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Microstimulation of the Human Substantia Nigra Alters

Reinforcement Learning
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Animal studies have shown that substantia nigra (SN) dopaminergic (DA) neurons strengthen action-reward associations during rein-
forcement learning, but their role in human learning is not known. Here, we applied microstimulation in the SN of 11 patients undergoing
deep brain stimulation surgery for the treatment of Parkinson’s disease as they performed a two-alternative probability learning task in
which rewards were contingent on stimuli, rather than actions. Subjects demonstrated decreased learning from reward trials that were
accompanied by phasic SN microstimulation compared with reward trials without stimulation. Subjects who showed large decreases in
learning also showed an increased bias toward repeating actions after stimulation trials; therefore, stimulation may have decreased
learning by strengthening action-reward associations rather than stimulus-reward associations. Our findings build on previous studies
implicating SN DA neurons in preferentially strengthening action-reward associations during reinforcement learning.
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Introduction

Contemporary theories of reinforcement learning posit that de-
cisions are modified based on a reward prediction error (RPE),
the difference between the experienced and predicted reward
(Sutton and Barto, 1990). A positive RPE (outcome better than
expected) strengthens associations between the reward and pre-
ceding events (e.g., stimuli, actions) such that a rewarded deci-
sion is more likely to be repeated. Animal electrophysiology
studies have shown that dopaminergic (DA) neurons in the ven-
tral tegmental area (VTA) and substantia nigra (SN) display pha-
sic bursts of activity following unexpected rewards (Schultz et al.,
1997; Bayer and Glimcher, 2005), leading to the hypothesis that
they encode positive RPEs (Glimcher, 2011). Because SN DA
neurons predominantly send projections to dorsal striatal re-
gions that mediate action selection (Haber et al., 2000; Lau and
Glimcher, 2008), they have been hypothesized to preferentially
strengthen action-reward associations during reinforcement
learning (Montague et al., 1996). Supporting this hypothesis, a
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previous rodent study has shown that SN microstimulation rein-
forces actions and strengthens corticostriatal synapses in a
dopamine-dependent manner (Reynolds et al., 2001).

In humans, much of the evidence linking DA activity to rein-
forcement learning has come from studies in patients with Par-
kinson’s disease (PD), who have significant degeneration of SN
DA neurons (Ma et al., 1996) and show specific deficits on
reward-based learning tasks compared with age-matched con-
trols (Knowlton et al., 1996). Administration of DA agonists in
these patients improves reinforcement learning performance
(Franketal., 2004; Rutledge et al., 2009), suggesting that DA plays
an important role in human reinforcement learning. However,
both PD and DA agonists manipulate tonic DA levels throughout
the brain in addition to phasic DA responses. Because altered
tonic DA levels may influence performance on learning tasks
through nonspecific changes in motivation (Niv et al., 2007),
these studies do not specifically implicate the phasic activity of
DA neurons in human reinforcement learning (Shiner et al.,
2012).

To study the role of phasic DA activity during human rein-
forcement learning, we applied microstimulation in the SN of
patients undergoing deep brain stimulation (DBS) surgery for
the treatment of PD. Microstimulation has been shown to en-
hance neural responses near the electrode tip (Histed et al., 2009)
and is widely used in animal electrophysiology studies to map
causal relations between particular neural populations and be-
havior (Clark et al., 2011). Although microstimulation is often
applied during DBS to aid in clinical targeting (Lafreniere-Roula
etal., 2009), it has not been applied in association with a cognitive
task. Here, we applied microstimulation during a subset of feed-
back trials as subjects performed a reinforcement learning task in
which rewards were contingent on stimuli rather than on actions
(putative DA neurons in the human SN have been shown to
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Figure 1. A, Intraoperative targeting of SN. During DBS surgery, a microelectrode is ad-

vanced into the SN to map the ventral border of the STN. An example preoperative MRI scan
(sagittal view) overlaid with a standard brain atlas and estimated microelectrode position is
shown (Jaggietal., 2004; Zaghloul etal., 2009). B, Reinforcement learning task. During surgery,
11 subjects performed a two-alternative probability learning task with inconsistent stimulus-
response mapping. (, Experimental design. During each stage of the session (50 trials each),
subjects sampled reward probabilities of two item pairs that were matched in relative reward
rate. Each pair of colored rectangles depicts an item pair (the green and red shading within each
rectangle indicates the probability of positive and negative feedback associated a particular
item in the pair, respectively). During Stage 1, we obtained microelectrode recordings from the
SN. An example 500 ms high-pass-filtered (=300 Hz) voltage trace is shown. During Stages 2
and 3, we applied electrical microstimulation through the recording microelectrode as depicted,
but no longer obtained recordings (see Materials and Methods).

display RPE-like responses during this postfeedback time inter-
val; Zaghloul et al., 2009). If phasic SN responses preferentially
strengthen action-reward associations during reinforcement
learning, then stimulation during reward trials should induce a
bias to repeating actions, rather than stimuli, and disrupt learn-
ing during the task.

Materials and Methods

Subjects. Eleven patients undergoing DBS surgery for the treatment of PD
volunteered to take part in this study (8 male, 3 female, age = 63 = 7
years, mean * SD). Subjects provided their informed consent during
preoperative consultation and received no financial compensation for
their participation. Per routine clinical protocol, Parkinson’s medica-
tions were stopped on the night before surgery (12 h preoperatively);
therefore, subjects engaged in the study while in an OFF state. The study
was conducted in accordance with a University of Pennsylvania Institu-
tional Review Board-approved protocol.

