protocol. Section 3.3 presents more details about this 

hybrid modeling approach.

A potential point of confusion is that much of what we are modeling, such as the description 

of a study in a clinical trial protocol, are informational entities themselves. For example, a 

study protocol contains specifications of what phenomena the study variables represent or 

operationalize and at what frequency and how they should be measured. Similarly, instead 

of actual interventions that are carried out, the protocol specifies how interventions should 

be performed on study subjects. We model the structural components of these informational 

entities. For example, a protocol contains specifications of subgroups whose members may 

be subject to different interventions or exposures. We also model these informational entities 

in terms of their characteristic descriptors. For example, a protocol may specify that it has a 

parallel group study design, which is defined as an interventional design that has two design 

descriptors (written in Courier font): having multiple regimens and making main comparison 

across experimental units. We represent the relationships between descriptor-based and 

structural-based descriptions as axioms that must hold. A simple example is that a study 

with a design descriptor of multiple regimen must contain more than one study arm 

(sub)population. These axioms can be used as integrity constraints to check the consistency 

and completeness of a study specification, as described in Section 4.1.2.

Another point of contact between OCRe and informational entities is in OCRe’s references 

to controlled terminology. OCRe models the design of human studies, as expressed in study 

protocols, independent of any specific clinical domain. Study protocols, as informational 

entities, make references to real world phenomena through natural-language text or through 

structured codes. In OCRe, the semantics of clinical content are expressed through 

references to external ontologies and terminologies such as SNOMED. OCRe entities (e.g., 

outcome phenomenon) are related to external clinical concepts (e.g., acute myocardial 

infarction) through terminologies and their associated codes (e.g., SNOMED code for acute 

myocardial infarction). Thus, if we strip labels that are necessary to aid human 

understanding from clinical concepts referenced in OCRe, we have a formal and machine-

processable representation of a study description.

Besides being domain independent OCRe is also independent of the requirements of specific 

applications in the way it models the entities and relationships of human studies. We made 

the decision that the semantics of application-specific ontological extensions must be 

expressible in terms of the underlying OCRe concepts. For example, our HSDB project to 

federate descriptions of human studies among CTSA institutions [7] defined an extended 

OCRe model called HSDB_OCRe that has additional categories of roles specific to our 

CTSA use case that organizations can play. HSDB_OCRe also implements “shortcuts” in 

navigating OCRe entities and relationships to enable the efficient acquisition and federated 

querying of large volumes of study information. These shortcuts add no additional semantic 

content, but create alternative categories that are convenient for application purposes. For 

example, OCRe reifies Funding as a class of administrative relationship associated with 

studies, where the reified relationship is identified by some funding number and has some 

person or organization as actors. This reification is necessary because a study, its funder, and 

the funding number represent an n-ary relationship that cannot be captured directly using 
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OWL’s binary properties. It is not necessary, however, for OCRe to have a Funder class 

because this category can be derived completely as a defined class in OWL. Nevertheless, in 

the HSDB project, we found it convenient to have a Funder class and a ‘has funder’ object 

property fully defined in terms of underlying OCRe concepts. In this way, OCRe can be 

extended to satisfy arbitrarily different use cases without having to model those use case 

domains directly.

A different challenge arises in satisfying the requirement of instantiating study design 

information in OCRe-compliant form. A formal ontology such as OWL consists of a 

collection axioms and additional assertions that can be inferred using the Open World 

Assumption (OWA): an assertion is possibly true unless it can be explicitly shown to be 

false. There is no requirement that a specific collection of facts has to be asserted explicitly. 

As a consequence, completeness of data entry cannot be checked, unless we add closure 

axioms to say that only explicitly asserted data elements exist. Furthermore, an OWL class 

does not “own” a set of properties in the sense of having a set of attribute or participating in 

a set of relationships. It is not appropriate, therefore, to instantiate descriptions of specific 

studies into OCRe OWL. Rather, a data model (schema) is needed, consisting of templates 

of fields and value sets for acquiring entities and relationships in a domain. For these 

reasons, the OCRe infrastructure includes a method for extracting data models suitable for 

the acquisition and maintenance of large amounts of instance data for specific use cases, as 

described in Section 3.4.

3.2 The OCRe OWL Model

OCRe is organized as a set of modular components with the main modules related by import 

relationships as shown in Figure 2.

The ontology is modularized into a main OCRe.owl ontology and sub-ontologies for study 

design (study_design.owl), the plan components of a study protocol (study_protocol.owl), 

and statistical concepts related to the specification of study analysis (statistics.owl). Earlier 

descriptions of OCRe, the genesis of the study-design typology and the application to the 

HSDB project are presented in [6,7,22].

As mentioned earlier, the HSDB Project extended OCRe with HSDB-specific concepts that 

are fully defined in terms of OCRe concepts. The main HSDB_OCRe ontology imports the 

extended OCRe and also uses a set of annotation features (defined in 

export_annotations_def.owl) to specify ontology elements that should be exported as part of 

a HSDB_XSD (Section 3.4).

