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Abstract

Objective—Knee abduction moment (KAM) during landing predicts non-contact anterior

cruciate ligament (ACL) injury risk with high sensitivity and specificity in female athletes. The

purpose of this study was to employ sensitive laboratory (lab-based) tools to determine predictive

mechanisms that underlie increased KAM during landing.

Methods—Female basketball and soccer players (N=744) from a single county public school

district were recruited to participate in testing of anthropometrics, maturation, laxity/flexibility,

strength and landing biomechanics. Linear regression was used to model KAM, and logistic

regression was used to examine high (>25.25 Nm of KAM) versus low KAM as surrogate for

ACL injury risk.

Results—The most parsimonious model included independent predictors (β±1 SE) (1) peak knee

abduction angle (1.78±0.05; p<0.001), (2) peak knee extensor moment (0.17±0.01; p<0.001), (3)

knee flexion range of motion (0.15±0.03; p<0.01), (4) body mass index (BMI) Z-score
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(−1.67±0.36; p<0.001) and (5) tibia length (−0.50±0.14; p<0.001) and accounted for 78% of the

variance in KAM during landing. The logistic regression model that employed these same

variables predicted high KAM status with 85% sensitivity and 93% specificity and a C-statistic of

0.96.

Conclusions—Increased knee abduction angle, quadriceps recruitment, tibia length and BMI

with decreased knee flexion account for 80% of the measured variance in KAM during a drop

vertical jump.

Clinical relevance—Females who demonstrate increased KAM are more responsive and more

likely to benefit from neuromuscular training. These findings should significantly enhance the

identification of those at increased risk and facilitate neuromuscular training targeted to this

important risk factor (high KAM) for ACL injury.

INTRODUCTION

Female athletes are currently reported to be four to six times more likely than males to

sustain a sports-related non-contact anterior cruciate ligament (ACL) injury.12 Altered

neuromuscular strategies or decreased neuromuscular control during the execution of sports

movements, as evidenced by abnormal lower limb joint mechanics (motions and loads), may

underlie the increased risk of ACL injury in female athletes.3 – 8 Prospective measures of

external knee abduction moment (KAM) during landing predict non-contact ACL injury risk

in young female athletes (figure 1).5 In addition, a large-scale prospective study found that

military cadets who sustained ACL injury demonstrated increased valgus alignment during

the landing phase of a drop vertical jump (DVJ).9 Female athletes exhibit a related increase

in lower extremity valgus alignment (figure 2) and KAM (figure 3) compared with males

during landing and pivoting movements.3710 – 17 Similar lower extremity valgus alignments

are often demonstrated by females during injury.18 – 21 While these investigations provide

an important understanding of a risk factor related to injury, it is relevant to define the

inciting mechanisms that underlie the high injury risk mechanics, in order to provide

increased potential to target modifiable contributors to injury with neuromuscular training.22

The mechanics of growth and development may underlie dangerous biomechanics that lead

to increased risk of ACL injury among female athletes.1223 While strong evidence exists to

show that there is a sex difference in ACL injury rates in postpubertalathletes, there is no

evidence that this trend is observed in prepubescent athletes.24 – 27 However, knee injuries

do occur in preadolescent athletes; up to two-thirds of these sports-related injuries in

children are reported as joint sprains, with the majority of sprains presenting at the knee.27

Specific sprains such as injuries to the ACL are rarer and do not represent sex differences in

children prior to their growth spurt.24 – 26 However, following the growth spurt, female

athletes have higher rates of knee sprains, and this trend continues into maturity.28 In

addition to increased injury prevalence, which peaks at age 16, female athletes also

demonstrate incremental increases in KAM as they increase in chronological age.