Intraoperative methods. During surgery, intraoperative microelectrode
recordings (obtained from a 1-pum-diameter tungsten tip electrode ad-
vanced with a power-assisted microdrive) were used to identify the SN
and the subthalamic nucleus (STN) as per routine clinical protocol (Jaggi
et al., 2004; Fig. la). Electrical microstimulation is routinely applied
through the microelectrode to aid in clinical mapping of SN and STN
neurons and was approved for use in this study by the University of
Pennsylvania Institutional Review Board. Once the microelectrode was
positioned in the SN, we administered a two-alternative probability
learning task through a laptop computer placed in front of the subject.
Subjects viewed the computer screen through prism glasses placed over
the stereotactic frame and expressed choices by pressing buttons on
handheld controllers placed in each hand.

Reinforcement learning task. Subjects performed a two-alternative
probability learning task with feedback, which has been widely applied to
the study of reinforcement learning (Sugrue et al., 2005; Fig. 1b). Subjects
chose between pairs of items and probabilistically received positive or

Ramayya et al. ® SN Microstimulation Alters Human Learning

negative feedback after each choice. One item in each pair was associated
with a high probability of reward (e.g., 0.8), whereas the other item was
associated with a low probability of reward (e.g., 0.2). Subjects were
informed that each stimulus in a presented pair was associated with a
distinct reward rate and that their goal was to maximize rewards over the
entire session. To achieve this goal, subjects needed to learn the under-
lying reward probabilities associated with each stimulus by trial and error
and adjust their choices accordingly. Each trial consisted of the presen-
tation of stimuli, subject choice, and feedback presentation. In the event
of positive feedback (“wins”), the screen turned green and the sound of a
cash register was presented. In the event of negative feedback (“losses”),
the screen turned red and an error tone was presented. The item pairs
consisted of colored images of simple objects that were matched based on
normative data (e.g., semantic similarity, naming agreement, familiarity,
and complexity; Rossion and Pourtois, 2004). The same pairs of stimuli
were used across subjects; however, the assignment of reward probabili-
ties to each stimulus in the pair was randomly assigned for each subject.
The arrangement of the items on the screen, and thus the button associ-
ated with each item (left and right), was randomized from trial to trial.

Each session consisted of 150 trials (15 min of testing time) and was
subdivided into three stages (50 trials each; Fig. 1¢). Each stage consisted
of two novel pairs of stimuli (two sets of stimuli) that resulted in two
independent learning conditions per stage. Such a design was used so that
we could study the effects of stimulation on learning while controlling for
various extraneous factors that might influence performance. To ensure
a fair comparison between the two item pairs within each stage, the
relative reward rates for each pair were set to 0.8 versus 0.2. If the subject
selected the high-probability item on at least 80% of trials on Stage 1,
then the relative reward rates for both pairs in subsequent stages were set
to 0.7 versus 0.3 to encourage learning during the remainder of the ses-
sion; otherwise, they remained the same. Furthermore, the item pairs
were presented in alternating trains of three to six trials. This method of
item presentation allowed subjects to learn reward probabilities associ-
ated with a single item pair for multiple sequential trials while ensuring
that the two pairs within a stage were associated with similar levels of
motivation, or arousal, which likely vary slowly throughout the session.

During Stage 1, we did not provide stimulation in association with
either pair, but during the subsequent stages, we applied microstimula-
tion during a subset of feedback trials (see “Stimulation Parameters”
section). During Stage 2, one of the pairs was associated with SN microstimu-
lation during positive feedback that followed a high-reward-probability choice
(STIM™), whereas the other pair did not receive stimulation (SHAM™"). During
Stage 3, one pair received SN microstimulation during negative feedback that
followed a low-reward-probability choice (STIM ™), whereas the other pair did
not receive stimulation (SHAM™). During Stage 2, we sought to assess the effect
of stimulation on learning from wins by comparing performance on the STIM™*
and SHAM" pairs, whereas during Stage 3, we sought to assess the effect of
stimulation on learning from losses by comparing performance on the STIM ™
and SHAM™ pairs.

Because the goal of the study was to assess whether there were
stimulation-related changes in learning across the various item pairs, it
was crucial to minimize within-subject, across-pair variability in choice
behavior. To reduce such variability, we ensured that reward probabili-
ties of the items did not drastically fluctuate over the course of each stage
by using deterministic reward schedules (e.g., for a reward probability of
0.8, we ensured that 4 of every 5 selections of that stimulus result in
positive feedback). These deterministic reward schedules were not true
binomial processes and may have allowed for more distinct learning
strategies than reward schedules typically used in probability learning
tasks. However, by reducing within-subject variability in choice behav-
ior, these schedules allowed us to detect more effectively stimulation-
related changes in learning and to take full advantage of the rare clinical
opportunity offered by this patient population. When possible, subjects
first performed the task during preoperative consultation, butin all cases,
the task was reviewed with subjects on the morning of surgery. Further
instructions were provided before beginning the task intraoperatively.
Subject #3 did not perform Stage 1 due to a technical difficulty during the
experiment, but completed Stages 2 and 3 of the task (see Table 2). The
design also included a fourth stage consisting of a STIM™ and a STIM ™~
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pair to allow for a direct comparison between the two conditions; how-
ever, because only a subset of subjects (n = 6) completed this stage due to
fatigue, these data were not analyzed for this study.

