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Humans and animals can reliably perceive behaviorally relevant
sounds in noisy and reverberant environments, yet the neural
mechanisms behind this phenomenon are largely unknown. To
understand how neural circuits represent degraded auditory
stimuli with additive and reverberant distortions, we compared
single-neuron responses in ferret primary auditory cortex to
speech and vocalizations in four conditions: clean, additive white
and pink (1/f) noise, and reverberation. Despite substantial dis-
tortion, responses of neurons to the vocalization signal remained
stable, maintaining the same statistical distribution in all condi-
tions. Stimulus spectrograms reconstructed from population
responses to the distorted stimuli resembled more the original
clean than the distorted signals. To explore mechanisms contrib-
uting to this robustness, we simulated neural responses using
several spectrotemporal receptive field models that incorporated
either a static nonlinearity or subtractive synaptic depression and
multiplicative gain normalization. The static model failed to
suppress the distortions. A dynamic model incorporating feed-
forward synaptic depression could account for the reduction of
additive noise, but only the combined model with feedback gain
normalization was able to predict the effects across both additive
and reverberant conditions. Thus, both mechanisms can contribute
to the abilities of humans and animals to extract relevant sounds
in diverse noisy environments.
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Vocal communication in the real world often takes place in
complex, noisy acoustic environments. Although substan-

tial effort is required to perceive speech in extremely noisy
conditions, accurate perception in moderately noisy and re-
verberant environments is relatively effortless (1), presumably
because of the presence of general filtering mechanisms in the
auditory pathway (2). These mechanisms likely influence the
representation and perception of both speech and other nat-
ural sounds with similarly rich spectrotemporal structure, such
as species-specific vocalizations (3–5). Despite the central role
this robustness must play in animal and human hearing, little
is known about the underlying neural mechanisms and whether
the brain maintains invariant representations of these stimuli
across variable soundscapes causing acoustic distortions of the
original signals.
Several theoretical and experimental studies have postulated

that the distribution of linear spectrotemporal tuning of neurons
found in the auditory pathway could support enhanced repre-
sentation of temporal and spectral modulations matched to
those prevalent in natural stimuli (6, 7). Others have attributed
this effect to nonlinear response properties of neurons (8) and
adaptation with various timescales (9). In this study, we tested
the noise robustness of auditory cortical neurons by recording
responses in ferret primary auditory cortex (A1) to natural
vocalizations that were distorted by additive white and pink
(1/f) noise or by convolutive reverberation. We sought to de-
termine whether neural population responses to speech and
vocalization in these noisy conditions encode important stim-
ulus features while suppressing the noise, therefore resulting
in less distorted representation of the signal. In addition, we

tested whether the robust neural representations can be explained
solely by static spectrotemporal receptive field models of neu-
rons (10) or whether additional dynamic nonlinear mechanisms
such as synaptic depression (ability of synapses to weaken rap-
idly, in response to increase presynaptic activity) (11, 12) or gain
normalization (division of neural responses by a common factor
that relates to the overall activity) (13–15) are necessary to account
for this phenomenon.

Results
Neural Responses to Clean and Distorted Auditory Signals. We first
examined the effect of stimulus distortions (white and pink ad-
ditive noise and reverberation) on single-unit responses in A1 by
comparing the responses of neurons to clean (undistorted)
speech and to the same speech signal in noisy conditions. We
chose additive white noise and pink noise due to their simple
spectral profile and stationary characteristics, therefore simpli-
fying the comparison of masking effects across different speech
samples (16). Reverberation, in contrast, is a convolutive dis-
tortion resulting in temporal smearing of the stimuli. Fig. 1A
shows the firing rate of single neurons for clean and for each of
the three distortions, averaged over the entire stimulus period.
The high correlation values between stimulus conditions (r =
0.89, 0.85, and 0.85 for clean versus white noise, pink noise, and
reverberation, respectively, P < 0.001, t test) show a relatively
constant level of neural spiking activity in the different con-
ditions, despite the highly variable stimulus statistics. This sta-
bility is also evident in the overlapping histograms of neural spike
rates measured on a much finer time scale (20-ms bins), shown
in Fig. 1B, where we did not observe a significant change in firing
profile of neurons. The high level of stability suggests a mechanism
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that normalizes the level of neural activity across different noisy
and reverberant conditions.
To examine the relative timing of spikes in clean and distorted