Interestingly, the knee abduction loads that are related to increased knee injury risk also

peak concurrently at age 16 in female athletes.29 – 30 These data demonstrate a relationship

between maturational development and the tendency for high-risk female athletes to

demonstrate a preferential, increased frontal plane load strategy, as opposed to a sagittal
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plane load absorption strategy, during dynamic sports-related activities. Preferential loading

in the frontal plane and increased KAM during competitive play alter desirable sagittal plane

mechanics, destabilise the knee, load the ACL and increase knee injury risk in female

athletes.3 – 610142231 – 33

The purpose of the current study was to employ the sensitive laboratory driven (lab-based)

tool to determine predictive mechanisms that underlie increased dynamic KAM during

dynamic tasks. The central hypothesis that drove the statistical model development was:

following the onset of puberty, rapid increases in bone length and body mass, in the absence

of matched increases in strength and recruitment of the posterior musculature of the lower

extremity kinetic chain, underlie the tendency for increased KAM during landing tasks in

female athletes. Specifically, we hypothesised that measures related to bone length and body

mass, in the absence of relative strength and recruitment of the posterior musculature and

sagittal plane control of the lower extremity kinetic chain, would yield robust prediction of

KAM.

METHODS

Subjects

Between the years 2004 and 2008, all sixth- through 12th-grade female basketball and

soccer players were recruited from a county public school district with five middle schools

and three high schools to participate in a prospective longitudinal study. The goal of the

study was to determine potential underlying mechanisms that increase ACL injury risk. The

recruited schools yielded six high school and 15 middle school basketball teams, and seven

high school and three middle school soccer teams. From the identified teams, 744 unique

subjects’ first time visits were designated for inclusion into the current analyses. Subjects

were excluded (n=46) from the study if they did not complete biomechanical testing or if

errors were found in the calculation of the dependent variable, KAM, leaving 698 subjects to

be included in the analyses (mean±1 SD) (age 13.9±2.4 years; height 159.3±8.6 cm; body

mass 54.0±12.5 kg; percentage of each maturational status 17.2% prepubertal, 29.9%

pubertal and 52.8% postpubertal). For the initial model development, 598 of the 698 eligible

subjects were randomly assigned to formulate the optimised prediction models. The data

from the remaining randomly assigned (N=100) subjects were used for verification of the

optimised multivariable linear and logistic prediction models.

Procedures

Cincinnati Children’s Hospital Medical Center and Rocky Mountain University of Health

Professions Institutional Review Boards approved the data collection procedures and

consent forms. Parental consent and athlete assent were received prior to data collection.

Subjects were tested prior to the start of their basketball or soccer competitive season. The

testing consisted of a knee exam, medical history, maturational estimates, dynamic strength

and landing biomechanical analysis.

Anthropometrics and maturational assessment—Height was measured with a

stadiometer with the subject in bare feet. Body mass was measured on a calibrated physician
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scale. Body mass index (BMI) Z-score was calculated using SAS (gc-calculate-BIV.sas,

available on the Centers for Disease Control and Prevention (CDC) website). Generalised

joint laxity tests consisted of fifth-finger hyperextension greater than 90°, elbow

hyperextension greater than 0°, wrist and thumb to forearm opposition and knee

hyperextension greater than 0°.3435 Anterior/posterior tibiofemoral translation was

quantified using the CompuKT knee arthrometer (Medmetric Corp, San Diego, California)

to measure total anterior–posterior displacement of the tibia relative to the secured femur. A

modified Pubertal Maturational Observational Scale (PMOS) was used to classify the

subjects into one of three pubertal categories (prepubertal, pubertal and postpubertal). The

PMOS36 used both parental questionnaires and observations, all performed by a single

investigator, to classify subjects into one of the three pubertal categories.1237 – 39

Dynamic strength—Isokinetic knee extension/flexion (concentric/concentric muscle

action) strength was measured on a Biodex System II (Shirley, New York) and consisted of