Stimulation parameters. Stimulation was provided through the micro-
electrode immediately after feedback presentation during the learning
task using an FHC Pulsar 6b microstimulator using the following param-
eters: biphasic, cathode phase-lead pulses at 90 Hz, lasting 500 ms at an
amplitude of 150 wAmps and a pulse width of 500 us. Similar stimula-
tion parameters have induced learning in the rodent SN (Reynolds et al.,
2001) and the nonhuman primate VTA (Grattan etal.,2011). An LED on
the front chasse of the stimulator indicated the onset of stimulation;
however, this was not visible to the patient as they performed the task.
There was no sound associated with stimulation. Therefore, stimulation
trials were not signaled to subjects in any manner. None of the subjects
reported a perceptual change associated with the application of
microstimulation.

Reinforcement learning model simulations. To better understand sub-
jects’ behavior during the task, we simulated the performance of various
reinforcement learning models (see Q learning model, below) on a two-
alternative probability learning task with inconsistent stimulus—response
mapping. Each simulated session consisted of 25 trials (similar to one
item pair in our task) and consisted of a single item pair with reward
probabilities of 0.8 and 0.2. Each item was randomly assigned to an
action from trial to trial.

Q learning model. This standard reinforcement learning model
maintains independent estimates of reward expectation (Q) values for
each option i at each time ¢ (Sutton and Barto, 1990). A choice is
probabilistically generated on each trial by comparing the Q values of
available options on that trial using the following logistic function:

exp(Qi(1)/B)
S exp(QDIB)
the softmax logistic function (which accommodates noise in the choice
process or different relative tendencies for exploration vs exploitation;
Daw et al., 2006). Once an item is selected by the model, feedback is
received, and Q values are updated using the following learning rule:

P(t) = Where f3 is a free parameter for inverse gain in

Qi(t+ 1) = Qit) + a[R(t) — Q:«(1)],

where R(f) = 1 for correct feedback, R(f) = 0 forincorrect feedback,
and « is the learning rate parameter that adjusts the manner in which
previous reinforcements influence current Q values. Large o values (up-
per bound = 1) heavily weight recent outcomes when estimating Q,
whereas small a values (lower bound = 0) more evenly weight reinforce-
ments from previous trials. To simulate the behavioral changes associ-
ated with decreasing learning rates, we studied the performance of 34 Q
model agents that varied in their a values (0.01-1, with a step size 0of 0.03;
Frank et al., 2007) while fixing the 8 parameter at 0.2. Similarly, to
simulate behavioral changes associated with increasing noise in the
choice policy, we studied the performance of 34 agents that varied in their
B values (0.01-1, with a step size of 0.03) while fixing the a parameter at
0.2. Q values associated with each item were initialized to 0.5. We
simulated the performance of these agents on 1000 randomly gener-
ated sessions.

Hybrid action-stimulus learning model. To extend the Q learning model
to a task with inconsistent stimulus-response mapping, we developed a
hybrid action-stimulus (AQ) learning model. Similar to the standard Q
model, the hybrid AQ model tracks reward expectations associated with
each stimulus using a recency-weighted exponential decay function that
is controlled by the learning rate a (ranging from 0-1). However, in
addition, the hybrid AQ model also tracks the reward expectations
associated with each available action (A). To limit the addition of free
parameters, the a associated with the action values is assumed to be the
same for tracking stimulus and action values. A weighting parameter
(W,, ranging from 0 to 1) determines the aggregate reward expectation
associated with a particular action/stimulus combination (AQ) in the
following manner:

AQ; (1) = W,(A(1) + (1 = W)(Q)(1)),
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where i indexes a particular stimulus, jindexes a particular action, and
t represents a particular trial. Similar to the Q model, the hybrid AQ
model computes the probability of selecting from each action/stimu-
lus combination using the following softmax-logistic function:
exp(AQ;,(1)/B)
S exp(AQ. - (1)/B)
able action-stimulus combinations and B is a free parameter for inverse
gain in the softmax logistic function. In summary, the hybrid AQ model
has three free parameters—the learning rate (), noise in the choice
policy (B), and an action-value weighting parameter (W,). To simulate
the behavioral changes that would be observed after strengthened
action—reward associations, we simulated the behavior of 34 hybrid AQ
models at various levels of the W, parameter (0.01-1, with a step size of
0.03) while fixing o and 3 at 0.2.

Fitting reinforcement learning models to subjects’ behavioral data. To
study the relation between stimulation-related behavioral changes and
the parameters of the reinforcement learning models directly, we fit the
two-parameter Q learning model and the three-parameter hybrid AQ
model to each subject’s behavioral data. We fit each model separately to
subjects’ choices on each item pair so as to compare changes in the
parameter values across stimulation conditions. To identify the set of
best-fitting parameters for a given pair, we performed a grid search
through each model’s parameter space (0.01-1, with a step size of 0.03)
and selected the set of parameters that resulted in the most positive
log-likelihood estimate (LLE) of the model’s predictions of the subject’s

P, (1) = , where AQ; ;- represents all other avail-

choices (i*) as follows: LLE = log(l_[tPi»,t>. To assess the goodness-of-

fit of each model fit across the dataset, we computed a LLE of each
model’s predictions of all subject choices during each item pair. To assess
whether model predictions were better than chance, we computed a
pseudo-R? statistic (r-LLE)/r, where r represents the LLE of purely ran-
dom choices (P = 0.5 forall choices; Daw et al., 2006). To allow for a fair
comparison between the two- and three-parameter model fits, we penal-
ized each model for complexity by using the Akaike Information Crite-
rion (AIC; Akaike, 1974). Because we were computing goodness-of-fit on
the group level, we considered the Q model to have 22 parameters (two
parameters for each subject), and the hybrid AQ model to have 33 pa-
rameters (three parameters for each subject).

