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The Representation of Order Information in Auditory-Verbal
Short-Term Memory
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Here we investigate how order information is represented in auditory-verbal short-term memory (STM). We used fMRI and a serial recall
task to dissociate neural activity patterns representing the phonological properties of the items stored in STM from the patterns repre-
senting their order. For this purpose, we analyzed fMRI activity patterns elicited by different item sets and different orderings of those
items. These fMRI activity patterns were compared with the predictions made by positional and chaining models of serial order. The
positional models encode associations between items and their positions in a sequence, whereas the chaining models encode associations
between successive items and retain no position information. We show that a set of brain areas in the postero-dorsal stream of auditory
processing store associations between items and order as predicted by a positional model. The chaining model of order representation
generates a different pattern similarity prediction, which was shown to be inconsistent with the fMRI data. Our results thus favor a neural
model of order representation that stores item codes, position codes, and the mapping between them. This study provides the first fMRI
evidence for a specific model of order representation in the human brain.
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Introduction
How do we store and retrieve a sequence of items? Almost any
situation in daily life, whether making a cup of tea or remember-
ing the words in a sentence, requires us to remember not only the
individual elements but also the order in which they occurred. All
computational models of serial order acknowledge this distinc-
tion between the representations of items in memory and the
representation of the order in which they occur (Henson and
Burgess, 1997). Broadly speaking, models can be divided into two
classes dependent on how the order information is represented:

Chaining models assume that a sequence is stored by the for-
mation of associations between representations of successive
items (Fig. 1A). The order of items is retrieved by stepping along
the chain of associations, such that each item becomes a cue
for retrieving its successor (Lashley, 1951). Simple chaining
models only assume pairwise associations between adjacent
items, whereas more sophisticated chaining models assume
remote associations as well as adjacent ones (Slamecka, 1985;
Lewandowsky and Murdock, 1989).

Positional models assume that order is stored by associating
each item with its position in a sequence, and that the order is
retrieved by reinstating each positional code which then cues the
associated item (Fig. 1A; Lee and Estes, 1981; Burgess and Hitch,

2006; Brown et al., 2007). Hence, positional models need to store
item codes, position codes, and the mapping between them. Im-
portantly, these two classes of models make contrasting predic-
tions about the similarity of the representations of different
orderings of the items in a sequence.

Here we look to dissociate between positional and chaining
models based on fMRI data. For this purpose, we used an imme-
diate serial recall task, where participants vocally recalled se-
quences of nonwords immediately after presentation. We use
multivoxel pattern analysis (MVPA) to dissociate fMRI activity
patterns coding the phonological representations of the non-
words (items) from the patterns representing their order (Fig. 2).
Importantly, because they encode different associations, posi-
tional and chaining models make different predictions about the
similarity of orderings: for example, two sequences ABC and BCA
are relatively more dissimilarly represented in the positional
model than in the chaining one (Fig. 1A). This enables us to test
whether the similarity structure of the activation patterns elicited
by different orderings of items lend support to either positional
or chaining models of order.

Previous research has suggested that a network of brain
regions participate in order processing including the frontal
lobe (Barone and Joseph, 1989; Histed and Miller, 2006;
Berdyyeva and Olson, 2010), inferior parietal lobe (Moser et
al., 2009), hippocampus (Kesner et al., 2010; Devito and
Eichenbaum, 2011), and basal ganglia (Miyachi et al., 1997;
Yin, 2010). However, previous imaging studies have only re-
vealed the involvement of these brain areas in tasks requiring
retention of order. In this study, we seek to go beyond ana-
tomical localization to investigate the nature of order repre-
sentation in the brain.
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Materials and Methods
Participants
In total, 12 right-handed volunteers (7 female,
20 –33 years old) gave informed, written con-
sent for participation in the study after its na-
ture had been explained to them. Subjects
reported no history of psychiatric or neurolog-
ical disorders and no current use of any
psychoactive medications. The study was ap-
proved by the Cambridge Local Research Eth-
ics Committee (Cambridge, UK).