10 knee flexion/extension repetitions for each leg at 300°/s.40 Concentric hip abduction

strength was measured on a Biodex System III (Shirley, New York) with the subject

standing erect, fully supported, with a stabilisation strap around the pelvis and her hands

gripping a stable hand rest. The test session consisted of five maximum-effort hip

abductions with passive adduction repetitions at 120°/s.41

Landing biomechanics—Three-dimensional hip, knee and ankle kinematic and kinetic

data were quantified for the contact phase of three DVJ tasks. Each subject was

instrumented by a single investigator with 37 retroreflective markers placed on the sacrum,

left posterior superior iliac spine, sternum and bilaterally on the shoulder, elbow, wrist,

anterior superior iliac spine, greater trochanter, mid-thigh, medial and lateral knee, tibial

tubercle, midshank, distal shank, medial and lateral ankle, heel, dorsal surface of the mid-

foot, lateral foot (fifth metatarsal) and toe (between second and third metatarsals). A static

standing trial was conducted in which the subject was instructed to stand still with foot

placement standardised to the laboratory coordinate system. The static standing trial was

used to calculate segment lengths as the estimated distance between the proximal and distal

joint centre (eg, thigh segment distance was equal to the distance between the hip joint

centre to knee joint centre). In addition, the static trial was used to calculate standing

anatomical alignment measures. The mass and inertial properties for each segment (based on

sex-specific parameters from de Leva42) were used to calculate the height of the centre of

mass. This static measurement was used as each subject’s neutral (zero) alignment;

subsequent kinematic measures were referenced in relation to this position.43 The DVJ

involved the subject starting on top of a box (31 cm high) with their feet positioned 35 cm

apart. They were instructed to drop directly down off the box and immediately perform a

maximum vertical jump, raising both arms while jumping for a basketball rebound.3

All trials were collected by a single investigator with EVaRT (version 4; Motion Analysis

Corporation, Santa Rosa, California) using a motion-analysis system consisting of 10 digital

cameras (Eagle cameras; Motion Analysis Corporation, Santa Rosa, California) positioned

in the laboratory and sampled at 240 Hz. Prior to data collection, the motion-analysis system

was calibrated based on the manufacturer’s recommendations. Two force platforms (AMTI,
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Watertown, Massachusetts) were sampled at 1200 Hz and time synchronised with the

motion-analysis system. The force platforms were embedded into the floor and positioned 8

cm apart so that each foot would contact a different platform during the stance phase of the

DVJ.43

Following data collection, the motion and force data were further analysed in visual3D

(version 4.0; C-Motion, Germantown, Maryland, USA). The procedures within visual3D

first consisted of the development of a static model customised for each subject.43 3D

marker trajectories from each trial were filtered at a cut-off frequency of 12 Hz.43 3D knee

joint angles were calculated according to the Cardan/Euler rotation sequence.44 Kinematic

and force platform data were utilised to calculate knee joint moments using inverse

dynamics.4546 The ground reaction force data were filtered through a low-pass fourth order

Butterworth filter at a cut-off frequency of 12 Hz in order to minimise possible impact peak

errors.4748 Net external knee moments were described in this paper and represent the

external load on the joint. Lower extremity kinetics and kinematics were calculated during

the deceleration phase of landing from the stance phase of the DVJ. The deceleration phase

was operationally defined from initial contact (vertical ground reaction force first exceeded

10 N) to the lowest vertical position of the body centre of mass. The left side data were used

for statistical analysis. The described landing and biomechanical landing analysis techniques

have demonstrated reliable measurements.43

Statistical analyses

Data were exported to SPSS (SPSS for Windows version 16.0, Chicago, Illinois) and SAS,

V.9.1 (SAS Institute, Cary, North Carolina) for statistical analysis. Pearson correlation

coefficients were calculated to assist in the initial selection of independent variables by

removing non-significant correlates of the dependent variables; that is, associations with

p>0.05 were not included in the regression models. For the model development, a

multivariable linear regression with a backward elimination strategy was used to develop the

prediction model for the continuous outcome of external knee abduction load. Inclusion and

removal of each independent variable in the regression were examined. Those variables that

did not reduce the R2>1% when removed were eliminated from the model. The ‘best’ model

was determined based on the overall R2, MSEp, Mallow Cp and Fp. 49 The final model was

tested for validity based on examination of the variance inflation factor to quantify the

degree of multicollinearity. Jackknife residuals were plotted, and along with the inspection

of Cook’s distance statistics, possible outliers were identified. Finally, the residuals were

plotted, and the Kolmogorov–Smirnov statistic was used to test for possible deviations from

normality.