Extracting spiking activity from microelectrode recordings. We obtained
microelectrode recordings as subjects performed Stage 1 before applying
microstimulation during the experiment. Because these recordings were
of a relatively short duration ( = 5 min.) and were only associated with
50 trials, their main purpose was to aid in interpretation of the stimula-
tion results, rather than to characterize the functional properties of hu-
man SN neuronal activity (Zaghloul et al., 2009). To assess whether
stimulation-related behavioral changes were related to the properties of
the neuronal population near the electrode tip, we extracted multiunit
activity from each microelectrode recording using the WaveClus soft-
ware package (Quiroga et al., 2005). We band-pass filtered each voltage
recording from 400 to 5000 Hz and manually removed periods of motion
artifact. We identified spike events as negative deflections in the voltage
trace that crossed a threshold that was manually defined for each record-
ing (=3.5 SD about the mean amplitude of the filtered signal). The
minimum duration between consecutive spike events (censor period)
was set to be 1.5 ms. Spike events were subsequently clustered into units
based on the first three principal components of the waveform. Noise
clusters from motion artifact or power line contamination were manu-
ally invalidated. We considered spikes from all remaining clusters to-
gether as a multiunit. From each multiunit, we extracted two features
that are characteristic of DA activity—the mean waveform duration and
the phasic postreward response (Zaghloul et al., 2009; Ungless and Grace,
2012). We quantified the waveform duration as the mean peak-to-trough
duration for all spikes and the phasic postreward response as the differ-
ence between the average spike rate during the 0-500 ms postreward
interval and that during the —250—0 and 500—-750 ms intervals. We did
not consider responses after negative outcomes because DA neurons are
not homogenous in their responses after negative outcomes (Matsumoto
and Hikosaka, 2009). We obtained multiunit activity from nine of the 11
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subjects. We were unable to obtain recordings from one subject (Subject
#3) and could not distinguish spiking activity from noise contamination
in another subject (Subject #11).

Results

We applied microstimulation in the SN of 11 patients undergoing
DBS surgery for the treatment of PD (Fig. 1a). Subjects per-
formed a two-alternative probability learning task in which they
selected between pairs of items (images of common objects) and
probabilistically received abstract rewards (“wins”) or punish-
ments (“losses”) after each choice (Fig. 1b). Subjects were in-
structed that one item in each pair carried a higher reward
probability than the other item in the pair and that their goal was
to maximize the number of rewards that they obtained during the
session. We indexed learning on a given item pair by calculating
the probability that subjects selected the high-probability item on
trials associated with that pair. Because items were randomly
assigned to an action (left or right button) on each trial, subjects
were required to encode stimulus-reward associations rather
than action—reward associations to perform well during the task.
The task was divided into multiple stages (50 trials each) with
each stage consisting of two item pairs matched in their relative
reward rates (see Materials and Methods; Fig. 1¢). During Stage 1,
we did not provide stimulation in association with either item
pair (SHAM) so that subjects could become acclimated to the
learning task. Across the 50 trials of Stage 1, subjects selected the
high-probability item on 63% of trials, which trended toward
being greater than chance (50%, #(9) = 2.07,p = 0.068). In
each of the next two stages, one item pair was associated with
microstimulation (STIM), whereas the other was not (SHAM).
By comparing learning on the STIM and SHAM pair within each
stage, we sought to assess the effects of SN microstimulation on
learning.

During Stage 2, we assessed the effect of stimulation on
reward learning by applying stimulation during positive out-
comes associated with the high-reward-probability item on
one of the pairs (STIM™). We found that subjects were less
likely to select the high-probability item on the STIM™ pair
compared with the SHAM pair during this stage (#10) = 2.56,
p = 0.029; Fig. 2, Table 1). This difference in performance could
be attributed to a stimulation-related decrease in learning; sub-
jects demonstrated learning on the SHAM pair (accuracy =
67%, t(10) = 3.05,p = 0.012), but did not perform better than
chance on the STIM™ pair (accuracy = 48%, p > 0.5). To di-
rectly study the behavioral changes that occured following stim-
ulation, we compared subjects’ tendencies to repeat their
selection of the high-reward-probability item after rewards
(“win-stay”) on the STIM* and the SHAM pair. We found that
subjects reliably demonstrated decreased win-stay after reward
trials accompanied by stimulation compared with reward trials
without stimulation (#(10) = 2.71,p = 0.022). Therefore, sub-
jects demonstrated decreased learning from reward trials that
were accompanied by phasic SN microstimulation compared
with reward trials without stimulation. During Stage 3, we ap-
plied stimulation during negative feedback associated with the
low-reward probability item on one item pair (STIM ™) to study
the effect of SN stimulation on learning from negative outcomes.
We did not observe differences in learning between the STIM ™
pair and the SHAM pair within the same stage, either in terms of
overall accuracy (Fig. 2) or their probability repeating an item
choice after stimulation trials (p’s > 0.3).