Task
We used an immediate serial recall (ISR) task,
where participants had to vocally recall se-
quences of three bisyllabic nonwords immedi-
ately in the order they were presented (Fig. 2B).
We used sequences of three items to ensure
that the entire sequence would fall within the
participants’ short-term memory (STM) ca-
pacity and could be accurately retained in
STM. If we had used longer sequences where
participants might make errors (e.g., 8 items;
for review, see Cowan, 2005) then the repre-
sentation of any given sequence would neces-
sarily vary from trial to trial, and no consistent
pattern of neural activity could be detected.

On each trial, participants were presented
with a visual fixation cross to indicate the start
of the auditory presentation of the sequence.
Three nonwords were then played through the
headphones in a male voice. The duration of
each nonword was 800 ms and the whole three-
item sequence 2.6 s (3 times 800 ms � 2 pauses
of 100 ms). Presentation of a sequence was fol-
lowed by a cue “?” indicating that participants
were to verbally recall the sequence exactly as
they had just heard it; or a cue “- - -” indicating
not to respond and to wait for 2–10 s for the
next list (Fig. 2). Participants were only in-
structed to recall on 2/3 of the trials (128 trials)
and the length of the recall period was varied
between 6 and 8 s. These measures (jittering of
the length of the rest phase, varying the length
of the recall period, and omitting the recall
phase for one third of the trials) were taken to
ensure a sufficient degree of decorrelation be-
tween the estimates of the BOLD signal for the
encoding and recall phases of the task. Each
participant was presented with 192 trials, with
96 trials per scanning run, in addition to an
initial practice session outside the scanner. Par-
ticipants were not informed that there were different types of trials.

For each trial, recall performance was measured as the Hamming dis-
tance between the presented sequence and the subject’s recall. For two
sequences of equal length, the Hamming distance is the number of posi-
tions at which the corresponding items are different. Put another way,
Hamming distance measures how many items were not retained at their
original positions.

Stimuli
We used two distinct sets of six bisyllabic nonwords. In one set, all conso-
nants were stops (e.g., PAKEB); in the other they were liquids, glides, and
nasals (e.g., NAEYUM). Within each set, the nonwords were arbitrarily di-
vided into two subsets of three nonoverlapping items. Those three items
were then presented in six possible different orders (Table 1; Fig. 2).

Each ordering was presented 8 times over the course of the experi-
ment. The nonwords were spoken by a male native speaker of British
English and recorded at 44.1 kHz sampling rate and 16 bits per sample.

fMRI data acquisition and preprocessing
Participants were scanned at the Medical Research Council Cognition
and Brain Sciences Unit (Cambridge, UK) on a 3T Siemens TIM Trio
MRI scanner using a 32-channel head coil. Functional images were col-
lected using 32 slices covering the whole brain (slice thickness 3 mm, 25%
slice gap, in-plane resolution 3 � 3 mm) with a “silent” EPI sequence
(Schmitter et al., 2008), with TR � 2.63 s, TE � 44 ms, and flip angle of
78°. In addition, high-resolution MPRAGE structural images were ac-
quired at 1 mm isotropic resolution (see http://imaging.mrc-cbu.cam.ac.
uk/imaging/ImagingSequences for detailed information). Each participant
performed two scanning runs, 620 scans were acquired per run, including
16 dummy scans. Stimulus presentation was controlled by Presentation
software version 4.19. Visual cues for sequence presentation and recall
were rear projected onto a translucent screen outside the bore of the
magnet and viewed via a mirror system attached to the head coil. Audi-
tory stimuli were delivered with magnet-safe headphones installed inside
ear defenders (NordicNeuroLab, noise attenuation of 30 dB). All trials
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Figure 1. Positional and chaining models of order representation. A, An example how the sequences CAT PIG DOG and DOG CAT
PIG are differentially encoded by the positional and chaining models. Numbers refer to the positions of the items (CAT, PIG, DOG)
in the sequence. Items are color-coded to highlight the permutations. B, Difference in order encoding yields different pairwise
similarity matrices for all possible permutations of the items CAT, PIG, and DOG. We assume that the pairwise similarity between
two sequences according to a positional model is given by the Hamming distance between the sequences (see Materials and
Methods for details). For the chaining model, pairwise similarity between two sequences can be described by the interitem
distance between the sequences. The permutations of the items are number-coded on the axes; e.g., 123 refers to CAT PIG DOG, etc.
C, Color-coded similarity matrices.
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were included in the analysis because the number of trials on which
participants made errors was very small (see Results).