conditions, we measured the joint histograms of neural pop-
ulation responses in clean versus each of the three noisy con-
ditions as shown in Fig. 1C. These joint distributions reveal the
relationship between instantaneous responses to the same
stimulus in clean and in each distorted condition (10-ms bins),
where a diagonal structure indicates consistent response be-
tween conditions. The divergence from the diagonal in Fig. 1C
indicates the impact of stimulus distortions on the neural re-
sponses. However, a small but significant correlation value
remains (r = 0.36, 0.4, and 0.36, P < 0.01, t test), suggesting the
preservation of the responses to stimulus features across all
distortions. We measured the mean-squared error (MSE) between
neural responses in clean and in distorted conditions to quantify
the degradation of neural responses in noise as a function of bin
size, as shown in Fig. 1D. This analysis shows greater degradation
as finer temporal details of neural responses are taken into ac-
count, confirming the loss of precisely phase-locked responses of
single neurons to stimulus features in noise. Together, these
results show that the neural responses to distorted stimuli are
degraded, particularly changing the precise temporal profile of
spiking activity. However, they also suggest a normalization
mechanism in the auditory pathway that results in maintained
statistical properties of firing patterns as shown in Fig. 1 B and C.

Reduced Distortions in Stimuli Reconstructed from the A1 Population
Response. Although the single-neuron analysis provides a quan-
titative measure of the change in neural responses to acoustically
distorted stimuli, it is hard to gain insight about what aspects of
the stimulus are preserved by the population response in noisy
conditions. To overcome this difficulty, we used stimulus re-
construction techniques (17, 18) to map the population neural
responses to a stimulus spectrogram, which could be easily
compared with the original clean and noisy spectrograms. The
reconstruction filters were fitted to the responses in the clean
condition and used to reconstruct the stimulus from responses in
distorted conditions.
The original spectrograms of the clean and the three types

of distorted speech are illustrated in Fig. 2A. Spectrograms
reconstructed from the neural responses for the same conditions
are shown in Fig. 2B and Fig. S1. In all three conditions, both for
additive noise and reverberation, the reconstructed spectrograms

showed significantly improved signal-to-noise ratio, seen vi-
sually as suppressed background activity (for additive noise) and
reduced smearing in Fig. 2B (for reverberation). We quantified
this effect by measuring the MSE between the reconstructed and
original spectrograms as shown in Fig. 2E. The difference be-
tween the reconstructed and clean spectrograms (blue bars) in all
three conditions is significantly smaller than the noisy spectro-
grams (red bars, P < 0.01, t test). To confirm that the same
effects occur for species-specific vocalizations as for speech, we
performed the same analysis on A1 responses to ferret vocal-
izations in additive white noise, and observed the same pattern of
noise robustness (Fig. 2 C−F, P < 0.01, t test). We should point
out that even though the reconstruction filters were estimated
from neural responses to clean speech, the imposition of this
prior does not guarantee that the reconstruction from noisy
responses will have improved signal-to-noise ratio. To explore
whether the observed denoising is due to reconstruction filters or
to dynamic changes in the neural response properties, we next
used the same reconstruction filters obtained from clean
neural responses (Fig. 2B) and reconstructed the spectro-
grams from simulated neural responses.

Nonlinear Mechanisms Contribute to Noise-Robust Responses. To ex-
plore possible neural mechanisms that could produce noise-robust
representation in A1, we simulated neural activity using the spec-
trotemporal receptive field (STRF), which is commonly used to
characterize functional properties of auditory neurons (10, 19, 20):

rlinðtÞ=
X
F

X
τ

  Sðτ; f ÞSTRFðt− τ; f Þ [1]

rSNðtÞ= jrlinðtÞ−Vthj; [2]

where Sðt; f Þ is the spectrogram of the stimuli, and the parameter
Vth indicates the spiking threshold for each neuron, fitted to the
data to maximize the correlation value of the neuron’s predicted
response. In addition to a classic STRF, consisting of a linear
filter followed by a static nonlinearity (10) (rSN in Eq. 2), we
explored the dynamic effects of a subtractive nonlinearity mod-
eling input synaptic depression (SD) (21) and a multiplicative
nonlinearity modeling feedback gain normalization (GN) (15)
(Fig. 3A). A model incorporating both dynamic nonlinear ele-
ments is defined at a high level as

rSDGNðtÞ=BðtÞjrlinðtÞ−AðtÞj; [3]

where rlinðtÞ is defined in Eq. 1, and A(t) and B(t) are defined as:

AðtÞ=Vth

 
1+

X0
−τSD

rlinðtÞW ðtÞ
!