3.2.1 Study design typology—Study data should be interpreted within the context of 

how those data were collected (e.g., interventional versus observational study) and the 

purpose for which they were intended (e.g., public health versus regulatory filing). Since 

each study type is subject to a distinct set of biases and interpretive pitfalls, a study’s design 

type strongly informs the interpretation and reuse of its data. Through iterative consultation 

with statisticians and epidemiologists, we defined a typology of study designs based on 

discriminating factors that define mutually exclusive and exhaustive study types [22]. For 
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example, whether the investigator assigns one or more interventions discriminates between 

interventional and observational studies (Figure 3).

The typology classifies studies hierarchically into four interventional and four observational 

high-level design types. Additional descriptors elaborate on secondary design features that 

introduce or mitigate additional interpretive features: eight additional descriptors for 

interventional studies (e.g., comparative intent (superiority, non-inferiority, equivalence); 

sequence generation (random, non-random)) and six additional descriptors for observational 

studies (e.g., sampling method (probability, non-probability); whether samples matched on 

covariates). Each descriptor applies to one or more of the main study types: for example, 

sequence generation applies to all of the interventional study types except single group; 

sampling method applies to all of the observational study types. This typology is available at 

http://hsdbwiki.org/index.php/Study_design_typology.

We incorporated this study design typology into OCRe in the form of an OWL hierarchy in 

the study-design module (Figure 2). Formally, the study-design descriptors are represented 

as a hierarchy of “study-design characteristics” (Figure 4). A particular study design is then 

defined in terms of its parent design and the descriptors that differentiate it from its siblings. 

Figure 5 shows the definition of a parallel-group design in terms of design characteristics, to 

illustrate the distinctions that are made in OCRe.

3.2.2 Study Arms and Interventions—OCRe models both interventional and 

observational studies. The Code of Federal Regulation 45 CFR 46 defines a study 

intervention as “manipulations of the subject or the subject’s environment that are 

performed for research purposes” [64]. In OCRe interventions or combinations of 

interventions (i.e., regimens) are attached to arms and study participants are assigned to 

these arms. Depending on the objective of the analysis, subjects can then be grouped 

(independent variable) by the intervention they were originally assigned to (intention-to-

treat analysis) or the intervention they received (as-treated analysis). In observational 

studies, the independent variables for study analyses are called exposures, because they are 

not manipulated (i.e., assigned) by the study investigator.

3.2.3 Study Outcomes and Analyses—As we described in a previous paper [6], the 

study protocol specifies study activities (e.g., intervention assignment, data collection) that 

relate to the generation of observations, which are then analyzed to support or refute study 

hypotheses. To model these relationships, OCRe first defines a study phenomenon as “a fact 

or event of interest susceptible to description and explanation.” Study phenomena are 

represented by one or more specific study variables that may be derived from other 

variables. For example, the study phenomenon of cardiovascular morbidity may be 

represented as a composite variable derived from cardiovascular death, myocardial 

infarction (MI), and stroke variables. Each variable can be further described by its type (e.g., 

dichotomous), coding (e.g., death or not), time points of assessment (e.g., 6 months after 

index MI), and assessment method (e.g., death certificate). All variables are associated with 

participant-level and group-level observations. A study protocol may specify several 

analyses, each having dependent and independent variables that represent various study 

phenomena. A variable may play the role of dependent and independent variable in different 
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analyses. If the study protocol designates a primary analysis, the dependent variable of that 

analysis represents what is conventionally known as the primary outcome of the study. To 

our knowledge, OCRe is the first model to disambiguate study phenomena of interest from 

the variables that code observations of those phenomena, and from the use of those variables 

in study analyses. This clarity of modeling should provide a strong ontological foundation 

for scientific query and analysis for clinical research.

3.3 ERGO Annotation

Based on the previously described analysis of study eligibility criteria [42], and because of 

the issues discussed in Section 3.1, we reformulated the problem of representing eligibility 

criteria from that of formally encoding criteria in some machine-processable expression 

language to that of classifying and decomposing criteria by identifying noun phrases that 

capture the basic meaning of the criteria and formalizing the noun phrases as coded 

terminological expressions[65]. We emphasize that there is closure on the representation of 

all concepts as controlled terminologies or CUIs from UMLS. An ERGO Annotation 

statement can be of three types: 1) simple statement that makes a single assertion using a 

noun phrase that may have recursive modifiers, 2) comparison criterion that is a triplet 

denoting a measurement value (signified by a noun phrase like “white blood cell count”) a 

comparison operator (e.g., “greater than”) and a quantitative threshold (e.g., 5000/mm3), and 

3) complex statement, which is composed of multiple statements joined by AND, OR, NOT, 

IMPLIES, or semantic connectors, such as “caused by.” For example, “Tuberculosis of 

intrathoracic lymph nodes, confirmed histologically” is a simple eligibility criterion with a 

long noun phrase that is decomposed into a root simple noun phrase (tuberculosis) modified 

by location (intrathoracic) and by the modifier confirmed_by (histology).