All fMRI data were preprocessed using SPM5 software (Wellcome
Trust Centre for Neuroimaging, London) and analyzed using custom
in-house software. Before analysis, all images were corrected for slice
timing, with the middle slice in each scan used as a reference. Images were
realigned with respect to the first image using trilinear interpolation,

creating a mean realigned image. The mean re-
aligned image was then coregistered with the
structural image and the structural image was
normalized to the MNI average brain using the
combined segmentation/normalization proce-
dure in SPM5.

Multivoxel pattern analysis
As noted above, we sought to dissociate fMRI
activity patterns representing the phonological
information of the items from the patterns rep-
resenting their order. This cannot be done di-
rectly, because permutations of order only exist
within a set of items, so we used two different
analysis methods for item and order effects. To
analyze order representations we used repre-
sentational similarity analysis (RSA; Krieges-
korte et al., 2008) to compare patterns of brain
activation to the similarity predictions from
positional and chaining models. To determine
which areas were sensitive to item information
we used a multivoxel pattern classification ap-
proach to identify brain regions containing
patterns that could differentiate between the

two different item sets. The reason for using both pattern classification
and RSA is that the item and order analyses address different questions.
In examining order information, we compare two models that make
different predictions about representational similarity. Our concern is
not simply whether we can differentiate between different orders but in

the more interesting question of what form
those representations take. In the case of item
representations, we have only two sets of items
that are not sufficient to produce a rich pattern
of similarity. In the case of a single dimension
of similarity, a classifier, such as a support vec-
tor machine (SVM), is the best way to deter-
mine whether there are regions that distinguish
between the two sets of items. However, a com-
mon set of fMRI data analysis steps were un-
dertaken before the analyses were split.

We moved a spherical searchlight with a 3
voxel radius throughout the gray-matter
masked and unsmoothed volumes to select, at
each location, a local contiguous set of 113 vox-
els (3 mm isotropic). In each sphere, we esti-
mated the BOLD response for the encoding
and recall events of every trial (192 encoding
and 128 recall events) for every voxel in the
sphere. The event regressors were convolved
with the canonical hemodynamic response (as
defined by SPM8 analysis package) and passed
through a high-pass filter (128 s) to remove
low-frequency noise. In addition to six motion
parameters (corresponding to translations and
rotations of the image due to movement in the
scanner) additional scan-specific regressors
were also added to account for large head
movements. Additional parameters were mod-
eled to account for extreme interscan move-
ments, which exceeded a translation threshold
of 0.5 mm, rotation threshold of 1.33°, and
between-images difference threshold of 0.035
calculated by dividing the summed squared

difference of consecutive images by the squared global mean. These
separate movement spike regressors remove variance due to head
movement caused by participants speaking in the scanner during the
response phase of the trials.

As a result, we obtained 192 encoding parameter estimates (�-values)
for every voxel representing the 192 sequence presentation events and
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Figure 3. Multivariate analysis of order information. First, we generate pairwise similarity matrices of orderings based on the
positional and chaining models using the Hamming and interitem distances respectively. Next, we extract each participant’s neural
response to each sequence to estimate pairwise response pattern similarities. Pattern similarities are then compared with a
predicted similarity structure given by the Hamming and the interitem distances between sequences by computing a correlation
coefficient between the two matrices. The probability of the correlation is obtained by using a permutation test where the columns
of the matrices was shuffled 10,000 times.