Multivariable logistic regression analyses were performed to examine the dichotomised

outcome variable. The cut-point used to classify the dependent variable status was >25.25

Nm of KAM, and this was based on published KAM data to determine a cut-score that

would provide the maximal sensitivity and specificity for prediction of ACL injury risk

during a DVJ (figure 1).522 Using this classification, subjects were categorised into a

dichotomous (high KAM; ‘yes’ or ‘no’) dependent variable. All potential predictor variables

following cluster variable reduction, as previously described, were introduced into a logistic
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regression model to predict high KAM status (>25.25 Nm of KAM). The logistic regression

model was estimated using a logit link, assuming a binomial distribution for the outcomes

and a general (unstructured) covariance structure. An α level of 0.05 was used to judge

statistical significance in all models. The multivariable regression model’s predictive

accuracy was quantified with the use of the C-statistic, which measures the area under the

receiver operating characteristic curve (ROC curve).

The regression equation developed in the training dataset was validated in the randomised

subsample (n=100) by comparing predicted values of KAM and the actual measured values.

Similarly, the logistic model was validated by solving the prediction equation for each

subject in the validation group to determine into which group (high KAM vs low KAM)

they would be classified. The non-informative prior probability of group membership

observed in the test subjects included approximately 57% low KAM subjects and 43% high

KAM subjects. The sensitivity, specificity and percentage correctly classified were

calculated for the resulting 2×2 table of actual versus model-predicted classifications.

RESULTS

Means and 95% CI for the dependent and independent variables used in the training dataset

(N=598) model development are presented in table 1. The most parsimonious linear

regression model, including the independent predictors (β±1 SE) (1) peak knee abduction

angle (1.78±0.05; p<0.001), (2) peak knee extensor moment (0.17±0.01; p<0.001), (3) knee

flexion range of motion (ROM) (0.15±0.03; p<0.01), (4) BMI Z-score (−1.67±0.36;

p<0.001) and (5) tibia length (−0.50±0.14; p<0.001), explained 78% of the variance in KAM

during landing. The optimised regression model coefficients were confirmed in the

validation sample and yielded a significant correlation for the predicted peak KAM and the

actual measured value (R2 =0.83; p<0.001).

To further evaluate the prediction of KAM, variable selection was performed in a logistic

regression analysis using the training dataset (N=598). The dependent variable of KAM was

categorised into a dichotomous variable (high KAM; ‘yes’ or ‘no’), based on the established

cut-point (25.25 Nm of KAM) which provided the most sensitive and specific KAM for

predicting knee injury in females during landing. Importantly, the same independent

predictors as found for the optimised linear regression model were optimal in the reduced

variable set determined from the logistic regression modelling. Table 2 presents the ORs and

95% confidence limits for the predictors of high KAM. The final logistic regression model,

which employed the independent predictors of peak knee abduction angle, peak knee

extensor moment, knee flexion ROM, BMI Z-score and tibia length, predicted high KAM

status with 85% sensitivity and 93% specificity (p<0.001). This model was predictive of

high KAM status with a C-statistic of 0.96. The ROC curve for this model is presented in

figure 4. The logistic model was validated by solving the prediction equation for each

subject in the validation group and determining into which group (high KAM vs low KAM)

they would be classified. The resultant prediction equation (C-statistic=0.959) yielded a

sensitivity of 79% and a specificity of 89% to predict >25.25 Nm of KAM during landing.
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Predictor variables were further assessed to determine if significant interactions with

maturational status existed. A significant interaction was found between maturational status

and knee abduction angle (p<0.01). In order to confirm that the multivariable regression that

included peak knee abduction angle, peak knee extensor moment, knee flexion ROM, BMI

Z-score and tibia length maintained robust prediction of KAM, both the linear and logistic

models were tested separately in athletes grouped by maturational stage (prepubertal:

N=120; pubertal: N=209; postpubertal: N=369). Linear regression modelling in prepubertal,

pubertal and postpubertal female athletes accounted for 76%, 78% and 77% of the variance

of continuous measurement of KAM, respectively (p<0.001). In addition, using the logistic

model separately for each maturational stage, similar model performance based on C-

statistic values was observed in the prepubertal (ROC=0.98), pubertal (ROC=0.97) and

postpubertal (ROC=0.95) female athletes (p<0.001).