In our current work, we augmented the representation of noun phrases to take into account 

meaning-altering contexts such as “family history of”. We formulated a constraint 

framework with different types of constraints. One type is restrictions on values of 

measurements. Other types are constraints on events (represented by noun phrases, e.g., 

diagnosis of breast cancer) by qualification of entities, or semantic or temporal relationships 

among entities and events. The temporal restrictions may be a duration constraint (e.g., 

event duration < 2 weeks), a time-point constraint that compares the time of the constrained 

event to that of another event (e.g., 3 weeks after end of chemotherapy), or a time-interval 

constraint where the time interval associated with the constrained event is compared with 

another time interval using Allen’s temporal-interval comparison operators [66]. Take for 

example, “Presence of bone marrow toxicity as defined by WBC < 4,000 3 weeks after the 

end of chemotherapy.” Here, “Bone marrow toxicity” is the root noun phrase representing 

the occurrence of some event, and “defined by” is a semantic relation that links it to a 

complex ERGO Annotation statement consisting of WBC (a noun phrase) constrained by a 

numeric value constraint (< 4000). “Bone marrow toxicity” is further restricted by the time-

point constraint stating that the time of bone marrow toxicity is after a time point defined by 

“3 weeks after the end of chemotherapy.”
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3.4 OCRe XSD Data Models

OCRe’s OWL model is an abstract generic model of the domain of human studies. We 

previously reported on the rationale for choosing XML Schema as the template formalism 

[6,7] for acquiring instances of study descriptions. Briefly, we deemed UML too 

cumbersome for mapping from OWL for our purpose. Without tool support, generating an 

UML model from an OWL ontology means creating the model in its serialized XMI format. 

XML Schema, on the other hand, is easy to use, supported by many tools, and follows the 

closed world assumption (i.e., XML schema types are templates), and has relatively simple 

serialized XML format. RDF, by contrast, is open world and does not provide a template for 

targeted export from relational databases, the most common source format for studies. But 

by keeping our XSD conformant with the logical structure of OCRe, OCRe XML instances 

can be translated into RDF/OWL format for advanced reasoning.

To ensure that instance data acquired using the schema are consistent with the OCRe 

ontology, we developed a data-model extractor to automatically derive an XSD file from 

annotations on OCRe entities. To generate an XSD, annotations are made in OCRe to 

specify: the root class for the XSD, the properties that should be represented as element tags 

in an XSD complex type, the subclasses to export as additional complex types, the parent 

class to use as the extension base in case there are multiple parents, and how value sets for 

property values should be created from ontology entities (e.g., treating individuals or 

subclasses of class as enumerations of values). The data-model extractor then acts on these 

annotations and uses property range axioms and property restrictions on classes to specify 

the types and constraints on specific XSD elements. For each type and data element in the 

XSD, its source in the ontology is clearly indexed using Semantic Annotations for SWDL 

(SASWDL), as shown in Figure 6.

The end product of this process is an XSD schema definition for a hierarchical XML data 

model. Our automated XSD generation approach allows changes in OCRe OWL to 

automatically propagate to the XSD and from there to the schemas of local databases, where 

programmatic approaches can update XML instance data to conform to the revised XSD as 

necessary. In summary, our OCRe data-model extraction process allows different XSD data 

models to be generated from different sets of annotations in extensions of OCRe, thus 

allowing OCRe to support acquisition of instance data for different use cases.

4. ‘Application’ Methods Enabled by the Ontological Infrastructure

This section illustrates the types of methods and solutions made possible with OCRe. First, 

we briefly review prior work on how study instances can be captured in XSD and exposed 

for federated querying with OCRe as the reference semantics. Next, we describe how a 

study’s PICO characteristics constitute a ‘study phenotype’, and propose methods that use 

study phenotypes to: 1) match studies to a search query; 2) match studies with each other to 

identify “similar” studies; and 3) match studies to patient data to determine study eligibility. 

Finally, we introduce the idea of OCRe-indexed bias models and methods for identifying 

clinical confounders as the basis for computational reasoning about the evidentiary strength 

of studies, Table 1 shows how these methods address the study lifecycle use cases described 

in Section 2.
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4.1 OCRe-based protocol instantiation and query

Instantiation of study descriptions in OCRe poses both technical and socio-technical 

challenges. Extraction of study descriptions from clinical trial management systems and 

electronic IRB systems is limited by incomplete and mostly-text-based information as well 

as vendor access issues [6]. Protocol documents and journal articles are likewise in free text 

and highly variable in content. Here we summarize work we have described elsewhere [7] 

on semi-automated and NLP approaches to data acquisition into OCRe semantics, and on 

federated data querying using OCRe semantics.

4.1.1 Instance Acquisition—Our HSDB use case was data federation of descriptions of 

study designs among CTSA institutions. Using the HSDB_XSD data model described in 3.4, 

we can acquire instances in several ways. With Rockefeller University (RU), we piloted 

ETL of study design information from their Oracle-based iMedRIS® e-IRB system [7]. 

Briefly, RU used HSDB_XSD to define SQL queries that mapped constructs of the schema 

to the iMedRIS relational tables. They then used Oracle’s DBMS_XMLGEN PL/SQL 

supplied package to issue the SQL-based ETL queries and convert the results “on the fly” 

into XML instances. An XSL Transform (XSLT) stylesheet was used to transform canonical 

XML into the XSD-compliant format, and manual post-processing data cleanup and XML 

validation was performed with the Oxygen editor. With ClinicalTrials.gov, we performed 

bulk ETL of their data. First, we mapped elements from ClinicalTrials.gov’s XSD to 

corresponding elements in HSDB_XSD using XSLT [7]. ClinicalTrials.gov entries were 

then downloaded from their API as separate files and each file was transformed into 

HSDB_XML files using the Saxon XML processor and XSLT.