Table 1. Stimuli

Set 1 (stop consonants) Set 2 (liquids, glides and nasals)

Subset A BOEGID, GITOG, PAKEB NAEYUM, REMIL, YOMING
Subset B DOUGHBID, KETUB, PIDIK LANING, NOWLEM, YANIM
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128 recall �-values representing the 128 sequence recall events over the
course of the experiment. As noted earlier, a sufficient degree of decor-
relation between all of the regressors was ensured by: (1) jittering the
length of the rest phase (between 2 and 10 s), (2) varying the length of the
recall period (6 – 8 s), and (3) omitting the recall phase for one third of the
trials. As a result, the voxels in the searchlight comprised a vector of
activations resulting in one vector per trial.

Representation of item information
To identify voxels which encode item information we used a multivariate
classification procedure. We labeled the searchlight voxel vectors accord-

ing to the item set from which the sequence was
derived (see Stimuli for details). Next, we split
the vectors into two datasets: a training set used
to train a support vector machine (with a linear
kernel and a regularization hyper-parameter
C � 40) to assign correct labels to the activa-
tion patterns, and a test set used to indepen-
dently test the classification performance. The
SVM classifier was trained to discriminate be-
tween two item sets with the training data and
subsequently tested on the independent test
data. The classification was performed with
the LIBSVM (Chang and Lin, 2011) imple-
mentation. We used a standard k-fold cross-
validation testing regime wherein k equaled the
number of experimental trials. As a result, we
performed a 192-fold cross-validation for ev-
ery searchlight (191 training and 1 testing
value). For every participant, the searchlight
analysis resulted in an item set classification
accuracy brain map. We assigned a score of
zero to any sphere in which �33 voxels were
inside the individual gray matter volume.
These individual images were subsequently
normalized to the MNI anatomical template
and entered into random-effects analyses (one-
sample t tests). By using a large number of
train-and-test iterations (leave-1-out with 192
trials) we obtained a precise estimate of true
classification accuracies. This approach pro-
vided a test–retest reliability within �5% based
on multiple simulations of 192 iterations con-
ducted in four subjects. Next, we statistically
assessed decoding significance with a two-
tailed t test versus 50% chance decoding. To
correct for multiple comparisons, we used a
false discovery rate (FDR; Genovese et al.,
2002) threshold of p � 0.05.

As a supplement to the t tests we also assessed statistical significance
with nonparametric randomization tests (Gallivan et al., 2011; Stelzer et
al., 2013). We permuted the correspondence between the test labels and
data 100 different times to compute 100 mean classification accuracies
for the testing labels. To this permuted distribution of accuracies, we
added the mean accuracy obtained with the correct labeling. We then
derived the distribution of the group-level mean accuracies by randomly
sampling 1000 mean accuracies (with replacement) from each subject’s
permuted distribution. Next, we found the true group-level mean accu-
racy’s empirical probability based on its place in a rank ordering of this
distribution. The peak percentiles of significance ( p � 0.001) are limited
by the number of samples producing the randomized probability distri-
bution at the group level. This nonparametric randomization test pro-
duced more searchlight volumes with significant p values than those
found with the parametric t tests (Gallivan et al., 2011; Stelzer et al.,
2013). This indicates that the t test group analysis provides a conservative
estimate of the statistical significance of the classification accuracies.

Representation of order information
For every searchlight, we performed a representational similarity analysis
(Kriegeskorte et al., 2008) between voxel activity patterns and two model
predictions. Both models were expressed by a specific pairwise similarity
function, which generated a different pairwise similarity matrix for the
stimuli. Our stimuli were all possible permutations (orderings) of three
items resulting in a 6 � 6 pairwise similarity matrix, which is diago-
nally identical (Fig. 3).