DISCUSSION

Frontal plane knee alignment

The absence of active neuromuscular control, as evidenced by increased knee abduction

motion,312 and passive stability of the joint, as indicated by increased joint laxity,36

demonstrate a puberty-related divergence between female and male athletes. The decreased

active and passive controls of knee alignments may destabilise the knee and are purported to

be measures related to increased risk of ACL injury in female athletes, as they mature.535 In

the current dataset, maximum knee abduction alignment was also strongly correlated with

the dependent variable KAM. Knee abduction angular measures at landing were 8° greater

in athletes who subsequently experienced ACL injury compared with uninjured athletes.5

ACL injury likely occurs under conditions of high dynamic multiplanar loading of the knee

joint.50 The knee joint, which is a hinge joint articulation of the body’s two longest levers, is

equipped with strong active muscular restraints to adequately dampen knee joint loads in

motions aligned in the sagittal plane.51

The active restraints about the knee have a poor mechanical advantage to adequately control

excessive frontal plane knee abduction motion commonly presented in young female

athletes. In addition, females also demonstrate unbalanced contraction of the knee

musculature that may further exacerbate the potential for increased KAM.52 Sell et al

demonstrated that disproportional recruitment of the vastus lateralis musculature also

influences increased anterior shear force in female athletes.5354 Rozzi et al55 reported that

female athletes demonstrate a disproportionate (four times greater) firing of their lateral

hamstrings, as assessed by electromyographic (EMG) measurements, compared with males

during the deceleration of a jump landing. Palmieri et al reported that females demonstrated

unbalanced (decreased medial hamstrings and quadriceps) muscular recruitment that

predicted KAM.52 Accordingly, a recent investigation of elite female handball and soccer

players found that increased lateral quadriceps and decreased medial hamstrings was

demonstrated by females who would go onto ACL injury.56 It has been hypothesised that an

unbalanced or low ratio of medial to lateral quadriceps recruitment may combine with

increased lateral hamstring firing to compress the lateral joint, open the medial joint and

increase anterior shear force.57 Without the muscular power required to resist initial contact
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valgus or adequate medial knee musculature co-contraction to counteract initial contact

KAM scenarios, the tibia and femoral articulation may open and translate allowing for

excessive peak KAM loads5257 Ultimately, movement patterns with high KAM may

increase the potential for an athlete to stress their passive ligament structures that exceed the

failure strength of the ligament.5859

Active neuromuscular control is required to prevent potential high KAM and is required to

maintain dynamic knee stability during landing and pivoting.586061 The current findings

indicate that disrupted mechanics of active muscular control may increase knee abduction

alignments and lead to high KAM, which increase the risk of ACL injury.

Relative hamstrings recruitment

Increased hamstrings and quadriceps coactivation may be a potential method to protect the

knee during sports-related tasks via increased dynamic joint stabilisation that limits the

potential for increased knee abduction motions and reduces the potential of high

KAM.5961 – 63 Joint stability and absorption of KAM through hamstrings and quadriceps co-

contraction may be necessary when the joint experiences high quadriceps activation during

deceleration activities or when the passive structures are compromised.6465 Withrow et al

reported that increased hamstrings force during the flexion phase of simulated jump landings

greatly decreased relative strain on the ACL.63 Hamstrings activation can decrease the load

on the passive restraints of the knee,66 increase the knee joint compression force and

stabilise the knee from external varus/valgus load.67 Electromyographical studies have

demonstrated that females may have sex-related neuromuscular imbalances in muscle