NLP approaches are also indicated given that the bulk of study design information is in 

protocols and journal publications. Examples abound of methods to extract key trial 

elements such as population description, interventions, and outcomes [67–71] or PICO 

design features[72]. We ourselves developed the ExaCT semiautomated system for 

acquiring study-design data from full-text papers [73], as well as NLP techniques to analyze 

and instantiate eligibility criteria into ERGO Annotation [65]. While none of these systems 

yet use OCRe-XSD, they can now use OCRe-XSD templates as a common target data 

schema.

4.1.2 Constraint checking—OCRe’s declared semantics allows for constraint checking 

at the logical level (using extensions of OWL to enable constraint checking [74,75]), at the 

data model level (using XSD constraints), and programmatically, based on distinctions in 

OCRe. These constraint-checking methods can assist with data curation. For example, in 

reviewing study records from ClinicalTrials.gov, we noticed several types of recurring errors 

[7,76]. Guided by our OCRe model, we elucidated a number of constraints that could be 

used to curate these errors, including (using ClinicalTrials.gov names):

1. All data elements under Study Design should be completed, and N/A used where a 

specific item is not applicable (e.g., Phase should be “N/A” for behavioral studies)

2. If Allocation = Randomized, then

i. Study type must be Interventional
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ii. Intervention Model must be Parallel or Crossover Assignment

iii. Number of arms must be > 1

3. If Intervention Model = Single Group Assignment, then

i. Number of arms must be = 1

ii. Allocation must not be Randomized

4. If Intervention Model not = Single Group Assignment, then Number of arms must 

be > 1

5. If Study type = Interventional and Title includes “placebo”, then there should be a 

Placebo Arm defined and a placebo intervention

These constraints are now in OCRe and can be applied to OCRe-compliant instances via 

XSD and programmatic constraints. Applying these constraints to ClinicalTrials.gov would 

improve the scientific accuracy of crucial information on study design and intervention 

model, and would also improve derivative projects like Aggregate Analysis of 

ClinicalTrials.gov (AACT) [77] and LinkedCT.

Another example of constraint checking is for reproducible research, in which third-party 

researchers use a study’s protocol, dataset, and statistical code to verify and reproduce 

published results [78]. Having study design information in OCRe would enable automated 

constraint checking and ontology-driven visualization and interpretation of the study in the 

context of other related studies (e.g., CTeXplorer [79]). As medical publishing transitions 

“beyond the PDF,” computable models of study design like OCRe may prove increasingly 

valuable.

4.1.3 Federated query using OCRe semantics—In our HSDB project, we used the 

Query Integrator (QI) from the Brinkley lab [80] to query HSDB_XSD-compliant XML 

databases hosted at three CTSA institutions. QI can issue Xquerys as well as SPARQL 

queries to ontologies in BioPortal. This allowed us to issue live federated queries that 

exploited both OCRe’s logical structure and SNOMED’s taxonomic hierarchies using a 

single query formalism. We were thus able to automatically ingest study data from 

institutional e-IRB-based protocol descriptions, ingest the entire ClinicalTrials.gov 

repository, perform inter-institutional ontology-based queries at high granularity, and 

identify inconsistencies in instance data using OCRe’s axioms [7]. This proof of 

demonstration showed the value of OCRe and the feasibility of our general-purpose 

federated query infrastructure.

4.2 Study Phenotype Matching

Several core clinical research use cases involve the matching of a study’s design features 

against a query, other studies, or patient data. To facilitate these matching tasks, we define a 

study’s “phenotype” as its PICO protocol elements. For example, consider a randomized 

trial that tests high dose versus low dose vitamin D supplementation for Primary Outcome 

Phenomenon Hyperlipidemia and Primary Outcome Variable LDL:HDL ratio with 

“HgbA1c > 6.5%” as one of the eligibility criteria. This study design can be represented in 
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PICO as: Population = diabetic patients, Intervention = high dose vitamin D 

supplementation, Comparison Intervention = low dose vitamin D supplementation, 

Primary Outcome = hyperlipidemia, as measured via the variable LDL:HDL ratio, with 

Timing = 6 months.

4.2.1 Matching a study’s phenotype against a query—The study retrieval task can 

be construed as the matching of a PICO query against a study’s PICO phenotype, with the 

semantic distance between the two PICO vectors being a measure of relevance. If we 

consider each dimension of PICO as an axis in a vector space, a study’s PICO features 

define a subspace that we will call the study phenotype space Sstudy_phenotype(studyA). 

Retrieval relevance is then the semantic distance between Ssp(studyA) and Ssp(query). We 

can exploit the hierarchies in standard clinical vocabularies to generate a distance metric 

D(studyA, query). The lesser the distance, the more relevant Study A is to the query.