Positional model: item-position encoding. We assume that the Ham-
ming distance captures the pairwise similarity between item-position
mappings in a positional model. For example, two sequences ABC and
CBA share one item-position mapping: B at the second position. Hence,
the Hamming distance, which measures how many items were not re-

A

B

3.79

T-value

28.6

Figure 4. Item information. Regions where the set of presented items was decoded significantly above chance across partici-
pants. Whole-brain FDR threshold of p � 0.05. A, Encoding phase of the task: red–yellow; recall phase of the task: navy–magenta.
B, Brain areas where the information during the encoding phase predicted the activity patterns during the recall phase.

Table 2. Item information: peak searchlight coordinates where the set of
presented items was decoded significantly above chance across participants

Region Mean accuracy t statistic X Y Z p H

Encoding STG 0.92 19.9567 �52 �10 4 �0.001 L
0.87 17.6094 61 �3 4 �0.001 R

TP 0.90 18.4244 �44 13 �31 �0.001 L
aSTS 0.62 13.4918 �54 0 �21 �0.001 L
SMG 0.68 10.3381 �58 �30 27 �0.001 L
pSTG 0.69 10.053 53 �45 19 �0.001 R
vMC 0.67 7.7004 64 �4 22 �0.001 R

Recall
SPT 0.73 11.6549 �51 �28 9 �0.001 L

0.86 18.4244 54 �30 15 �0.001 R
pMTS 0.79 14.6601 52 �39 9 �0.001 R
STG 0.74 12.4052 �56 �7 2 �0.001 L

0.64 7.2791 61 �4 �5 �0.001 R
MC 0.83 16.7471 �55 �19 50 �0.001 L
vMC 0.69 9.4952 61 �5 19 �0.001 R
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tained at their original positions, describes the similarity between item-
position mappings for two sequences of equal length. Note, that although
positional models also store positional codes independently of items and
item-position mappings, we are not able to use our fMRI data for such
correlations because all three items were presented during a single scan.

Chaining. Chaining models represent sequences as successive interi-
tem associations: for example, sequences like ABC and CBA can be rep-
resented as (A3B, B3C) and (C3B, B3A). It follows from this
example that although ABC and CBA partially overlap (with B being the

second item), there are no common interitem
associations. In fact, between-sequence simi-
larity calculated on the basis of which interitem
associations are retained is equal to the inverse
of the Hamming distance when three-item se-
quences are used. This is because two different
sequences of three items can only have com-
mon item pairs when there is no overlap be-
tween item positions in the sequence (e.g., ABC
vs BCA). Pairwise distances between permuta-
tions of three items can only take three possible
values: complete overlap, no overlap, and par-
tial overlap. It thus follows that whenever there
is partial overlap between two permutations in
Hamming distance there cannot be any overlap
in the chaining distance and vice versa. As a
result, pairwise Hamming and chaining dis-
tance matrices of all possible permutations of
three items are inversely correlated with each
other (Pearson’s � � �1).

In this analysis we predict the similarity
structure of the stimuli using the Hamming
and interitem distances between sequences.
The resulting two pairwise representational
similarity matrices are then correlated with the
response pattern similarity matrices from ev-
ery searchlight to yield a Pearson’s correlation
coefficient per searchlight. For every partici-
pant, the searchlight analysis resulted in two
brain maps of correlations between model pre-
dictions and neural response data. We assigned
a score of zero to any sphere in which �33
voxels were inside the individual gray matter
volume. These individual images were subse-
quently normalized to the MNI anatomical
template and entered into permutation-based
random-effects analyses using the SnPM tool-
box for SPM (Nichols and Holmes, 2002;
10,000 permutations, 6 mm FWHM variance
smoothing). The use of nonparametric tests
avoids distributional assumptions regarding
the nature of the descriptive maps, given that
correlation scores are not normally distrib-
uted. Note that a positive and significant cor-
relation with one of the models on a group level
is enough to test our hypothesis, given the in-
verse correlation between our two predictors.