recruitment patterns proposed to be related to increased risk of ACL injury.5368

Hewett et al reported that females demonstrated relative hamstrings recruitment (knee flexor

moment), measured using inverse dynamics, that were threefold lower than males when

decelerating from a landing.32 Accordingly, this group of females with greatly reduced

relative hamstrings recruitment also demonstrated increased KAM compared with male

subjects.32 The increased KAM was the only significant predictor of peak impact forces

during landing in these female athletes.532

Ford et al reported that females showed an absence of matched increases in hamstrings

muscle activation relative to quadriceps and overall low hamstrings EMG amplitude during

increased intensity of the landing phase of a jump.69 This tendency of female athletes to

preferentially activate the quadriceps relative to the hamstrings during high demand

activities may limit their ability to maintain dynamic knee control during high-risk

manoeuvres. This defined quadriceps dominance, or decreased recruitment of hamstrings

relative to the quadriceps, has also been observed in elite female collegiate athletes.7071

Female athletes reacted to a forward translation of the tibia primarily with a muscular

activation of the quadriceps muscles, while male athletes relied on their hamstrings muscles

to counteract the anterior tibial displacement.71 Sigward and Powers,72 examined a side-step

cutting manoeuvre and found that skilled female soccer players had less relative hamstrings

co-contraction than novice players. Decreased hamstrings relative to quadriceps strength and

recruitment is implicated as a potential mechanism for increased lower-extremity

injuries,636973 – 75 and specifically ACL injury.76 The current study results also indicate that

Myer et al. Page 8

Br J Sports Med. Author manuscript; available in PMC 2014 May 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



deficits in relative hamstrings recruitment also contribute to increased KAM, which creates a

secondary link to increased ACL injury risk in female athletes.5 76 In corroboration with the

current study findings, Lawrence et al reported that females in a decreased hamstrings

strength group demonstrated increased relative knee extensor activity, ground reaction force

and KAM when landing on a single leg.77 Cumulatively, this evidence indicates that

decreased relative hamstrings strength and recruitment may underlie high KAM

biomechanics and subsequent high risk for knee injury in female athletes.532406577

Sagittal plane knee alignment

Sagittal plane movement patterns during dynamic tasks may also contribute to the current

sex disparity in non-contact ACL injury rates.711 Specifically, the relative decreases in knee

flexion typically observed in females at initial contact and throughout stance during sports

movements are proposed to elicit anterior tibial shear loads large enough to injure the

ACL.5478 Importantly, the current study results also indicate that small knee flexion motions

during landing also contribute to high KAM.

The tendency to land with a straighter knee during high-intensity tasks could be exacerbated

by early quadriceps, or delayed or decreased hamstrings recruitment, during a weight-

bearing stance that are exhibited by female athletes.79 Chappell et al concluded that the

increased anterior shear force demonstrated by female athletes was potentially due to the

combination of increased quadriceps force, decreased hamstrings force and decreased knee

flexion.7 A sagittal plane position of the knee near full extension when landing or cutting is

commonly observed in video analysis of ACL injuries in female athletes.1820 In addition, a

prospective study indicated that female athletes that subsequently sustained ACL injuries

demonstrated significantly less (10.5°) knee flexion during a DVJ than those that did not

subsequently sustain injury.5

Increased hamstrings strength and recruitment may decrease ACL injury risk via increased

relative hamstrings co-contraction that may lead to increased knee flexion and reduced

KAM and potentially anterior tibial shear during dynamic tasks.5818203264688081 The female

subjects in the current study with decreased knee flexion ROM increase their potential for

high KAM and subsequent risk for ACL injury. Improved lower-extremity movement

strategies during high-risk sports movements, in particular those that contribute to increased

sagittal plane motion and decreased frontal plane motions and KAM, may reduce risk and

possibly prevent ACL injuries in female athletes.51820

Skeletal growth

Beynnon et al82 reported that increased thigh length was an injury risk factor in female

skiers. The current study results indicate that increased tibia length was associated with

increased KAM. During peak growth (height and mass) velocity in pubertal athletes, the

tibia and femur grow at rapid rates in both sexes.83 Rapid growth of the two longest lever

arms in the human body initiate height increases concomitant with increased height of the

centre of mass, making muscular control of the trunk more challenging. In addition,

increased body mass with longer joint levers initiates greater joint forces that are more

difficult to balance and dampen at the lower- extremity joints during high-velocity
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manoeuvres.128485 During this developmental period, male athletes naturally demonstrate a