[4]

BðtÞ= 1

1+
P0

−τGNrSDGNðtÞW ðtÞ; [5]

where W ðtÞ is the Hann function, added to emphasize the most
recent history of stimulus and response (see Methods). The SD
component, A(t), performs a feed-forward subtraction reducing
the output of the linear filter, rlin(t), proportionally to the preceding
input stimulus history. The GN component, B(t), is a feedback op-
eration, scaling the final response proportionally to the short-term
history of the predicted output response. We compared this dy-
namic model to a model with only a static nonlinearity (SN) in
which both A(t) and B(t) were fixed at constant values. We also
studied the effects of the SD and GN stages individually by keeping
either A(t) (GN only) or B(t) (SD only) constant.
Both the SD and GN modules depend critically on temporal

integration parameters tau (τSD and τGN) that specify the
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Fig. 1. Single-neuron responses to clean and distorted speech. (A) Effect of
stimulus distortions on the average firing rate of neurons. Each point indicates
the average response of a single neuron to clean (horizontal axis) and dis-
torted speech (vertical axis). Correlations between responses in each pair of
conditions appear over each plot. Most neurons did not exhibit a significant
change in their firing rate, and the correlations between conditions were
significant (***P < 0.001, t test). (B) Histogram of neural spike rates in clean
and distorted conditions. Horizontal bars at the top show mean and SD for
each condition. (C) Joint histogram of instantaneous neural responses at fine
time scales (20-ms bins) to clean speech and to the same speech samples in
noise (r = 0.36, 0.40, and 0.39, P < 0.001, t test). (D) Normalized MSE difference
between neural responses to clean and distorted speech for different bin sizes.
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duration of the stimulus (SD) or response (GN) that influ-
ences the neural response (see Methods for details). To study
how these parameters influence the predicted responses, we
measured the MSE difference between responses predicted by
the model and actual responses to the noisy speech stimuli
(Fig. 3 B and C). We also measured the effects of varying tau
for SD and GN components separately by averaging MSE
measurements as shown in Fig. 3C. We observed significant
improvement in prediction error as we increased both time
constants from 0 ms. Performance ceased to improve beyond
a value of 70 ms for the SD module and 90 ms for the GN
module. Thus, for subsequent simulations, we fixed the time
constants at these values. Although effective here, these val-
ues should not be interpreted too strictly as upper bounds.
Our experiments did not probe the entire range of possible
distortions or nonstationary distortions, particularly for re-
verberation, which can have longer echo times.
Responses by the different static and dynamic models to dis-

torted speech are compared in Fig. 4. The responses predicted by
the SN model do not suppress the additive noise, as shown by the
predicted neural activity even in the absence of the stimulus (Fig.
4 A and B, yellow line). The SN model also predicts a prolonged
response to reverberant stimuli, reflecting the temporal smearing
caused by this distortion (Fig. 4C, yellow line). The GN model
alone (Fig. 4 A−C, green line) also fails to decrease the noise and
merely scales the average spike rate. By contrast, the SD model
alone predicts the suppressed noise floor in additive noise con-
ditions, but also (erroneously) predicts a significantly reduced
overall spiking rate (Fig. 4 A−C, blue lines). This reduction,
however, is compensated for in the predictions of the SDGN
model, resulting in suppression of noisy distortions while pre-
serving the overall neural firing activity (Fig. 4 A−C, red lines).
These observations are quantified in the histograms of predicted
responses for the different models (Fig. 4D), where the SDGN
model produces the most similar histograms for the clean and
noisy conditions and replicates the neural data (Fig. 1B). Finally,
we quantified the MSE difference between responses predicted
by the different models in each distorted condition to actual
neural responses in the same conditions, shown in Fig. 4E.