Our main finding was that SN microstimulation after rewards
during Stage 2 disrupted learning of stimulus—reward associa-
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Figure 2.  Effects of stimulation on learning. To index learning performance on a particular

item pair, we computed the probability that subjects chose the item that was associated with a
high reward probability (“accuracy”). During Stage 2, subjects demonstrated lower accuracy on
the STIM™ pair compared with the SHAM pair. During Stage 3, we did not identify changes in
accuracy between the STIM™ and SHAM pairs. *p << 0.05. Error bars indicate SEM across
subjects (n = 11).

tions. Because SN DA neurons have been hypothesized to prefer-
entially strengthen action—reward associations (Montague et al.,
1996; Haber et al., 2000; Frank and Surmeier, 2009), the observed
decrease in learning might have occurred because stimulation
induced a bias toward repeating actions rather than stimuli after
high-probability reward trials. Such a bias would result in de-
creased performance because the mapping between stimuli and
actions (left vs right button) was randomized from trial to trial
during the task; repeating the same action after the selection of
a high reward-probability item would result in the selection of
the low-reward-probability item on approximately half the
trials. If this is the case, then subjects should show an increased
bias toward repeating the same button after high-probability-
reward trials (“win-same button”) on the STIM™ pair com-
pared with the SHAM pair. We did not observe a reliable
stimulation-related increase in win-same button across sub-
jects (p > 0.4); however, we observed a positive correlation
between stimulation-related decreases in accuracy and in-
creases in win-same button (r = 0.77, p = 0.006; Fig. 3a).
Therefore, subjects who showed the greatest stimulation-
related decreases in learning also showed an increased bias
toward repeating actions after stimulation trials.

The positive correlation between stimulation-related de-
creases in accuracy and increases in win-same button suggests
that stimulation may have disrupted learning by strengthening
action-reward associations during the task. However, one might
wonder whether this positive correlation might simply occur in
association with decreased learning during our task. To assess
whether this was the case, we simulated the performance of a
standard two-parameter reinforcement learning model (Q-mod-
el; Sutton and Barto, 1990) performing a two-alternative proba-
bility learning task with inconsistent stimulus-response mapping
(Materials and Methods; Fig. 3b,c). Briefly, the model estimates
the expected reward associated with each stimulus based on a
recency-weighted average of recent outcomes (forgetting func-
tion) and probabilistically makes a selection by comparing the
expected reward associated with the available options. The model
has two free parameters: a learning rate («) that controls the rate
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Table 1. Summary of subject data
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Subject Age Sex A Accuracy A Win-stay A Win-same button Waveform duration (ms) Phasic spike response (sp/s)
1 67 M +0.12 —0.50 —0.17 0.77 —1.13
2 66 M —0.36 —0.17 +0.21 0.78 0.34
3 66 M —0.16 +0.025 —0.17 — —
4 53 F +0.08 +0.028 0 0.75 1.36
5 74 M —0.32 —0.52 +0.20 0.84 —0.86
6 54 M —0.68 —1.00 +0.53 0.85 2.07
7 56 M —0.28 —0.67 +0.17 0.85 1.07
8 68 M +0.04 —0.13 —0.29 0.73 —0.73
9 53 M —0.08 0 +0.33 0.92 143

10 61 F —0.20 —0.03 —0.03 0.87 0.57

n 66 F —0.12 —0.13 —0.13 — —

Columns 4 — 6 describe behavioral changes during Stage 2; columns 7—8 describe properties of multiunit activity recorded during Stage 1.

—, Missing data (we were unable to obtain recordings from Subject #3 and did not identify spiking activity from Subject #11).
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A, Relation between decreases in learning and action bias. Stimulation-related decreases in accuracy were positively correlated with an increased bias toward repeating a button press

after reward trials (win-same button; Pearson’s r = 0.77, p = 0.006). Each dot represents a subject, the solid black line is the regression slope, and the dashed lines represent 95% confidence
intervals. B, C, The Qlearning model is insufficient to explain stimulation-related behavioral changes. Simulated behavior of a standard two-parameter reinforcement learning algorithm (Q model)
on a two-alternative probability learning task with inconsistent stimulus-response mapping. Accuracy (light gray line), probability of repeating rewarded items (win-stay, dark gray line), and
probability of repeating rewarded actions (win-same button, black line) are shown for decreasing leaming rates (c; B) and increasing noise in the choice policy (3; €). Decreases in learning rate and
increases in decision noise were accompanied by a decrease in accuracy and a decrease in win-stay, but no change in win-same button.

of decay of the forgetting function and noise in the choice policy
(B). We found that both decreases in « and increases in 3 were
associated with decreases in accuracy and win-stay, but no ac-
companying change in win-same button. Therefore, the positive
correlation between decreased accuracy and increased win-same
button cannot be explained by parametric changes in the stan-
dard two-parameter Q-model and is not a necessary result of the
task design.

To assess whether the observed stimulation-related behav-
ioral changes could be explained by strengthened action—reward
associations, we developed a hybrid AQ learning algorithm that
independently tracks reward expectations associated with each
available action in addition to those associated with each avail-
able stimulus (see Materials and Methods). The model selects
between available options by comparing the aggregate reward
expectancies associated with the available action/stimulus
combinations (e.g., house and left button press vs candle and
right button press). A weighting parameter (W,) controls the
strength of action value representations relative to stimulus value
representations (higher W, values result in strengthened action—
reward associations). In total, the model has three free parame-
ters—a (thelearning rate), 8 (noise in the choice policy), and W,
(strength of action—reward associations). We studied the behav-
ior of the hybrid AQ model at various levels of W, to simulate the
behavioral changes that would be observed after strengthened
action—reward associations (see Materials and Methods; Fig. 4a).