‘neuromuscular spurt’ (increased strength and power during maturational growth and

development) to match the increased demands of growth and development, but do not

demonstrate the same increases in KAM observed in females.1237848687 Conversely, female

athletes do not demonstrate similar neuromuscular adaptations to match the increase

demands created from structural and inertial changes during pubertal

development.1237848687

Cumulatively, these factors contributed to the driving hypothesis of the current study that

following the onset of puberty, rapid increases in bone length and body mass, in the absence

of matched increases in strength and recruitment of the musculature of the lower extremity

posterior chain, underlie the tendency for increased KAM during landing tasks in female

athletes.1288 If female athletes reach maturity in the absence of adaptation in core power and

control to match whole body increases in inertial load, their tendency to demonstrate

increased ground reaction forces and KAM during dynamic tasks is increased.1284858991 The

current results support this hypothesis, as increased tibia length contributed directly to

increased KAM.

Body mass relative to stature

Increased body mass relative to height (BMI) has been implicated as a risk factor for ACL

injuries, especially among female adolescent soccer players,2592 college recreational

athletes9394 and female army recruits.95 However, other authors have reported that BMI in

and of itself may not be directly linked to increased risk of ACL injuries in female

athletes.96 – 98 Uhorchak et al95 reported that women with a body weight or BMI greater

than 1 SD above the mean had a 3.2- and 3.5- fold greater risk of ACL injury than did those

with lower body weight or BMI, respectively. A longitudinal study of children 5–12 years of

age in youth soccer demonstrated that there is no gender difference in knee injury risk in

prepubescent athletes. However, being older than 11 years of age was a significant risk

factor for knee injury in girls. For female players older than 8 years, BMI was also a

significant risk factor for increased knee injury risk.25 Based on these data, we chose to

calculate BMI Z-scores, which yield a value for the BMI in terms of units of SD from the

mean, based on data from the 2000 CDC growth charts, according to height, weight, age

(months) and gender of each child.99 These age- and sex-specific measures of BMI likely

yielded a more appropriate measure of BMI for comparison among adolescent children than

that used previously in epidemiological studies of injury risk. Accordingly, we found that

increased BMI Z-score, or those children with increased mass relative to their height and

that of their peers, was strongly related to the potential for increased KAM. Similarly,

Griffin et al postulated that an increased BMI would result in a more extended lower-

extremity position that would influence decreased knee flexion upon landing.93 The current

study results indicate that increased measures (from the mean of the distribution) of age- and

gender-specific BMI Z-score play a role in altered knee mechanics that are related to

increased risk of ACL injuries in female athletes.92

Considering the significant short- and long-term debilitation associated with non-contact

ACL injury, the prevention of these injuries is crucial. Currently, prevention appears to be
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the only effective treatment for these devastating injuries. The current study addresses the

increased potential to reduce ACL injury and long-term osteoarthritis risk by defining the

lower-limb mechanical parameters that underlie increased propensity to demonstrate high

KAM and which increase the risk of ACL injury.5100 Specifically, we have identified lower-

extremity growth, recruitment and biomechanical strategies that contribute to high-risk

landing biomechanics. An important initial step in the treatment of a particular injury

aetiology is to define the risk factors for the injury.5 The next step should aim to define the

mechanisms that modulate the identified risk factors so that appropriate application of

treatment strategies can be employed to the population at risk. The current study has taken

this important second step in ACL injury prevention by identification of the mechanisms

that underlie increased high KAM. Future research should aim to apply these results to

improve the identification of high-risk female athletes in all sport populations and target

them with specific interventions designed to decrease knee abduction angles, and increase

relative hamstrings recruitment and knee flexion ROM during dynamic tasks. If these future

aims are achieved, an increased potential to counteract the effects of growth and

development associated with maturation that increases ACL injury risk will be possible.