Responses predicted by the SDGN model were significantly
more similar to the actual responses than SN, SD, or GN alone
(P < 0.01, t test, n = 91, 101, and 97 for white, pink, and re-
verberation conditions, respectively). Although inclusion of ei-
ther dynamic mechanism individually results in more accurate
prediction of the neural response, the actual neural data are best
predicted when both mechanisms are combined. More specifi-
cally, the subtractive SD model is more effective than the mul-
tiplicative GN in additive noise conditions (blue vs. green bars
for white and pink noise in Fig. 4E), but not in reverberation.
To study how the different models encoded clean and noisy

speech at the population level, we applied the reconstruction
analysis to the simulated responses. We used the same re-
construction filters obtained from neural responses to clean
speech, as in the analysis in Fig. 2. The original and recon-
structed spectrograms for the SN, SD, GN, and SDGN models
are shown in Fig. 5. As expected, the reconstructed spectrograms
for the SN and GN models contain both speech and noise and
a relatively smeared response in the reverberant conditions. The
SD model reduces the noise level but at the expense of excessive
overall response suppression that fades the finer features of the
speech signal. Reconstructed spectrograms for the SDGN model
produced spectrograms most similar to the original clean signals
(Fig. 2A) and to the reconstruction from actual neural data (Fig. 2B).
We used the MSE distance metric to compare the recon-

structions for the different models quantitatively, as shown in
Fig. 5C. This analysis confirms the significant enhancement of
the speech signal and suppression of distortions for the SDGN
model (red bars, Fig. 5C, t test, Bonferroni correction). Note also
that the reconstructed spectrograms from the SD model were
closer to the clean stimulus for additive white and pink noise
(blue bars, Fig. 5C), but the only model that also reduced the
reverberant distortions was the combined SDGN model. Based
on these observations, we conclude that a simple higher-level read-
out stage (simulated by linear reconstruction in our study) that is
estimated only in clean condition will generalize to distorted
speech, because the responses themselves adapt to the changing
condition, eliminating the need for reestimation of a decoding
model. This self-normalization of the responses is advantageous for
subsequent stages of information processing by reducing the vari-
ability of the signal that simplifies adaptation to novel conditions.
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Improved Phoneme Discriminability in Reconstructed Speech. Pho-
nemes are the smallest units of speech that can change meaning
within a language (22). Their robust representations in neural
data are therefore crucial for speech comprehension. As with
other natural sounds, it is likely that basic neural mechanisms
contribute to the stability and robustness of their representations
in early stages of auditory processing (23). To examine the effect
of distortions on phoneme category representation, we measured
the mean phoneme spectrograms averaged over all of the
instances of individual phonemes (24). Fig. 6A compares three
examples of phoneme average spectrograms over clean speech,
noisy speech, and reconstructions using neural responses to the
noisy stimulus. The first example is a closed vowel /ih/, which is
characterized by two separated spectral peaks (i.e., for[ant fre-
quencies (22), with the second higher frequency peak circled]. As
can be seen in the average spectrograms in white noise, the
second formant is heavily masked by the background noise, but it
is restored in the reconstructed spectrograms from the actual
neural responses. The second example is a plosive phoneme (/t/),
characterized by a silence gap followed by a high-frequency noise
burst (22). This profile is diminished in additive pink noise, but is
enhanced again in the reconstructed spectrograms from the
neural responses (Fig. 6A, second column). Finally, the third
example shows the spectrogram of the nasal /m/, which is char-
acterized by reduced acoustic energy in middle to high fre-
quencies (22). This specific profile is masked in reverberation
(Fig. 6A, second row), but is restored in the reconstructed
spectrogram (Fig. 6A, third row).
To determine whether the models also enhance the essential

acoustic characteristics of phonemes in distorted conditions, we
used a phoneme separability analysis to compare the ratio of
between-class to within-class variability of simulated responses
to different phonemes (F statistics) (25). In this measure, a ratio
of 1 indicates complete overlap between responses to different
phonemes, whereas higher values imply better discriminability.
We estimated this ratio across all phonemes for the recon-
structed spectrograms from responses predicted by the SN,
SD, GN, and SDGN models, as shown in Fig. 6B. Although

neither the SD nor the GN model showed a significant im-
provement, the SDGN shows significantly better phoneme dis-
criminability compared with the SN model (Fig. 6B, P < 0.05,
t test, Bonferroni correction).