The relevance determination task divides into three match domains: 1) study population, 2) 

predictors (interventions and comparisons), and 3) outcomes and their assessment timing. 

These methods will generate P-, IC-, and O- similarity scores Dpop, Dpredictor, Doutcome for 

each comparison of a study to the query. The overall similarity of a study to the query, 

Dstudy_phenotype(study, query), will be computed as a function of the three underlying 

similarity scores. The rest of this section lays out our plan for using OCRe for this matching. 

We will assume that a PICO query will consist of three sets of query terms, one set for each 

P, IC and O domain.

Matching study population: A study’s population is most clearly defined in the eligibility 

criteria. (Baseline variables describe only selected features of the enrolled population). 

OCRe captures eligibility criteria as simple and compound statements in ERGO Annotation 

(3.3). After pre-processing and annotation, each study’s eligibility criteria will be a Boolean 

combination of noun phrases with constraints. For sake of simplicity, we will consider cases 

where the constrained noun phrases are coded as SNOMED terms or their extensions.

To match a study A’s eligibility criteria against the P of a PICO query, we first identify the 

study’s population space Spop(studyA). This space is defined as all eligibility criteria that are 

characterized by the SNOMED terms that are of a “clinical” semantic type (e.g., disease, 

symptom, demographics, labs). The population match distance Dpop(studyA, query) is the 

minimal semantic distance between Spop(studyA) and Spop(query). If Spop(studyA) coincides 

with Spop(query), then Dpop(studyA, query) = 0. Otherwise, Dpop(studyA, query) is defined 

algorithmically, as follows:

1. Step 1 – First, for each term in studyA, we find the eligibility term Tquery,n in the 

query that is semantically closest to it. Suppose studyA’s first eligibility criterion is 

annotated by the term “heart failure.” In the straightforward case, if the query 

includes a SNOMED term that is a synonym of heart failure, then 

Dcriterion1(studyA, query) = 0. Other cases are more complicated. If the query has a 

population term Tquery,2 “cardiomyopathy,” that term is a neighbor to studyA’s 

criterion “heart failure.” To calculate Dcriterion1(studyA, query), we can use a 

semantic distance function from NCBO Annotator [81,82] or Jiang et al. [83]. We 
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take DcriterionA(studyA, query) to be the minimum of criterion1’s distances to any 

term Tquery,n in query. Thus, if all terms Tquery,n of query are far from those of 

studyA, then Dcriterion1(studyA, query) approaches 1 (i.e., no match).

2. Step 2 – If a population eligibility criterion is the disjunction or negation of 

population terms A, B, C, we define

3. Step 3 – Calculate overall Dpop(studyA, query), incorporating the distance between 

all criteria. At this step, we have a vector of N dimensions, where N is the number 

of population eligibility terms TA,n for studyA, and the values are the distances 

between each TA,n and its semantically closest corresponding term T (if any) in the 

query. We now need to collapse this vector to a single overall population distance 

Dpop(studyA, query). Ideally, we should not just sum the Euclidean distances of the 

vector because the population phenotypes are likely to be correlated. For example, 

studies enrolling “heart failure” patients are more likely to include patients with 

“hypertension”, such that two studies matching on both these criteria match less 

than a study matching on two clinically un-correlated criteria. However, this 

correlation problem may not be large enough to materially affect similarity 

determination for most researchers, so using the Euclidean distance measure is a 

reasonable first approximation.

Matching interventions/comparisons: In OCRe, a study’s predictor variables are described 

in the class outcome_analysis_specification. We can call a study’s space of predictors 

Spredictor(study). For queries, Spredictor(query) is defined by terms that are of semantic types 

that are appropriate for interventions, as defined for example, by Huang, et al. [84]. We can 

adapt the temporal sequence similarity scoring method developed by Lee [85,86] to define a 

distance metric Dpredictor(studyA, query) between a study and a query. In Lee’s method, a 

pattern of care refers to a set of temporally ordered, non-overlapping treatment courses. A 

treatment course is a single treatment or a set of treatments (called treatment regimen) that 

occurs over an interval period of time. A temporal sequence similarity score (T3S) between 

two treatment courses is defined by:

1. Constructing a similarity matrix, simE among the set of treatments E = {e1, e2, 

…,eN} based on distances derived from an ontology of such treatments;

2. Defining an Aligned Temporal Sequence Similarity Score (T3SA) for two patterns 

of care that have the same number of treatment courses, with T3SA taking into 

account differing durations and compositions of matched treatment courses;

3. Defining T3S for two non-aligned patterns of care as the T3SA of the overlap 

regions multiplied by a weight based on the ratio of the two patterns of care’s 

lengths.

There is nothing in Lee’s metric that limits its application to interventions. It can also apply 

to non-treatment predictors, such as exposures, to calculate Dpredictor(studyA, query). 
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Additional methods are needed for matching on deeper predictor features for interventions 

and exposures (e.g., dose of a drug, indeterminate duration of a treatment or exposure event, 

e.g., “treat until the occurrence of X”).