We found that increasing levels of W, were associated with de-
creased accuracy, decreased win-stay, and an increased win-same
button. Therefore, increasing the strength of action-reward as-
sociations in the hybrid AQ model is able to explain the major
stimulation-related behavioral changes, including the positive
correlation between decreases in accuracy and increases in win-
same button. Consistent with the behavior predicted by these
model simulations, the five subjects who showed stimulation-
related increases in win-same button showed a mean (=SEM)
win-same button of 0.77 (+0.11) during the STIM™* condition
and 0.48 (£0.11) during the SHAM condition.

To investigate directly whether stimulation-related behavioral
changes were related to strengthened action-reward associations,
we fit the two-parameter Q model and the three-parameter hy-
brid AQ model to each subjects’ choice behavior during the
STIM* and SHAM conditions (see Materials and Methods). For
each subject, we identified the parameter sets that provided the
best fit to subjects’ choices during each pair using a grid search
across each model’s parameter space. We assessed whether the
three-parameter hybrid AQ model provided a better explanation
of subjects’ choice behavior than the two-parameter Q learning
model using the AIC, a goodness-of-fit measure that applies a
penalty for model complexity (Akaike, 1974). We found that
the hybrid AQ model provided a better fit to subjects’ choice
behavior during the STIM™ condition, whereas the Q—model
provided a better fit to subjects’ choice behavior during the
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SHAM condition (Table 2). Then, using
the parameter estimates obtained from
the hybrid AQ model, we assessed
whether stimulation-related decreases in
accuracy during Stage 2 were best ex-
plained by changes in «, 3, or W, by ap-
plying the following linear regression
model: R =, + B,A + BzB + ByW,
where R was a vector containing the de-
crease in accuracy for each subject. A, B,
and W were vectors containing changes
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in a, B, and W, respectively. We found
that simulation-related decreases in ac-
curacy demonstrated a significant, posi-
tive relation with increases in W, (By

= 0.22,1(10) = 2.48,p = 0.017), but not
with changes in ccor 3 (p's > 0.3). These re-
sults provide further support for the hypothe-
sis that stimulation-related decreases in
accuracy were related to strengthened action—
reward associations.

Strengthened action-reward associa-
tions during feedback trials should result in improved accuracy
during congruent trials (where the rewarded item is associated
with the same action as the previous trial), but decreased accuracy
during incongruent trials (where the rewarded item is no longer
associated with the same action as the previous trial). Our finding
that increases in win-same button were correlated with decreases
in accuracy suggests that strengthened action—reward associa-
tions may have preferentially occurred during incongruent trials.
To assess whether this was the case, we studied raw probabilities
of win-same button during the SHAM and STIM ™ pairs in sub-
jects who showed a stimulation-related increase in win-same but-
ton, but separately for congruent and incongruent trials (n = 5;
Fig. 5a). During incongruent trials, these subjects showed a mean
win-same button of 0.75 (+0.19) during the STIM " condition,
but a win-same button of 0.24 (*£0.15) during the SHAM condi-
tion. However, during congruent trials, these subjects showed a
mean win-same button of 0.67 (=0.21) and 0.87 (%£0.08) during
the STIM* and SHAM conditions, respectively. To relate these
behavioral patterns to the earlier model-based analyses, we exam-
ined the predicted win-same button probabilities of the various
model simulations during congruent and incongruent trials. We
found that the predictions of the Q learning model were incon-
sistent with the observed behavior because both decreases in «
and increases in 3 were associated with symmetric changes in
win-same button (decreases during congruent trials and in-
creases during incongruent trials to chance level; Fig. 5b,c). In
contrast, increases in W), of the hybrid AQ model were associated
with asymmetric changes in win-same button (increases in win-
same button during incongruent trials to above chance levels and
modest decreases in win same-button during congruent trials;
Fig. 5d), which is consistent with the observed stimulation-
related behavioral changes. One might have predicted that
strengthened action—reward associations should result in in-
creased win-same button after congruent trials; however, because
each action is associated with a reward probability of 0.5, this
would only occur in the setting of very high « values.

These results suggest that stimulation may have strengthened
action-reward associations during the task, possibly by enhanc-
ing phasic DA activity in the SN (Montague et al., 1996; Reynolds
et al., 2001). Because DA neurons are anatomically clustered in
the SN (Henny et al., 2012) and because microstimulation has

Wa

0.7 ! 0 0.2 0.4 0.6
Decrease in accuracy (stage 2)

Figure 4. A, Hybrid AQ learning model. Shown is the simulated behavior of the three-parameter reinforcement learning
algorithm (hybrid AQ model) on a two-alternative probability learning task with inconsistent stimulus-response mapping. Accu-
racy (light gray line), probability of repeating rewarded items (win-stay, dark gray line), and probability of repeating rewarded
actions (win-same button, black line) are shown for varying values of the action value weighting parameter (W ,). Strengthened
action—reward associations were associated with decreases in accuracy and win-stay and increases in win-same button. B,
Stimulation-related behavioral changes can be explained by strengthened action—reward associations. We quantitatively fit the
hybrid AQ model to subjects’ behavior on the STIM* and SHAM pair during Stage 2. We found that stimulation-related decreases
in accuracy showed a significant positive relation with increases in W, but not x or 3. See main text for statistics.