Discussion
We observed robust representation of natural vocalizations in
the primary auditory cortex (A1) of ferrets even when stimuli
were distorted by additive noise and reverberation. Despite
substantial changes in neuronal activity at the single-cell level
(4, 6), stimulus information encoded across the neural population
remained remarkably stable across distorted stimulus conditions.
This robustness was demonstrated by quantitative comparison of
original clean spectrograms to reconstructions based on the
neural population response to the distorted stimuli. In particular,
spectral cues such as formants (e.g., the high-frequency peak of
vowel /ih/) are enhanced in the reconstructions despite their
weakness in the noisy spectrograms. Dynamic cues that are
smoothed out by the reverberation (e.g., the midfrequency gap
of the nasal /m/) are also well preserved in the population
responses. This enhanced signal representation may explain
the persistence of phoneme discriminability even under noisy
conditions (16), and contribute to the overall representation of
phonetic features in the auditory cortex (26).
A classic STRF model, consisting of linear spectrotemporal

filtering followed by a static nonlinearity, cannot account for the
observed noise suppression. Instead, we found that a dynamic
nonlinear model is necessary, accounting for both feed-forward,
subtractive synaptic depression (21, 27) and feedback, multiplicative
gain normalization (14, 15, 28). Although the synaptic depression
model alone can account partly for the suppression of additive noise,
the combined depression/gain control model is necessary to replicate
the neural data in more complex distortions such as reverberation.
We found that although the interaction between neuronal tuning
properties and the spectrotemporal profile of a distortion is an im-
portant factor in how the neuron’s response changes for distorted
signals (6), the presence of a distortion in spectrograms recon-
structed using the static STRF model (SN) (Fig. 5B) demonstrates
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speech signal was achieved only in the predicted responses of SDGN model.
(C) Difference between MSE distances of reconstructed spectrograms and
original clean and noisy spectrograms showing a significant enhancement of
the speech signal and suppression of the distortion for SDGN predicted
responses (red bars, **P < 0.01, t test).
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that the observed enhancement of the stimuli in neural data cannot
be explained exclusively by static, linear spectrotemporal filtering.
Our findings have important implications for theoretical mod-

els of optimality in neural coding. Encoding models derived in
clean signal conditions may not be sufficient to account for the
encoding of spectrotemporally rich signals in complex noisy
environments. A previous study of A1 that focused only on the
representation of clean speech did not identify a functional role
for divisive normalization (21), but studies with other noise stimuli
have suggested that it might play a role (28). More generally, the
relevance of environmental noise is well established in studies of
neurophysiology (4), psychoacoustics (16), and automatic speech
processing (29). Similarly, our results demonstrate that charac-
terizing the neural encoding of natural stimuli in multiple noisy
conditions will be required to understand neural representations
over their full dynamic range.

Limitations and Scope. Although this study focused on the
response properties of neurons in A1, mechanisms with functional
properties similar to synaptic depression and gain normalization
have also been reported in subcortical areas in the auditory
pathway, including inferior colliculus (30), cochlear nucleus (31),
and auditory nerve (32). These mechanisms are likely to contrib-
ute to the overall reduction of signal distortions in areas providing
input to A1, and the nonlinear dynamic properties reported here
are likely the combined effect of all these processes throughout
the auditory pathway (33). Moreover, although the underlying
signal enhancement mechanisms need not be the specific models
of synaptic depression and gain normalization used in this study,
they likely share functional and dynamic properties with the
mechanisms we showed are able to effectively replicate the
neural data. Therefore, we propose these mechanisms as plau-
sible processes underlying the signal enhancement observed in
the cortex.
One of the limitations of the present study is that behavioral

data from the ferrets were not obtained to forge a link between
neural activity and perception of signals in noise. Although we
cannot conclude that the neurophysiological response properties
we have described here are necessarily essential for behavior,
several existing studies using synthetic stimuli (34) and speech
(23) have demonstrated that ferrets and rodents are able to
perceive target sounds in noisy conditions similar to those used
in this study. The functional properties observed for speech
and conspecific vocalizations in distorted conditions may re-
flect computational strategies used in these behaviors, and future
studies that combine our unique computational approach
and behavior paradigms promise valuable new insight into the
general problem of identifying signals in the background of

interfering sources (5). Although our focus in this study was to
determine how different mechanisms contribute to the for-
mation of the cortical representation under convolutive and
additive distortions, a wider range of conditions is necessary
to expand the findings and to determine how these mechanisms
contribute to signal enhancement in various stationary, non-
stationary, and, ultimately, competing vocalizations (35).