Matching outcomes and their assessment times: Similarly, OCRe instances will define 

Soutcome(study) and the query will define Soutcome(query). To define the distance between 

these spaces, we first determine the “clinical” distance between the outcome variables (e.g., 

between “dull pain” and “burning pain”), then determine the “temporal” distance between 

the assessment times of “similar” variables (e.g., “3 months” and “6 months”). For each 

outcome variable in studyA, we pair it with an outcome term in the PICO query that is 

closest to it as defined by NCBO Annotator’s semantic distance function. We find the 

closest temporal distance between any pair of assessment timepoints for each outcome 

variable/term pair, and calculate the absolute difference in time duration since time zero, 

which is supposed to be stated in protocols [87–89]. We can explore heuristics for when 

outcomes are sufficiently similar semantically that calculating a temporal distance makes 

sense, and investigate alternative methods for calculating and capturing the temporal 

distance between two assessment timepoints (e.g., % of difference). Finally, we combine 

such time differences across multiple variable and timing pairs to calculate Doutcome(studyA, 

query). Methods for more complex matching (e.g., stroke documented by MRI vs. stroke 

coded as a discharge diagnosis) are beyond the scope of this paper.

Determining relevance to a query: After matching population, predictors, and outcomes 

between a study and a query, we calculate Dstudy_phenotype(study, query) as a function of 

(Dpop, Dpredictor, Doutcome). For browsing, the relative importance of population, predictor, 

and outcomes may vary from query to query. When a scientist is designing a new study, 

Dpredictor and Doutcome take on far more importance than Dpop. To quantify the overall match 

of a set of studies to a given query, we compute the average Dstudy_phenotype(study, query).

4.2.2 Matching a study’s phenotype against another study to determine 
similarity—As discussed in 2.5, interpreting clinical research for application to care or 

policy should involve interpreting a body of evidence. In systematic reviews, care must be 

taken that the studies included for synthesis are methodologically and clinically “similar” 

because heterogeneity contributes to statistical heterogeneity [30] and affects the 

applicability of the findings to patients. Thus, the notion of similarity is at the heart of 

evidence synthesis, yet there exists no formal conceptualization or metrics for this 

foundational notion.

Through the methods described above, though, OCRe and ERGO Annotation provide a 

foundation for computing similarity. Conceptually, relevance and similarity are closely 

related. Essentially, to find the similarity of studyA and studyB we can replace S(query) with 

S(studyB) and generate the same distance metrics as for relevance. The overall relevance of 

a set of studies against a query can then be generalized to the similarity between two sets of 

studies.

4.2.3 Matching a study’s phenotype against patient data—Eligibility 

determination can be seen from the perspective of a study or that of a subject. In the former 
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case, the problem is to find the cohort of patients that may satisfy the eligibility criteria of a 

study. In the latter case, the problem is to identify those studies for which a person, whose 

state can be represented as a conjunction of predicates, may be eligible. We have argued 

[65] that the cohort identification task — screening a database of patient information to find 

potentially eligible participants — is best done with a conventional technology like 

relational databases, while the “study finding” task can be seen as a subsumption problem 

solvable using a description logic reasoner.

4.2.3.1 Cohort identification: The cohort identification task can be performed using OCRe 

and ERGO Annotations with these steps:

1. Transforming eligibility criteria from text into ERGO Annotation as described in 

3.3.

2. Obtaining the local relational schema for patient data (e.g., a medication table 

containing drug names and codes, the dose and frequency of taking the drug, and 

the start and end times of the prescription)

3. Making assumptions regarding terminologies, e.g., problems are specified as ICD-9 

codes;

4. Developing rules for assigning ERGO Annotation terms to tables in the patient data 

model (e.g., assigning terms whose UMLS semantic type was Disease or Syndrome 

to terms in the ProblemList table);

5. Creating a Hierarchy table that specified the UMLS terms as the ancestor(s) for 

each ICD-9 and drug code corresponding to a patient’s problems and medications.

Steps 2 through 5 are more fully described in [65]. We have extended this work to address 

eligibility criteria with temporal relationships. For the criterion “Bone marrow toxicity 3 

weeks after end of chemotherapy”, for example, we would start with its OCRe 

representation in ERGO Annotation, decompose the representation to find noun phrases (as 

coded information), and add their corresponding tables in the patient data model to the 

FROM part of the query. We would use the Hierarchy table to map the terms in the database 

(e.g., codes for “neutropenia” or codes for specific drugs like “methotrexate” and “cytoxan”) 

and the terms in the criterion (e.g., code for “Bone marrow toxicity” or “Chemotherapy”). 

Finally, exploiting the structure of the timepoint constraint and using knowledge of the 

target SQL implementation, we would create an SQL query of the form:

SELECT * FROM ProblemList as p, Medication as m, Hierarchy as h

WHERE p.problem_name=h.descendant and h.ancestor= code for “Bone marrow 

toxicity” and

m.drug_name=h.descendant and h.ancestor = code for “Chemotherapy” and

p.time > DateAdd(week, 3, m.stop)

While the above SELECT query is manually crafted, our past experiences with templated 

expression languages suggest that automated generation of queries for common constraint 

patterns is very feasible [90].
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4.2.3.2 Searching for Applicable Studies to Enroll In: Our earlier work showed how non-

temporal ERGO Annotations can be transformed into OWL expressions [65]. To use a 

description logic reasoner to satisfy the “study finding” use case, we start by creating ERGO 

Annotations of all the eligibility criteria of the potential studies. For each study, the 

conjunction of the transformed OWL expressions for the inclusion criteria and the negation 

of the exclusion criteria approximates the characteristics of the study’s target population. A 

query for studies based on a set of patient characteristics (e.g., studies that include subjects 

who are pre-diabetic and have LDL below a certain threshold), formulated as an OWL 

expression, can be resolved by a description logic reasoner by finding all studies whose 

associated OWL eligibility expressions are subsumed by the query expression.