Similarity of order representations across
brain areas
To assess to what extent two brain regions in
the same subject represent the same informa-
tion, we can compare the two regions’ response
pattern similarity matrices. We chose 10 re-
gions of interest (ROIs) based on the peak vox-
els of the brain areas that showed significant
correlation with the model predictions (see Re-
sults). Next, we correlated subjects’ individual
fMRI response-pattern similarity matrices be-
tween all ROIs during both encoding and recall
phases. The group-level significance of the cor-

relations was again assessed with permutation-based random-effects
analyses as described above.

Three-way classification of sequences
We also sought to test whether the order effects were driven by a specific
position in a sequence: for example, if a brain region only encoded the
first item in the sequence and nothing else, it would still carry some
information about the sequence and hence correlate positively with a
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Figure 5. Order information. Regions where the similarity of activity patterns were predicted by the Hamming distance
significantly above chance across participants. A, Encoding phase of the task: red–yellow; recall phase of the task: navy–
magenta. B, Correlation of order information between different brain areas during the encoding and recall phases: (1)
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using MATLAB’s mdscale function. D, Similarity structure for three ROIs which encoded only item information and where
not significantly correlated with the positional model prediction.
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model prediction. For this purpose, we ran a three-way classification
analysis, where the trials were labeled according to the position of the
items in three following ways: (1) first-item encoding: e.g., ABC, ACB
versus BAC, BCA, versus CAB, CBA; (2) middle-item encoding: e.g.,
BAC, CAB versus ABC, CBA versus ACB, BCA; and (3) last-item encod-
ing: e.g., BCA, CBA versus ACB, CAB versus ABC, BAC.

This resulted in three separate three-way classification analyses, which
otherwise followed the procedure described above in Representation of
item information.

Results
Behavioral results
Recall performance in the scanner was measured with an ISR
task, where participants had to vocally recall sequences of three
bisyllabic nonwords immediately in the order they were pre-
sented (see Materials and Methods, Task). Because three-item
sequences fell comfortably within participants’ memory span, we
observed perfect recall on 97% of the trials. ANOVA over partic-
ipants’ recall scores for different stimulus types showed no signif-
icant effects of item set (stop consonants vs liquids, glides, and
nasals: F(1,44) � 1.01, MSE � 0.0003, p � 0.32; Table 1) or subset
(F(1,44) � 0.04, MSE � 0.0003, p � 0.84). Note that perfect recall
was required to ensure that differences in neural activity patterns
would not reflect recall performance.

Item information
We began by looking for regions that represented item-based
phonological (or acoustic/phonetic) information of the se-
quences during the encoding phase. Significantly above chance
item set classification was found bilaterally in superior temporal
cortex anterior to the primary auditory cortex (STG), in bilat-
eral ventral motor and premotor cortices (vMC, pMC), and in
the right middle frontal gyrus and sulcus (Fig. 4A; Table 2). In
the recall phase of the trials, we found that clusters of voxels in
the superior temporal lobe, in the bilateral motor and premo-
tor cortices, in the inferior parietal lobe (IPL), and in the
dorsolateral prefrontal cortex encoded the phonological in-
formation of the sequences.

To further elucidate the nature of phonological representa-
tions we performed a post hoc analysis in the brain areas which
showed significant phonological effects. Specifically, we tested
whether the voxel patterns representing phonological informa-
tion during the encoding phase predicted the activity patterns
during the recall phase. This continuity of representations would
indicate that decoded patterns relate to short-term memory, not
only to perception. For this purpose, we trained the classification

algorithm with data from the encoding phase and tested it on the
data from the recall phase. This analysis was performed on all
searchlights where item-decoding accuracy was significantly
above chance (a two-tailed t test vs 50% chance decoding) within
each subject’s brain. We found that in the left and right anterior
superior temporal gyrus, encoding patterns predicted recall pat-
terns significantly above chance (Fig. 4B).