Methods
Single-unit neurophysiological activity was recorded from A1 of four head-
restrained, quiescent adult female ferrets during passive listening to speech
stimuli. The protocol for all surgical and experimental procedures was ap-
proved by the Institutional Animal Care and Use Committee at the University
of Maryland and is consistent with National Institutes of Health Guidelines.

Neurophysiological Recording. After implant surgery, animals were habitu-
ated to head restraint and to the recording setup over a period of several
weeks before the onset of neurophysiological experiments. Experiments
were conducted in a double-walled acoustic chamber (Industrial Acoustics).
Small craniotomies (∼1–2 mm in diameter) exposing the dura were made
over A1 before recording sessions. Electrophysiological signals were recor-
ded using tungsten microelectrodes (2-8 MΩ; FHC) and were amplified and
stored using an integrated data acquisition system (Alpha Omega).

At the beginning and end of each recording session, the craniotomy was
thoroughly rinsed with sterile saline. At the end of a recording session, the
craniotomy was filled with a silicone ear impression material (Gold Velvet
II-Part Silicon Impression System, Precision Laboratories Inc.) that provided
a tight seal in the well, thus protecting the craniotomy while the animals were
returned to their home cages. Necessary steps were taken to ensure the ste-
rility during all procedures.

Recording sites were verified as being in A1 based on their relatively
narrow frequency tuning, short latency, and tonotopic organization. Spike
sorting of the raw neural traceswas completed off-line using a custom principal
component analysis clustering algorithm (21). Our requirements for single-unit
isolation of stable waveforms included that each unit be at least 80% isolated
from other activity and that the waveform and spike shape remain stable
throughout the experiment. We characterized isolation using a Gaussian noise
model that quantified the overlap between individual waveforms and back-
ground hash. An isolation level of 80% indicates that 80% of the spikes are
attributed to a single unit rather than the background noise.

Auditory Stimuli and Preprocessing. Experiments and simulations described in
this report used clean and distorted speech. Speech stimuli were phonetically
transcribed continuous speech from the TIMIT database (36). Thirty different
sentences (16-KHz sampling) spoken by 15 male and 15 female speakers
were used to ensure a wide variety of voices and contexts. Vocalizations
were recorded from ferret kits and adults using a digital recorder (44-KHz
sampling) in a sound-attenuating chamber (IAC). Recordings spanned the
range of vocalizations observed in the laboratory, including kit distress calls,
adult play vocalizations, and adult aggression calls. Each sentence or vocal-
ization was 3 s long plus a 1-s interstimulus interval. Stimuli were repeated
five times during the neurophysiological recordings; therefore the entire
stimulus period for a single condition (clean or distorted) was ∼600 s.

Three types of distortion were applied to the clean signals: additive white
noise, additive pink noise, and convolutive reverberation. In the first two
conditions, we added frozen noise (i.e., noise segments were the same in each
presentation of the same speech token, but randomly generated for each
speech sample), white noise at 0 dB, and pink (1/f noise) noise at 6 dB signal-
to-noise ratio. In the third condition, we added reverberation to clean speech
by convolving the samples with the simulated impulse response of a highly
reverberant room (exponentially decaying random Gaussian noise, decay
time constant = 300 ms). All sounds were played at 75 dB. These three types
of distortion represent examples of noisy situations and contexts where
human listeners exhibit robust speech recognition (29).

Because of experimental limitations, the number of neurons tested in each
distortion condition for each ferret varied (white noise, total n = 91, 29–41 per
animal; pink noise, total n = 101, 9–41 per animal; reverberation, total n =
97, 9–45 per animal). In all cases, responses were also obtained for the same
neurons during presentation of the clean stimulus (speech or vocalizations).