SUMMARY AND CONCLUSIONS

Increased knee abduction angle and increased knee extensor torque with decreased knee

flexion ROM, concomitant with increased tibia length and mass normalised to body height

that accompanies growth, contribute to approximately 80% of the measured variance in

KAM during landing. Athletes who demonstrate high KAM are more likely to sustain an

ACL injury, and recent evidence indicates that this injury mechanism may also increase the

risk for long-term osteoarthritis. Prior work indicates that female athletes who demonstrate

increased KAM are more likely to achieve benefits from neuromuscular training. Hence, the

results of this investigation, which identify the underlying mechanics related to increased

KAM using lab-based measurement and analysis techniques, may improve the potential for

identifying those likely to demonstrate this risk factor and may potentially better define

neuromuscular training techniques to target the treatment of this risk factor for ACL injury.
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What is already known on this topic

▶ Female athletes who demonstrate high knee abduction moment (KAM)

during landing are more likely to sustain an anterior cruciate ligament (ACL)

injury during competitive play.

▶ Female athletes who demonstrate increased KAM are more likely to achieve

benefits from neuromuscular training that will reduce their risk of ACL

injury.

▶ Prevention of ACL injury is currently the only method to prevent the high

risk for long-term osteoarthritis associated with this type of knee injury.

What this study adds

▶ Increased knee abduction angle and increased knee extensor torque, with

decreased knee flexion range of motion, concomitant with increased tibia

length and mass normalised to body height that accompanies growth,

contribute to approximately 80% of the measured variance in knee abduction

moment (KAM) during landing.

▶ Screening for underlying mechanics related to increased KAM may improve

the potential to identify those individuals likely to demonstrate this risk factor

and to be at high risk for anterior cruciate ligament (ACL) injury.

▶ The current results may also help develop neuromuscular training techniques

that target the treatment of high KAM as a significant risk factor for future

ACL injury.
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Figure 1.
Scatter plot of data (N=399) utilised to define the cut-point used to classify the dependent

variable high or low knee abduction moment status. Data were treated with logistic

regression analyses to determine the value that would provide the maximal sensitivity and

specificity for prediction of anterior cruciate ligament (ACL) injury risk during a drop

vertical jump.
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Figure 2.
Videographic depiction of athlete with kinematic pattern that is likely to demonstrate a high

knee abduction moment.
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Figure 3.
Motion analysis depiction of athlete with kinematic and kinetic pattern indicative of a high

knee abduction moment.
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Figure 4.
Receiver operating characteristic (ROC) curve determined in training dataset (N=598) for

prediction of high knee abduction moment. The cross bar indicates the maximum sensitivity

and specificity of the prediction model. Sn, sensitivity; Sp specificity.
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Table 1

Means and 95% CI for the dependent and independent variables used in the training dataset (N=598) model

development

95% CI for mean

Mean Lower bound Upper bound

Peak knee abduction moment (Nm)* −24.92 −26.10 −23.73

Peak knee abduction angle (°) −9.62 −10.11 −9.14

Peak knee extensor moment (Nm) −95.37 −97.69 −93.06

Knee flexion range of motion (°) 59.21 58.47 59.95

BMI Z-score (no of SD) 0.38 0.31 0.46

Tibia length (cm) 35.89 35.68 36.09

*
Dependent variable
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Table 2

OR estimates and 95% CI for independent variables used in training dataset (N=598) model development

95% OR estimates

OR Lower Upper

Peak knee abduction angle (°) 1.77 1.60 1.95

Peak knee extensor moment (Nm) 1.04 1.03 1.06

Knee flexion range of motion (°) 0.95 0.92 0.99

BMI Z-score (no of SD) 2.18 1.47 3.25

Tibia length (cm) 1.44 1.22 1.70
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