been shown to enhance the activity of neurons that surround the
electrode tip (Histed et al., 2009), one might expect to observe the
greatest changes in win-same button when the microelectrode tip
was positioned near DA neurons. Therefore, we studied the rela-
tion between stimulation-related changes in win-same button
and the properties of the neural activity recorded from the mi-
croelectrode during Stage 1. We extracted multiunit spiking ac-
tivity from each recording and extracted two features that are
characteristic of DA activity—average waveform duration and
the phasic postreward response (Zaghloul et al., 2009; Ungless
and Grace, 2012; see Materials and Methods). We found positive
correlations between stimulation-related increases in win-same
button and both the phasic postreward response (Pearson’s r =
0.69, p = 0.040; Fig. 6a) and the mean waveform duration of
recorded multiunit activity (Pearson’s r = 0.66, p = 0.053; Fig.
6b). Multiunits recorded from the two subjects that showed the
greatest increases in win-same button showed broad waveforms
(0.85 and 0.92 ms) and phasic postreward bursts that were visible
in the spike raster (+2.07 spikes/s, and +1.43 spikes/s; Fig. 6¢).
These results suggest that stimulation-related increases in win-
same button were greatest when the microelectrode was
positioned near neural populations that displayed properties
characteristic of DA neurons.

Discussion

We applied electrical microstimulation in SN of 11 patients un-
dergoing DBS surgery for the treatment of PD as they performed
a two-alternative probability learning task in which rewards were
contingent on stimuli rather than actions. Subjects were required
to learn stimulus—reward associations rather than action—reward
associations to perform well on the task. We found that SN mi-
crostimulation applied during reward trials disrupted learning
compared with a control learning condition.

Phasic SN activity is functionally important for human
reinforcement learning

By showing that SN microstimulation during the phasic
postreward interval alters performance during the task, our find-
ings provide an important bridge between animal and human
studies of reinforcement learning. Animal studies have shown
that the phasic activity of DA neurons signal positive RPEs that
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Table 2. Summary of reinforcement learning model fits

Condition a B W, Hybrid AQ pseudo-R2 (AIC) Q pseudo-R* (AIC)
SHAM 0.30 (*0.12) 0.31(=0.11) 0.47 (=0.14) 0.23 (369.7) 0.20 (361.3)
STIM 0.38 (0.11) 0.44 (+0.11) 0.71(0.12) 0.14 (404.7) 0.07 (412.8)

Means (== SEM) are shown for best-fitting AQ model parameter values (columns 2 4) associated with the STIM * and SHAM pairs during Stage 2. We report pseudo-R > and AIC goodness-of-fit measures for the three-parameter hybrid AQ
model (column 5) and the two-parameter Q model (column 6) for each condition (see Materials and Methods).
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Figure 5.  Win-same button during congruent and incongruent trials. 4, Subjects who showed stimulation-related increases in win-same button (n = 5) showed asymmetric changes during
congruent (gray) and incongruent (black) trials when comparing STIM™ and SHAM trials. B, €, Simulated behavior of a Q learning model shows symmetric changes in win-same button during
congruent and incongruent trials. D, Strengthened action—reward associations in the hybrid AQ learning model results in asymmetric changes in win-same button.

A B functional role for phasic DA activity in
r=0.69, p=0.040 ) 1t r=0.66, p=0.053 learning. Demonstrations of altered
learning in patients with PD (Knowlton et
al., 1996; Foerde et al., 2013) and in asso-
ciation with pharmacological administra-
tion of DA agonists (Frank et al., 2004;
Rutledge et al., 2009) may be driven by
changes in tonic DA levels throughout the
brain (that may alter learning through
nonspecific increase in motivation or
arousal; Niv et al., 2007). Because SN
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SN microstimulation during the phasic
postreward interval alters learning pro-
vides direct evidence for the functional
role of phasic SN activity in human rein-
forcement learning.
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stimulation disrupted the encoding of
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from Subject #3 and we did not identify spiking activity from Subject #11; see Materials and Methods). ¢, Example waveforms and increasingly random choices after stimu-
postreward phasic responses of unit activity from the two subjects who showed the greatest increases in win-same button ~ lation trials. Alternatively, microstimula-
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reward onset. bias toward repeating the same button
press after reward trials (“win-same

are sufficient to guide learning (Schultz et al., 1997; Reynolds et button”).

al., 2001; Bayer and Glimcher, 2005; Tsai et al., 2009); however, We provide the following support for the hypothesis that

they may not generalize to human learning because animals in  stimulation enhances action—reward associations. First, we found
these studies have typically undergone long periods of intense  a positive correlation between stimulation-related decreases in
training. Conversely, human studies have not demonstrated a  performance and stimulation-related increases in win-same but-
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ton. Second, we showed (via simulations of the Q learning
model) that decreased learning rate or increased noise in the
choice policy provide insufficient explanations of stimulation-
related changes in behavior. Third, we showed that changes in the
relative strength of action—reward associations in a hybrid AQ
model can capture the major stimulation-related behavioral
changes, including the positive correlation between stimulation-
related decreases in accuracy and increased win-same button.
Finally, we fit the hybrid AQ model quantitatively to subjects’
choice data and showed that stimulation-related decreases in ac-
curacy were better explained by increases in the relative strength
of action—reward associations than decreases in learning rate or
increases in decision-making noise. Therefore, SN microstimu-
lation may have disrupted learning during the task by strength-
ening action—reward rather than stimulus-reward associations.