Order information
First, we correlated the model output with the activation patterns
from the encoding phase of the trials. The positional model based
on Hamming distance predicted similarities between activation
patterns significantly above chance in the following brain areas:
the superior planum temporale (SPT), IPL, supramarginal gyrus
(SMG), ventral premotor cortex (vMC), and inferior frontal
gyrus (IFG) (Fig. 5A; Table 3). No searchlight volumes showed
significant correlation values for the chaining model. During the
recall phase significant correlations followed the patterns ob-
served in the encoding phase with the exception of more signifi-
cant clusters in the superior temporal lobe posterior to the
primary auditory cortex (SPT, Fig. 5A) and the lack of IFG clus-
ters. Again, no searchlight volumes showed significant correla-
tion values for the chaining model. Complementary ROI analyses
revealed that both in the encoding and recall phases, order infor-
mation was correlated between different brain regions signifi-
cantly above chance (p � 0.001), including vMC, SPT, SMG, and
IFG (Fig. 5B). This indicates that the representation of order
information was similar and shared between those brain areas
during both encoding and recall phases of the task.

The internal representations of item-order associations can be
visualized by performing a multidimensional scaling of the acti-
vation patterns evoked by each of the six orderings (averaged
across searchlights within the ROI). The resulting plot displays
the similarity structure of the orderings as found in the ROIs (Fig.
5C,D). In the brain areas which represent item-order associations
(Fig. 5C), sequences close in the Hamming space also lie closer to
one another in the MDS plot. For example, orderings which re-
tain one item-position mapping are closer to each other than to
orderings which retain none.

To further elucidate the nature of representations we per-
formed a post hoc analysis in the brain areas which showed signif-
icant order effects. For this purpose we ran a three-way
classification of fMRI activity patterns based on the first, middle,
or last item in the sequence (e.g., first-item decoding: ABC, ACB
vs BAC, BCA, vs CAB, CBA) using the whole-brain searchlight
approach (see Materials and Methods, Representation of order
information). We did not observe above chance classification results
in any brain areas suggesting that our results cannot be explained
solely by the first, middle, or last items of the sequences.

Discussion
This study provides the first fMRI evidence for a specific model of
order representation in the human brain. The representational
similarity analysis revealed that a set of brain areas in the tempo-
ral lobe, supramarginal gyrus, and premotor cortex encode asso-
ciations between items and order as predicted by a positional
model (Fig. 5; Table 3). The chaining model of order representa-
tion leading to alternative pattern similarity prediction was
shown to be inconsistent with the fMRI data. Our results thus
suggest a neural model of order representation, which stores item
codes, position codes, and the mapping between them.

These results show that item-order associations are encoded
in a network of brain areas following a posterodorsal stream of

Table 3. Order information: peak searchlight coordinates where the similarity of
activity patterns were predicted by the Hamming distance significantly above
chance across participants