For analysis, speech auditory spectrograms were generated from the sound
waveforms using a bank of constant-Q band-pass filters, logarithmically
spaced along spectral axis (30 channels, 125–8000 Hz) (37). Because of the
logarithmic spacing of the frequency axis, white noise has greater relative

*

1

4

8

12 n.s
n.s

SN SD GN SDGN

P
ho

ne
m

e 
f-

ra
tio

A /ih/

White

Noisy
reconstructed

Noisy 
original

Clean 
original

/t/

Time from onset (s)
0 0.2 0 0.2

0

8

0

8

0

8

F
re

qu
en

cy
 (

K
H

z)

B

0 0.2

/m/

Pink Reverb

Fig. 6. Difference between MSE distance of reconstructed spectrograms
and original clean and noisy spectrograms. (A) Examples of average pho-
neme spectrograms in original clean, original noisy, and reconstructed noisy
samples. Different distortions heavily mask the acoustic features of pho-
nemes, such as second formant of vowel /ih/ in white noise (circled), spectral
peak of plosive /t/ (circled), or midfrequency gap of nasal /m/ (circled). These
features are highly restored in the reconstructed spectrograms from neural
responses to distorted speech. (B) Phoneme separability index estimated
from reconstructed spectrograms using SN, SD, GN, and SDGN predicted
responses, showing a significant improvement in phoneme discriminability
by SDGN model (*P < 0.05, t test).
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power in the high-frequency bands, whereas pink noise with a 1/f spectrum
looks flat on logarithmic scale (Fig. 2A).

Reconstructing Sound Spectrograms from Neural Responses. Optimal prior
reconstruction is a linear mapping between the response of a population of
neurons and the original stimulus (17). In this method, the reconstruction
filter, g(τ, f, n), is computed to map the neural population responses, R(t, n),
back to the sound spectrogram, Ŝ(t, f):

Ŝðt,fÞ=
X
n

X
τ

  gðτ,f ,nÞRðt − τ,nÞ, [6]

where n indexes neurons. This function g(.) is estimated by minimizing the
mean-squared error between actual and reconstructed stimulus (17).

Quantifying Reconstruction Accuracy. To make unbiased measurements of the
accuracy of the reconstruction, a subset of validation data (10%) was reserved
from the data used for estimating the reconstruction filter. The estimated filter
wasused to reconstruct the stimulus in the validationdataset, and reconstruction
accuracy was measured by the normalized MSE distance between the recon-
structed and original stimulus spectrogram, averaged over frequency and time.

Phoneme Discriminability Index.Wemeasured a phoneme discriminability index
(F statistics) that reflects both the representation similarity of instances of the
same phoneme and the separation between different phoneme classes. This
measure is defined as the ratio of between-phoneme to within-phoneme vari-
ability spectrogram representations, where ratios (ρ) larger than 1 imply less
overlap between the representations of different phonemes.

Measurement of Spectrotemporal Receptive Fields. We characterized each
neuron by its STRF, estimated by normalized reverse correlation of the
neuron’s response to the auditory spectrogram of the speech stimulus (10).
Although methods such as normalized reverse correlation can produce un-
biased STRF estimates in theory, practical implementation requires some form

of regularization to prevent overfitting to noise along the low-variance
dimensions. This in effect imposes a smoothness constraint on the STRF. Re-
gression parameters were adjusted using a jackknife validation set to maxi-
mize the correlation between actual and predicted responses (10). The
estimated STRF models were not optimized jointly with the addition of various
nonlinearities, due to the limited amount of data available for fitting (38).

Simulation of Neural Responses With and Without Nonlinear Normalization. We
predicted the response of neurons to novel speech samples using their measured
STRFs (10) (Eqs. 1 and 2). To study the effect of nonlinear mechanisms on noise
robustness of neural responses, we extended the linear model by adding a sub-
tractive model of SD (21), and a multiplicative model of GN (15) to the output of
the linear model (Eq. 3 and Fig. 3A). W in Eqs. 4 and 5. is the Hann function,
added to emphasize the most recent history of stimulus and response:

WðtÞ= sin2
�
πt
τ

�
,

and τ is the same as the time constant used in A(t) and B(t) (τSD and τGN,
respectively) and specifies the duration of the temporal integration window.
The integration windows τSD and τGN were fit to the data (after first fitting
the linear STRF and Vth), using cross-validation analysis (Fig. 3 B and C) to
minimize the MSE between predicted and actual neural responses. Because
synaptic depression only influences stimulus channels providing input to
a neuron, we limited the stimulus integration region of the SD model, A(t),
to the same spectral bands that modulated the neural responses, defined by
the STRF of the neuron (8, 21). For the SD only model, we set B(t) = 1, and for
the GN only model, we set A(t) = Vth. Computationally, the SD stage is
a feed-forward computation that subtracts the short-term baseline of the
stimulus. The GN stage, on the other hand, operates as a feedback and
normalizes the short-term average of the predicted output.
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