4.3 Evidentiary Reasoning

Our OCRe work to date has focused on modeling study design features to support data 

description and data sharing for scientific purposes. As a knowledge representation, 

however, OCRe can also provide value for knowledge-based decision support. To show this 

value, we are extending OCRe to include concepts related to statistical inference and 

structural and confounding biases, as well as developing computational methods for 

evidentiary reasoning to provide decision support for critiquing study designs. First, we 

explicitly model the notion of an inference as the result of a statistical analysis of dependent 

and independent variables. Each study design specifies many inferences. Next, inferences 

are at risk of bias (a systematic deviation away from the true value). The types of bias that 

each inference is at risk for depends on the study’s design type (from our study design 

typology, 3.2.1) and on the clinical content of the inference. We are extending OCRe with a 

typology of bias and constraining specific types of biases to specific study design types. 

Examples of high-level bias classes include selection, information, allocation, and detection 

bias [91]. In addition, we model the notion of a confounder as variables measured by the 

study protocol and used as covariates in inferential analyses.

This modeling of biases and confounding expressed in OCRe terms provides a first-ever 

ontological conceptualization of evidentiary reasoning, and is an important component for 

any informatics foundation for clinical research science.

5. Discussion

In this paper, we have shown that OCRe can capture detailed abstract study protocol 

information, which can yield numerous benefits along the entire scientific lifecycle of 

human studies. For the Design phase, OCRe-based models of the design of past and ongoing 

studies can help researchers retrieve, critique, and interpret the evidence base to more 

quickly iterate towards a worthwhile question to investigate. For Study Execution, the 

notion of matching study phenotypes to clinical phenotypes can assist with cohort 

identification and eligibility determination. For Study Interpretation, OCRe offers a common 

semantics for study protocol reporting, federated search and retrieval, and for semi-

automated methods for evidentiary reasoning. Finally, for Study Application, OCRe-based 

study phenotypes can be useful for determining study’s applicability to patients with 

matching clinical phenotypes. The fact that we can describe how OCRe applies to such a 

broad range of applications is preliminary evidence of OCRe’s breadth, depth, and utility. 
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Our ongoing program of research aims to demonstrate and evaluate OCRe’s ability to serve 

as a common informatics foundation for the science of clinical research.

The main difference between OCRe and other foundational models for clinical research 

informatics (e.g., BRIDG, CDISC, OBX, ClinicalTrials.gov XSD) is that OCRe takes a 

logic-oriented ontological modeling approach that mostly consists of logical statements 

about the design of human studies. The other models take an information model approach 

that more directly helps adopters achieve interoperability in data exchange and application 

development, but with less support for computational reasoning. OCRe also differs from 

other models in scope and domain of coverage. Compared to BRIDG, which focuses on 

operational support of protocol-driven regulated research, OCRe models study-design 

features more deeply for scientific purposes and covers both interventional and 

observational studies. BRIDG, however, models business processes and makes other 

distinctions necessary for supporting study execution and regulatory reporting of primarily 

interventional studies. CDISC’s Protocol Representation Model is derivative of BRIDG and 

the same comparisons apply. OBX models results data, which OCRe does not yet do, but 

has limited depth of modeling of study design features. ClinicalTrials.gov covers 

administrative and study design information, but its modeling of study design lacks depth 

and is rife with inconsistencies and ambiguities [7,76]. Overall, the BRIDG and CDISC 

information models are best for supporting study execution and regulatory reporting. The 

ClinicalTrials.gov model is important because ClinicalTrials.gov is the world’s largest 

collection of study design information. Many other data models exist for various systems, 

but to our knowledge none have the breadth, scope, and rigor of modeling that OCRe has for 

the explicit purpose of supporting the science of clinical research.

ERGO Annotation is an example of OCRe’s modeling power. This specialized part of OCRe 

tackles the difficult challenge of representing eligibility criteria, which often exhibit high 

semantic complexity. ERGO Annotation has a simple information model that makes 

distinctions regarding the structure of the criterion (e.g., existence of logical connectors, 

numerical comparisons) while leaving much of the semantics to noun phrases that are 

captured by terminological expressions. Other approaches for expressing clinical trial 

eligibility criteria such as Weng [43] and Milian [92] use more detailed information models 

and can use query templates for eligibility determination and for authoring criteria, while 

Huang’s approach uses Prolog rules as the model [93]. Weng’s EliXR is notable for using a 

data-driven approach to discover semantic patterns in a collection of textual eligibility 

criteria which are then organized into a semantic network with rich and fine-grained 

semantic knowledge. The detailed patterns developed by Milian can be parsed by NLP 

methods but the patterns are suitable only for specific clinical domains. In contrast to the 

above-mentioned approaches, ERGO Annotation can support OWL-based classification 

reasoning once ERGO Annotations are transformed into OWL expressions, as we have 

previously shown [65]. Our semi-automated approach is also more scalable than Huang’s 

and other similar approaches that use existing rule-based languages (such as Drools), which 

rely on manual crafting of rule criteria from the source text.