Region Mean rho X Y Z p H

Encoding vMC 0.20 �62 �3 8 �0.001 L
IFG 0.28 59 18 20 �0.001 R

0.34 �58 5 9 �0.001 L
0.29 �50 6 19 0.002 L

SPT 0.24 �54 �39 19 �0.001 L
IPL 0.25 �52 �21 40 �0.001 L

0.26 38 �33 45 0.002 R
SMG 0.37 �59 �27 17 0.002 L

0.25 59 �17 15 0.002 R
Recall SPT 0.29 57 �28 12 �0.001 R

IPL 0.32 �52 �21 40 �0.001 L
0.32 38 �33 45 �0.001 R

vMC 0.27 61 6 25 0.002 R
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cortical auditory processing pathways. Previous research on ani-
mal and human physiology has shown that the posterodorsal
stream emanates from the posterior auditory belt areas (planum
temporale) to parietal cortex, premotor cortex, and dorsolateral
prefrontal cortex (Romanski et al., 1999; Kaas and Hackett, 2000;
Hackett, 2011); and is selectively involved in the processing of
spatiotemporal properties of auditory stimuli (Rauschecker,
1998; Rauschecker and Scott, 2009). Specifically, the inferior pa-
rietal lobe and the supramarginal gyrus have been shown to be
sensitive to order tasks (Moser et al., 2009). Here we have shown
that positional item-order associations are represented in the
posterodorsal stream during both the encoding and recall phases
of the order task. Furthermore, the representation of order was
not detected in the primary auditory areas and was instead found
in the posterior parts of the STG (including the PT) in the recall
phase. This suggests that auditory sensory areas might not main-
tain the item-order associations beyond the initial encoding
phase. We also showed that in different brain areas positional
item-order associations are similar (including the vMC, SPT,
SMG, and IFG; Fig. 5B) during both encoding and recall phases of
the task. This suggests that these representations are relatively
stable throughout the whole dorsal processing stream. We also
established that the item-order associations we observed were not
driven by a specific position in a sequence. This suggests that
these brain areas encode item-position associations throughout
whole sequence.

Here we have shown that fMRI data can be used to decode
both item and item-order association codes. However, the posi-
tional models generally depend on the availability of a positional
code, which provides a gradually evolving temporal context for
the items in the specific sequence. Previous research on rodent
neurophysiology has shown that such positional codes could be
encoded by the hippocampus (Kesner et al., 2002, 2010; Manns et
al., 2007; Devito and Eichenbaum, 2011). Our study was unsuited
to the detection of positional codes for two reasons: first, the
temporal resolution of the scanning protocol was not sufficient to
acquire and deconvolve fMRI data for single items in the se-
quence (a whole sequence of three items was presented in 2.6 s,
equal to the TR of the scanning sequence; see Materials and
Methods, fMRI data acquisition and preprocessing). Second, be-
cause of auditory stimulus presentation we used a silent se-
quence, which caused a significant BOLD signal “drop-off” in the
medial-temporal lobe (ibid). Thus, our study does not contradict
previous research, which has found that the hippocampal mem-
ory system participates in representing serial order.

Theoretically, our results are consistent with a large body of
modeling work on order representation, which assumes an exis-
tence of a gradually changing positional context signal (Henson
and Burgess, 1997; Henson et al., 2003; Burgess and Hitch, 2006;
Hitch et al., 2009). We have shown that the fMRI data support
positional models over the alternative class of chaining models. It
should be noted, however, that our results relate to a STM task
with three-item sequences, which are comfortably within the
STM span of the vast majority of people and are hence recalled
without difficulty. As the sequence length increases people start
relying of various cognitive strategies like grouping (Burgess and
Hitch, 2006; Parmentier and Maybery, 2008; Kalm et al., 2012),
which must also change the underlying representations of tem-
poral order. Similarly, previous research suggests that the neural
sequence representations change when longer sequences are
transferred from short to long term memory through repetitions
(Kalm et al., 2013). Furthermore, when participants recall se-
quences from long term memory their error profiles suggest

chunking of adjacent items, which could be similar to chaining-
like formation of interitem associations (Cowan and Chen, 2006;
Orbán et al., 2008; Perlman et al., 2010). In fact, learning multiple
overlapping sequences simultaneously would be impossible if
participants could only rely on item-position associations (Kalm
et al., 2013). Further research is required to study the change in
order representations when long-term memory is involved. In
sum, our evidence for positional models here applies to short
sequences that can be recalled using short-term memory alone.
Similarly, although our results support the broad class of posi-
tional models for encoding order in STM, the exact nature of the
positional code in STM, including whether that position is en-
coded absolutely (Lee and Estes, 1981), temporally (Brown et al.,
2000, 2007; Hitch et al., 2009), or relatively (Henson, 1998; Page
and Norris, 1998) is unclear and will require additional research.
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