One might expect strengthened action—reward associations
after enhancement of phasic DA activity in the SN. Previous
work has shown that SN DA neurons predominantly send
their efferent projections to dorsal striatal regions, which me-
diate action selection (Haber et al., 2000; Lau and Glimcher,
2008); therefore, these neurons are hypothesized to preferen-
tially strengthen action—reward associations during reinforce-
ment learning (Montague et al., 1996; O’ Doherty et al., 2004;
Frank and Surmeier, 2009). Consistent with this hypothesis, we
found that stimulation-related increases in win-same button
were most prominent when the microelectrode was positioned
near neuronal populations that demonstrated properties charac-
teristic of DA neurons, particularly broad waveforms and pha-
sic postreward responses (Zaghloul et al., 2009; Ungless and
Grace, 2012). Because SN DA neurons are coupled via electrical
junctions (Vandercasteele et al., 2005), stimulation near a small
cluster of DA neurons might result in a spread of depolarization
through a larger DA population. This interpretation is in agree-
ment with a previous rodent study showing that microstimula-
tion of certain SN subregions enhances action reinforcement and
strengthens corticostriatal synapses in a dopamine-dependent
manner (Reynolds et al., 2001).

If SN DA neurons predominantly modulate action-reward
associations, then their phasic responses should be more strongly
modulated by the reward expectation associated with particular
actions, rather than particular stimuli. This has not been tested
directly in the human SN—the only previous demonstration of
RPE-like responses from human SN DA neurons occurred dur-
ing a reinforcement learning task with consistent stimulus-
response mapping (Zaghloul et al., 2009). In that study, rewards
were contingent on particular actions taken by the subjects, leav-
ing open the possibility that SN DA responses were modulated by
action-related reward expectancies rather than stimulus-related
reward expectancies.

Stimulation during negative feedback

Even though we observed reliable changes in learning perfor-
mance when SN microstimulation was provided during positive
feedback, we were unable to observe such changes when micro-
stimulation was provided during negative feedback. These find-
ings are consistent with previous studies suggesting that the DA
system encodes positive RPEs more reliably than negative RPEs
(but see Frank et al., 2004; Bayer and Glimcher, 2005, 2007; Rut-
ledge et al., 2009). It is possible that microstimulation manipu-
lated SN-mediated action-reward associations after negative
outcomes, but that the SN's influence on learning was mitigated
by the influence of a separate nondopaminergic system that me-
diates learning from negative outcomes (e.g., serotonin; Daw et
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al., 2002). In this case, the behavioral changes associated with
negative feedback stimulation might be subtle and may become
evident with more data. Furthermore, because the effects of neg-
ative feedback stimulation were always tested after the effects of
positive feedback stimulation, we cannot rule out a potential or-
der effect. Future studies are needed to resolve this potential
confound.

Limitations

The interpretation that SN microstimulation strengthened
action—reward associations by enhancing DA responses is sup-
ported by subjects’ behavior after stimulation trials and func-
tional properties of the neural population near the electrode and
is consistent with findings from previous studies. However, there
are important limitations to consider. First, although we found a
positive relation between stimulation-related decreases in perfor-
mance and increases in win-same button, we were unable to find
a reliable increase in win-same button across subjects. It may be
the case that SN microstimulation had heterogeneous effects on
our subjects—in some subjects, it may have enhanced DA activity
and strengthened action—reward associations, whereas in other
subjects, it may have disrupted stimulus—reward associations by
inhibiting RPE encoding (Tepper et al., 1995; Morita et al., 2012;
Pan et al., 2013), possibly by an enhancement of GABA-ergic
neurons in the SN, which are known to provide inhibitory inputs
onto DA neurons.

Second, it is important to consider the tendency of patients
with PD to perseverate during cognitive tasks when interpreting
our results (Cools et al., 2001). Rutledge et al. (2009) showed that
patients with PD demonstrate choice perseveration during rein-
forcement learning that is dependent on DA levels but indepen-
dent of reward history. Because stimulus-response mapping was
consistent during their study, the observed perseverative effect
may be specific to action selection rather than item choices.
Therefore, the stimulation-related increases win-same button
that we observed in some of our subjects may also be explained by
increased action perseveration. However, because action perse-
veration is not related to reward history, one would expect to
observe a similar behavioral change in association with positive
and negative feedback stimulation, which we did not observe.

Finally, the population we studied—patients undergoing DBS
surgery for PD—is known to have degeneration of DA neurons in
SN. Ideally, one would like to characterize the behavioral changes
associated with SN microstimulation in healthy human subjects,
but at present, SN microstimulation may not be ethically con-
ducted in any other human population. Certainly, this poses a
challenge for interpreting findings concerning the functional role
of SN neurons in patients who have degenerative disease. How-
ever, histological studies in PD patients (Damier et al., 1999) and
electrophysiological studies in rat models of PD (Hollerman and
Grace, 1990; Zigmond et al., 1990) and in humans (Zaghloul et
al., 2009) indicate that a significant population of viable DA neu-
rons remain in the parkinsonian SN. By demonstrating altered
reinforcement learning performance in association with SN mi-
crostimulation, our results suggest that these remaining neural
processes may be functionally relevant for choice behavior.

Conclusions

In this study, we show that manipulation of phasic SN activity via
electrical microstimulation during rewards disrupted perfor-
mance on a reinforcement learning task in which rewards were
contingent on stimuli rather than actions. The greatest decreases
in learning were observed when subjects showed an increased
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propensity to repeat the same action after rewards, suggesting
that SN microstimulation strengthened action-reward associa-
tions rather than stimulus-reward associations during the task.
Although future studies are needed to rule out alternative expla-
nations for the observed results, such as disrupted RPE encoding
or increased action perseveration, our findings provide support
for the hypothesis that SN DA neurons preferentially strengthen
action—reward associations during reinforcement learning.
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