There are three other high-level ways in which our OCRe work is distinct. First, our work 

conceptualizes and renders study designs and eligibility criteria as structures to be 
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represented, searched, visualized, analyzed, and reasoned about in their own right. This 

approach contrasts with the more common approach of focusing computational attention 

almost exclusively on results data [94,95] even though searching and analyzing study design 

information is a prerequisite for making sense of results data.

Second, while there have been heuristic and machine-learning approaches to determining the 

relevance of studies to a search query [96,97] many of the approaches require training a 

classifier against a hand-coded gold standard, which limits their scalability. In contrast, we 

exploit OCRe’s more granular modeling to directly match study features against a PICO 

query, and to define relevance matching more sharply than is possible using only article 

keywords. Our approach offers a general, scalable, high-throughput method for determining 

“PICO relevance”, which is of direct interest to clinical researchers. Moreover, the same 

approach is useful for cohort identification, eligibility determination, and similarity 

determination, such that once a study’s eligibility criteria are coded in ERGO Annotation, 

both the instance data and the methods can be reused across multiple use cases.

Finally, we know of no other group that is integrating the conceptualization of bias and 

clinical confounding with clinical research informatics models. This integration is crucial for 

enabling fluid support for a learning health system in which clinical research and 

methodologically rigorous evidence-based care are two sides of the same coin.

5.1 Limitations

OCRe continues to be a work in progress. The study design typology has been revised since 

its pilot evaluation and needs renewed validation. Our proposed matching methods have not 

been tested. Our work on modeling sources of bias is early and a proof of concept is still 

needed on using OCRe as a valid way to organize and index biases and clinical confounders 

for a wide range of study types. Above all, we have not yet modeled summary or individual-

patient level results in OCRe, although the stubs for doing so are already present.

5.2 Current and future work

Our OCRe work is currently focused on three main objectives: 1) deployment into real use 

environments; 2) modeling, visualization, and computational methods for evidentiary 

reasoning; and 3) modeling of results data. OCRe is being incorporated into AHRQ’s 

Systematic Review Data Repository (SRDR) system, which is a workflow support system 

and study results repository [56]. Exploratory work is continuing on using OCRe as the 

common semantics for Cochrane Collaboration’s Central Register of Studies, and for data 

sharing between SRDR and the Cochrane Collaboration.

In the longer term, OCRe’s greatest value will be to underpin all five phases of the study 

lifecycle within a learning health system, such that study and clinical phenotypes can be 

matched and integrated during the processes of care. A step towards this vision is that OCRe 

will be used as the semantic foundation for evidence in the Open mHealth architecture for 

mobile health [98]. The goal is “embedded evaluation:” large and small-scale patient-

centered studies can be conducted using mobile and sensing technology to “embed” the 

collection of evidence into daily life, where health prevention and chronic disease are most 

salient [60]. OCRe will be used to index software modules corresponding to data or 
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functional elements of study designs (e.g., randomization, baseline characteristics), shared 

variable libraries, and protocol libraries. Our first project is using OCRe to inform the 

modular construction of a mobile-based system for n-of-1 studies for chronic pain in the 

PREEMPT project [99].

6. Conclusion

Now is an auspicious time for clinical research informatics to be grounded on an ontology 

for the science of clinical research. Technically, the science of ontologies is maturing [100] 

with tools like BioPortal [101]. Both US and European policies are spurring greater results 

reporting not just as PDFs but also directly into databases. Reproducible research and other 

initiatives are pushing for the sharing of protocol information as well as results data. As 

more clinical research data and information become shared and computable, OCRe provides 

well-motivated and well-formed semantics at the core of the science of clinical research to 

drive and integrate all phases of the study lifecycle. We have shown that with its breadth and 

richness, OCRe is a foundational informatics framework for clinical research and the 

application of evidence in a learning health system.
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Highlights

• A study’s lifecycle is design, execution, reporting, interpretation, application

• The Ontology of Clinical Research (OCRe) models the study design of human 

studies

• OCRe is a generic model applicable to multiple applications and clinical 

domains

• ERGO Annotation represents the essential meaning of eligibility criteria

• OCRe supports the entire study lifecycle and the science of clinical research
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Figure 1. 
Idealized scientific lifecycle of a human study within a Learning Health System.
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Figure 2. 
OWL import graph for OCRe.
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Figure 3. 
The Study Design Typology
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Figure 4. 
The hierarchy of study-design characteristics
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Figure 5. 
The OWL definition of a parallel group study design
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Figure 6. 
Example of an XSD element (StudyDesign) indexed to OCRe entity OCRE100056 via a 

URI. StudyDesign is associated with a 15-element value set partially shown in this figure.
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